1
|
Wu L, Du Z, Li L, Qiao L, Zhang S, Yin X, Chang X, Li C, Hua Z. Camouflaging attenuated Salmonella by cryo-shocked macrophages for tumor-targeted therapy. Signal Transduct Target Ther 2024; 9:14. [PMID: 38195682 PMCID: PMC10776584 DOI: 10.1038/s41392-023-01703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 01/11/2024] Open
Abstract
Live bacteria-mediated antitumor therapies mark a pivotal point in cancer immunotherapy. However, the difficulty in reconciling the safety and efficacy of bacterial therapies has limited their application. Improving bacterial tumor-targeted delivery while maintaining biosafety is a critical hurdle for the clinical translation of live microbial therapy for cancer. Here, we developed "dead" yet "functional" Salmonella-loaded macrophages using liquid nitrogen cold shock of an attenuated Salmonella typhimurium VNP20009-contained macrophage cell line. The obtained "dead" macrophages achieve an average loading of approximately 257 live bacteria per 100 cells. The engineered cells maintain an intact cellular structure but lose their original pathogenicity, while intracellular bacteria retain their original biological activity and are delay freed, followed by proliferation. This "Trojan horse"-like bacterial camouflage strategy avoids bacterial immunogenicity-induced neutrophil recruitment and activation in peripheral blood, reduces the clearance of bacteria by neutrophils and enhances bacterial tumor enrichment efficiently after systemic administration. Furthermore, this strategy also strongly activated the tumor microenvironment, including increasing antitumor effector cells (including M1-like macrophages and CD8+ Teffs) and decreasing protumor effector cells (including M2-like macrophages and CD4+ Tregs), and ultimately improved antitumor efficacy in a subcutaneous H22 tumor-bearing mouse model. The cryo-shocked macrophage-mediated bacterial delivery strategy holds promise for expanding the therapeutic applications of living bacteria for cancer.
Collapse
Affiliation(s)
- Leyang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
- Nanjing Generecom Biotechnology Co., Ltd, Nanjing, 210023, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc, Changzhou, 213164, Jiangsu, China
| | - Zengzheng Du
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Liyuan Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Shuhui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Xingpeng Yin
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Chenyang Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 21008, Jiangsu, China.
- Nanjing Generecom Biotechnology Co., Ltd, Nanjing, 210023, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc, Changzhou, 213164, Jiangsu, China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
2
|
Long J, Zeng Y, Liang F, Liu N, Xi Y, Sun Y, Zhao X. Transformed Salmonella typhimurium SL7207/pcDNA-CCOL2A1 as an orally administered DNA vaccine. AMB Express 2024; 14:6. [PMID: 38196027 PMCID: PMC10776540 DOI: 10.1186/s13568-023-01650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/11/2024] Open
Abstract
The use of attenuated bacteria for oral delivery of DNA vaccines is a recent innovation. We designed and constructed the naked plasmid DNA vaccine pcDNA-CCOL2A1, which effectively prevented and treated a rheumatoid arthritis model by inducing immunotolerance. We aimed to ensure a reliable, controllable dosage of this oral DNA vaccine preparation and establish its stability. We transformed pcDNA-CCOL2A1 via electroporation into attenuated Salmonella typhimurium SL7207. A resistant plate assay confirmed the successful construction of the transformed strain of the SL7207/pcDNA-CCOL2A1 oral DNA vaccine. We verified its identification and stability in vitro and in vivo. Significant differences were observed in the characteristics of the transformed and blank SL7207 strains. No electrophoretic restriction patterns or direct sequencing signals were observed in the original extract of the transformed strain. However, target gene bands and sequence signals were successfully detected after PCR amplification. CCOL2A1 expression was detected in the ilea of BALB/c mice that were orally administered SL7207/pcDNA-CCOL2A1. The pcDNA-CCOL2A1 plasmid of the transformed strain was retained under the resistant condition, and the transformed strain remained stable at 4 °C for 100 days. The concentration of the strain harboring the pcDNA-CCOL2A1 plasmid was stable at 109 CFU/mL after 6-8 h of incubation. The results demonstrated that the transformed strain SL7207/pcDNA-CCOL2A1 can be expressed in vivo, has good stability, and may be used to prepare the oral DNA vaccine pcDNA-CCOL2A1 with a stable, controllable dosage and the capacity to provide oral immunization. This vehicle can effectively combine both oral immunotolerance and DNA vaccination.
