1
|
Campos-Quevedo N, Moreno-Perlin T, Razo-Flores E, Stams AJM, Celis LB, Sánchez-Andrea I. Acetotrophic sulfate-reducing consortia develop active biofilms on zeolite and glass beads in batch cultures at initial pH 3. Appl Microbiol Biotechnol 2021; 105:5213-5227. [PMID: 34125274 DOI: 10.1007/s00253-021-11365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Sulfate-reducing microbial communities remain a suitable option for the remediation of acid mine drainage using several types of carrier materials and appropriate reactor configurations. However, acetate prevails as a product derived from the incomplete oxidation of most organic substrates by sulfate reducers, limiting the efficiency of the whole process. An established sulfate-reducing consortium, able to degrade acetate at initial acidic pH (3.0), was used to develop biofilms over granular activated carbon (GAC), glass beads, and zeolite as carrier materials. In batch assays using glycerol, biofilms successfully formed on zeolite, glass beads, and GAC with sulfide production rates of 0.32, 0.26, and 0.14 mmol H2S/L·d, respectively, but only with glass beads and zeolite, acetate was degraded completely. The planktonic and biofilm communities were determined by the 16S rRNA gene analysis to evaluate the microbial selectivity of the carrier materials. In total, 46 OTUs (family level) composed the microbial communities. Ruminococcaceae and Clostridiaceae families were present in zeolite and glass beads, whereas Peptococcaceae was mostly enriched on zeolite and Desulfovibrionaceae on glass beads. The most abundant sulfate reducer in the biofilm of zeolite was Desulfotomaculum sp., while Desulfatirhabdium sp. abounded in the planktonic community. With glass beads, Desulfovibrio sp. dominated the biofilm and the planktonic communities. Our results indicate that both materials (glass beads and zeolite) selected different key sulfate-reducing microorganisms able to oxidize glycerol completely at initial acidic pH, which is relevant for a future application of the consortium in continuous bioreactors to treat acidic streams. KEY POINTS: • Complete consumption of glycerol and acetate at acidic pH by sulfate reduction. • Glass beads and zeolite are suitable materials to form sulfate-reducing biofilms. • Acetotrophic sulfate-reducing bacteria attached to zeolite preferably.
Collapse
Affiliation(s)
- Nohemi Campos-Quevedo
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, C.P. 78216, San Luis Potosí, S.L.P., México.,Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Tonatiuh Moreno-Perlin
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, C.P. 78216, San Luis Potosí, S.L.P., México
| | - Elías Razo-Flores
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, C.P. 78216, San Luis Potosí, S.L.P., México
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Lourdes B Celis
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a. Sección, C.P. 78216, San Luis Potosí, S.L.P., México.
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Johnson DB, Sánchez-Andrea I. Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery. Adv Microb Physiol 2019; 75:205-231. [PMID: 31655738 DOI: 10.1016/bs.ampbs.2019.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox transformations of sulfur, involving dissimilatory and assimilatory oxidation and reduction reactions, occurs in water bodies and terrestrial environments worldwide, leading to dynamic cycling of this element throughout the biosphere. In cases where zero-valent (elemental) sulfur, sulfate and other oxidized forms are used as electron acceptor in (primarily) anaerobic microbial metabolisms, the end product is hydrogen sulfide (HS- or H2S, dependent on pH). While neutrophilic and alkalophilic sulfidogenic prokaryotes have been known for many decades, acid-tolerant and acidophilic strains and species have been isolated and characterized only in the past twenty or so years, even though evidence for sulfide generation on these environments was previously well documented. This review outlines the background and current status of the biodiversity and metabolisms of sulfate- and sulfur-reducing prokaryotes that are metabolically active in low pH environments, and describes the developing technologies in which they are being used to remediate acidic waste waters (which are often metal-contaminated) and to recover metal resources.
Collapse
Affiliation(s)
- D Barrie Johnson
- School of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
Angermeyer A, Crosby SC, Huber JA. Salt marsh sediment bacterial communities maintain original population structure after transplantation across a latitudinal gradient. PeerJ 2018; 6:e4735. [PMID: 29736349 PMCID: PMC5935077 DOI: 10.7717/peerj.4735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/19/2018] [Indexed: 12/25/2022] Open
Abstract
Dispersal and environmental selection are two of the most important factors that govern the distributions of microbial communities in nature. While dispersal rates are often inferred by measuring the degree to which community similarity diminishes with increasing geographic distance, determining the extent to which environmental selection impacts the distribution of microbes is more complex. To address this knowledge gap, we performed a large reciprocal transplant experiment to simulate the dispersal of US East Coast salt marsh Spartina alterniflora rhizome-associated microbial sediment communities across a latitudinal gradient and determined if any shifts in microbial community composition occurred as a result of the transplantation. Using bacterial 16S rRNA gene sequencing, we did not observe large-scale changes in community composition over a five-month S. alterniflora summer growing season and found that transplanted communities more closely resembled their origin sites than their destination sites. Furthermore, transplanted communities grouped predominantly by region, with two sites from the north and three sites to the south hosting distinct bacterial taxa, suggesting that sediment communities transplanted from north to south tended to retain their northern microbial distributions, and south to north maintained a southern distribution. A small number of potential indicator 16S rRNA gene sequences had distributions that were strongly correlated to both temperature and nitrogen, indicating that some organisms are more sensitive to environmental factors than others. These results provide new insight into the microbial biogeography of salt marsh sediments and suggest that established bacterial communities in frequently-inundated environments may be both highly resistant to invasion and resilient to some environmental shifts. However, the extent to which environmental selection impacts these communities is taxon specific and variable, highlighting the complex interplay between dispersal and environmental selection for microbial communities in nature.
