1
|
Carroll LM, Pierneef R, Mathole A, Atanda A, Matle I. Genomic Sequencing of Bacillus cereus Sensu Lato Strains Isolated from Meat and Poultry Products in South Africa Enables Inter- and Intranational Surveillance and Source Tracking. Microbiol Spectr 2022; 10:e0070022. [PMID: 35475639 PMCID: PMC9241823 DOI: 10.1128/spectrum.00700-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Members of the Bacillus cereus sensu lato species complex, also known as the B. cereus group, vary in their ability to cause illness but are frequently isolated from foods, including meat products; however, food safety surveillance efforts that use whole-genome sequencing (WGS) often neglect these potential pathogens. Here, we evaluate the surveillance and source tracking potential of WGS as applied to B. cereus sensu lato by (i) using WGS to characterize B. cereus sensu lato strains isolated during routine surveillance of meat products across South Africa (n = 25) and (ii) comparing the genomes sequenced here to all publicly available, high-quality B. cereus sensu lato genomes (n = 2,887 total genomes). Strains sequenced here were collected from meat products obtained from (i) retail outlets, processing plants, and butcheries across six South African provinces (n = 23) and (ii) imports held at port of entry (n = 2). The 25 strains sequenced here were partitioned into 15 lineages via in silico seven-gene multilocus sequence typing (MLST). While none of the South African B. cereus sensu lato strains sequenced here were identical to publicly available genomes, six MLST lineages contained multiple strains sequenced in this study, which were identical or nearly identical at the whole-genome scale (≤3 core single nucleotide polymorphisms). Five MLST lineages contained (nearly) identical genomes collected from two or three South African provinces; one MLST lineage contained nearly identical genomes from two countries (South Africa and the Netherlands), indicating that B. cereus sensu lato can spread intra- and internationally via foodstuffs. IMPORTANCE Nationwide foodborne pathogen surveillance programs that use high-resolution genomic methods have been shown to provide vast public health and economic benefits. However, Bacillus cereus sensu lato is often overlooked during large-scale routine WGS efforts. Thus, to our knowledge, no studies to date have evaluated the potential utility of WGS for B. cereus sensu lato surveillance and source tracking in foodstuffs. In this preliminary proof-of-concept study, we applied WGS to B. cereus sensu lato strains collected via South Africa's national surveillance program of domestic and imported meat products, and we provide strong evidence that B. cereus sensu lato can be disseminated intra- and internationally via the agro-food supply chain. Our results showcase that WGS has the potential to be used for source tracking of B. cereus sensu lato in foods, although future WGS and metadata collection efforts are needed to ensure that B. cereus sensu lato surveillance initiatives are on par with those of other foodborne pathogens.
Collapse
Affiliation(s)
- Laura M. Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Aletta Mathole
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Abimbola Atanda
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| |
Collapse
|
2
|
Lopes LD, Pereira E Silva MDC, Weisberg AJ, Davis EW, Yan Q, Varize CDS, Wu CF, Chang JH, Loper JE, Andreote FD. Genome variations between rhizosphere and bulk soil ecotypes of a Pseudomonas koreensis population. Environ Microbiol 2018; 20:4401-4414. [PMID: 30033663 DOI: 10.1111/1462-2920.14363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 11/28/2022]
Abstract
Bulk soil and rhizosphere are soil compartments selecting different microbial communities. However, it is unknown whether this selection also can change the genome content of specific bacterial taxa, splitting a population in distinct ecotypes. To answer this question we compared the genome sequences of 53 isolates obtained from sugarcane rhizosphere (28) and bulk soil (25). These isolates were previously classified in the Pseudomonas koreensis subgroup of the P. fluorescens complex. Phylogenomics showed a trend of separation between bulk soil and rhizosphere isolates. Discriminant analysis of principal components (DAPC) identified differences in the accessory genome of rhizosphere and bulk soil sub-populations. We found significant changes in gene frequencies distinguishing rhizosphere from bulk soil ecotypes, for example, enrichment of phosphatases and xylose utilization (xut) genes, respectively. Phenotypic assays and deletion of xutA gene indicated that accumulation of xut genes in the bulk soil sub-population provided a higher growth capacity in a d-xylose medium, supporting the corresponding genomic differences. Despite the clear differences distinguishing the two ecotypes, all 53 isolates were classified in a single 16S rRNA gene OTU. Collectively, our results revealed that the gene pool and ecological behavior of a bacterial population can be different for ecotypes living in neighbouring soil habitats.
Collapse
Affiliation(s)
- Lucas Dantas Lopes
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Michele de C Pereira E Silva
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Edward W Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, 97331, USA
| | - Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Camila de S Varize
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Chih-Feng Wu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, 97331, USA
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, 97331, USA
| | - Fernando D Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Diversity and enzymatic potentialities of Bacillus sp. strains isolated from a polluted freshwater ecosystem in Cuba. World J Microbiol Biotechnol 2018; 34:28. [PMID: 29350293 DOI: 10.1007/s11274-018-2411-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Genotypic and phenotypic characterization of Bacillus spp. from polluted freshwater has been poorly addressed. The objective of this research was to determine the diversity and enzymatic potentialities of Bacillus spp. strains isolated from the Almendares River. Bacilli strains from a polluted river were characterized by considering the production of extracellular enzymes using API ZYM. 14 strains were selected and identified using 16S rRNA, gyrB and aroE genes. Genotypic diversity of the Bacillus spp. strains was evaluated using pulsed field gel electrophoresis. Furthermore, the presence of genetic determinants of potential virulence toxins of the Bacillus cereus group and proteinaceous crystal inclusions of Bacillus thuringiensis was determined. 10 strains were identified as B. thuringiensis, two as Bacillus megaterium, one as Bacillus pumilus and one as Bacillus subtilis. Most strains produced proteases, amylases, phosphatases, esterases, aminopeptidases and glucanases, which reflect the abundance of biopolymeric matter in Almendares River. Comparison of the typing results revealed a spatio-temporal distribution among B. thuringiensis strains along the river. The results of the present study highlight the genotypic and phenotypic diversity of Bacillus spp. strains from a polluted river, which contributes to the knowledge of genetic diversity of Bacilli from tropical polluted freshwater ecosystems.
Collapse
|