Collapse
Affiliation(s)
- Juan Long
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China
| | - Yang Zeng
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China
| | - Fei Liang
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China
| | - Nan Liu
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China
| | - Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China.
| | - Yuying Sun
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China.
| | - Xiao Zhao
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
3
|
Kung YJ, Lam B, Tseng SH, MacDonald A, Tu HF, Wang S, Lin J, Tsai YC, Wu TC, Hung CF. Localization of Salmonella and albumin-IL-2 to the tumor microenvironment augments anticancer T cell immunity. J Biomed Sci 2022; 29:57. [PMID: 35962391 PMCID: PMC9373295 DOI: 10.1186/s12929-022-00841-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background For centuries, microbial-based agents have been investigated as a therapeutic modality for the treatment of cancer. In theory, these methods would be cheap to produce, broadly applicable in a wide array of cancer types, and could synergize with other cancer treatment strategies. We aimed to assess the efficacy of combining microbial-based therapy using Salmonella SL7207 with interleukin-2 (IL-2), a potent immunostimulatory agent, in the treatment of murine colon carcinoma. Methods Female BALB/c mice were implanted subcutaneously with CT26 tumors, a model of colon carcinoma. Mice bearing tumors were selected and administered Albumin-IL-2 (Alb-IL2), a fusion protein, for further analysis of anticancer effect. Results We demonstrated that Salmonella SL7207, a genetically modified strain of Salmonella enterica serovar Typhimurium, preferentially accumulates in the tumor microenvironment, potentiating it to stimulate localized innate immunity. We delivered IL-2 as a fusion protein, Alb-IL2, which we demonstrate to have preferential accumulation properties, bringing it to the tumor and secondary lymphoid organs. Treatment of tumor-bearing mice with Salmonella + Alb-IL2 leads to superior tumor control and enhanced overall survival compared to controls. When assessing immunological factors contributing to our observed tumor control, significantly enhanced T cell population with superior effector function was observed in mice treated with Salmonella + Alb-IL2. We confirmed that these T cells were indispensable to the observed tumor control through antibody-mediated T cell depletion experiments. Conclusions These findings highlight the ability of Salmonella + Alb-IL2 to serve as a novel therapeutic approach to induce T cell-mediated antitumor immunity and exert long-term tumor control in a murine model of cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00841-y.
Collapse
Affiliation(s)
- Yu-Jui Kung
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brandon Lam
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Stanford University School of Medicine, Stanford, CA, USA
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alana MacDonald
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Suyang Wang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Lin
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ya Chea Tsai
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T C Wu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Wu L, Bao F, Li L, Yin X, Hua Z. Bacterially mediated drug delivery and therapeutics: Strategies and advancements. Adv Drug Deliv Rev 2022; 187:114363. [PMID: 35649449 DOI: 10.1016/j.addr.2022.114363] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
It was already clinically apparent 150 years ago that bacterial therapy could alleviate diseases. Recently, a burgeoning number of researchers have been using bacterial regimens filled with microbial therapeutic leads to diagnose and treat a wide range of disorders and diseases, including cancers, inflammatory diseases, metabolic disorders and viral infections. Some bacteria that were designed to have low toxicity and high efficiency in drug delivery have been used to treat diseases successfully, especially in tumor therapy in animal models or clinical trials, thanks to the progress of genetic engineering and synthetic bioengineering. Therefore, genetically engineered bacteria can serve as efficient drug delivery vehicles, carrying nucleic acids or genetic circuits that encode and regulate therapeutic payloads. In this review, we summarize the development and applications of this approach. Strategies for genetically modifying strains are described in detail, along with their objectives. We also describe some controlled strategies for drug delivery and release using these modified strains as carriers. Furthermore, we discuss treatment methods for various types of diseases using engineered bacteria. Tumors are discussed as the most representative example, and other diseases are also briefly described. Finally, we discuss the challenges and prospects of drug delivery systems based on these bacteria.
Collapse
|
5
|
Johnson SA, Ormsby MJ, Wessel HM, Hulme HE, Bravo‐Blas A, McIntosh A, Mason S, Coffelt SB, Tait SW, Mowat AM, Milling SW, Blyth K, Wall DM. Monocytes mediate Salmonella Typhimurium-induced tumor growth inhibition in a mouse melanoma model. Eur J Immunol 2021; 51:3228-3238. [PMID: 34633664 PMCID: PMC9214623 DOI: 10.1002/eji.202048913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/01/2020] [Accepted: 10/01/2021] [Indexed: 01/19/2023]
Abstract
The use of bacteria as an alternative cancer therapy has been reinvestigated in recent years. SL7207: an auxotrophic Salmonella enterica serovar Typhimurium aroA mutant with immune-stimulatory potential has proven a promising strain for this purpose. Here, we show that systemic administration of SL7207 induces melanoma tumor growth arrest in vivo, with greater survival of the SL7207-treated group compared to control PBS-treated mice. Administration of SL7207 is accompanied by a change in the immune phenotype of the tumor-infiltrating cells toward pro-inflammatory, with expression of the TH 1 cytokines IFN-γ, TNF-α, and IL-12 significantly increased. Interestingly, Ly6C+ MHCII+ monocytes were recruited to the tumors following SL7207 treatment and were pro-inflammatory. Accordingly, the abrogation of these infiltrating monocytes using clodronate liposomes prevented SL7207-induced tumor growth inhibition. These data demonstrate a previously unappreciated role for infiltrating inflammatory monocytes underlying bacterial-mediated tumor growth inhibition. This information highlights a possible novel role for monocytes in controlling tumor growth, contributing to our understanding of the immune responses required for successful immunotherapy of cancer.