Collapse
Affiliation(s)
- Angus Angermeyer
- Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.,Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sarah C Crosby
- Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.,Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Harbor Watch, Earthplace Inc., Westport, CT, USA
| | - Julie A Huber
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
4
|
Walter JM, Coutinho FH, Dutilh BE, Swings J, Thompson FL, Thompson CC. Ecogenomics and Taxonomy of Cyanobacteria Phylum. Front Microbiol 2017; 8:2132. [PMID: 29184540 PMCID: PMC5694629 DOI: 10.3389/fmicb.2017.02132] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/18/2017] [Indexed: 01/15/2023] Open
Abstract
Cyanobacteria are major contributors to global biogeochemical cycles. The genetic diversity among Cyanobacteria enables them to thrive across many habitats, although only a few studies have analyzed the association of phylogenomic clades to specific environmental niches. In this study, we adopted an ecogenomics strategy with the aim to delineate ecological niche preferences of Cyanobacteria and integrate them to the genomic taxonomy of these bacteria. First, an appropriate phylogenomic framework was established using a set of genomic taxonomy signatures (including a tree based on conserved gene sequences, genome-to-genome distance, and average amino acid identity) to analyse ninety-nine publicly available cyanobacterial genomes. Next, the relative abundances of these genomes were determined throughout diverse global marine and freshwater ecosystems, using metagenomic data sets. The whole-genome-based taxonomy of the ninety-nine genomes allowed us to identify 57 (of which 28 are new genera) and 87 (of which 32 are new species) different cyanobacterial genera and species, respectively. The ecogenomic analysis allowed the distinction of three major ecological groups of Cyanobacteria (named as i. Low Temperature; ii. Low Temperature Copiotroph; and iii. High Temperature Oligotroph) that were coherently linked to the genomic taxonomy. This work establishes a new taxonomic framework for Cyanobacteria in the light of genomic taxonomy and ecogenomic approaches.
Collapse
Affiliation(s)
- Juline M Walter
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Felipe H Coutinho
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Bas E Dutilh
- Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Jean Swings
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Center of Technology - CT2, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Matturro B, Cruz Viggi C, Aulenta F, Rossetti S. Cable Bacteria and the Bioelectrochemical Snorkel: The Natural and Engineered Facets Playing a Role in Hydrocarbons Degradation in Marine Sediments. Front Microbiol 2017; 8:952. [PMID: 28611751 PMCID: PMC5447156 DOI: 10.3389/fmicb.2017.00952] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/12/2017] [Indexed: 11/13/2022] Open
Abstract
The composition and metabolic traits of the microbial communities acting in an innovative bioelectrochemical system were here investigated. The system, known as Oil Spill Snorkel, was recently developed to stimulate the oxidative biodegradation of petroleum hydrocarbons in anoxic marine sediments. Next Generation Sequencing was used to describe the microbiome of the bulk sediment and of the biofilm growing attached to the surface of the electrode. The analysis revealed that sulfur cycling primarily drives the microbial metabolic activities occurring in the bioelectrochemical system. In the anoxic zone of the contaminated marine sediment, petroleum hydrocarbon degradation occurred under sulfate-reducing conditions and was lead by different families of Desulfobacterales (46% of total OTUs). Remarkably, the occurrence of filamentous Desulfubulbaceae, known to be capable to vehicle electrons deriving from sulfide oxidation to oxygen serving as a spatially distant electron acceptor, was demonstrated. Differently from the sediment, which was mostly colonized by Deltaproteobacteria, the biofilm at the anode hosted, at high extent, members of Alphaproteobacteria (59%) mostly affiliated to Rhodospirillaceae family (33%) and including several known sulfur- and sulfide-oxidizing genera. Overall, we showed the occurrence in the system of a variety of electroactive microorganisms able to sustain the contaminant biodegradation alone or by means of an external conductive support through the establishment of a bioelectrochemical connection between two spatially separated redox zones and the preservation of an efficient sulfur cycling.
Collapse
|