Collapse
Affiliation(s)
- Síle A. Johnson
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Michael J. Ormsby
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Hannah M. Wessel
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Heather E. Hulme
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Alberto Bravo‐Blas
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Anne McIntosh
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Susan Mason
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Seth B. Coffelt
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Stephen W.G. Tait
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Allan McI. Mowat
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Simon W.F. Milling
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Karen Blyth
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Daniel M. Wall
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
6
|
Zhang P, Liu Y, Hu L, Huang K, Hong M, Wang Y, Fan X, Ulevitch RJ, Han J. NLRC4 inflammasome-dependent cell death occurs by a complementary series of three death pathways and determines lethality in mice. SCIENCE ADVANCES 2021; 7:eabi9471. [PMID: 34678072 PMCID: PMC8535822 DOI: 10.1126/sciadv.abi9471] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/31/2021] [Indexed: 05/09/2023]
Abstract
Inflammasome is an innate immune defense mechanism, but its overactivation can lead to host death. Here, we show that cell death dictates mouse death caused by NLRC4 inflammasome overactivation. To execute NLRC4-dependent cell death, three death pathways complement each other in a specific order: Pyroptosis pathway requiring caspase-1 and GSDMD is the default path; impairment of it initiates ASC-mediated caspase-8–dependent apoptosis; when these two pathways are blocked, caspase-1 triggers intrinsic apoptotic pathway. Blocking one or two of these death pathways inhibits induction of various cytokines and lipid mediators, but mice still succumb, and only genetic deletions that block all death paths prevent NLRC4-mediated cell death, tissue damage, and mice death. In addition, infection of nonpropagative Salmonella-caused mice death is attenuated by blocking these death pathways. Thus, to reduce the lethality of infection-related diseases, preventing cell death might be necessary when propagation of infected pathogen was controlled by other means.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yifei Liu
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lichen Hu
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kai Huang
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mao Hong
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuze Wang
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xinrui Fan
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Richard J. Ulevitch
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
7
|
Ebelt ND, Zuniga E, Passi KB, Sobocinski LJ, Manuel ER. Hyaluronidase-Expressing Salmonella Effectively Targets Tumor-Associated Hyaluronic Acid in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2019; 19:706-716. [PMID: 31694889 DOI: 10.1158/1535-7163.mct-19-0556] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), the extracellular matrix (ECM) surrounding cancer cells forms a barrier that often limits the ability of chemotherapeutic drugs and cytotoxic immune subsets to penetrate and eliminate tumors. The dense stromal matrix protecting cancer cells, also known as desmoplasia, results from the overproduction of major ECM components such as collagens and hyaluronic acid (HA). Although candidate drugs targeting ECM components have shown promise in increasing penetration of chemotherapeutic agents, severe adverse effects associated with systemic depletion of ECM in peripheral healthy tissues limits their use at higher, more effective doses. Currently, few strategies exist that preferentially degrade ECM in tumor tissue over healthy tissues. In light of this, we have developed an attenuated, tumor-targeting Salmonella typhimurium (ST) expressing functional bacterial hyaluronidase (bHs-ST), capable of degrading human HA deposited within PDAC tumors. Our data show that bHs-ST (i) targets and colonizes orthotopic human PDAC tumors following systemic administration and (ii) is efficiently induced in vivo to deplete tumor-derived HA, which in turn (iii) significantly increases diffusion of Salmonella typhimurium within desmoplastic tumors. BHs-ST represents a promising new tumor ECM-targeting strategy that may be instrumental in minimizing off-tumor toxicity while maximizing drug delivery into highly desmoplastic tumors.
Collapse
Affiliation(s)
- Nancy D Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Edith Zuniga
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Kevin B Passi
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Lukas J Sobocinski
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Edwin R Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California.
| |
Collapse
|
8
|
Increasing the bactofection capacity of a mammalian expression vector by removal of the f1 ori. Cancer Gene Ther 2018; 26:183-194. [PMID: 30100607 PMCID: PMC6760541 DOI: 10.1038/s41417-018-0039-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/18/2018] [Accepted: 07/07/2018] [Indexed: 01/18/2023]
Abstract
Bacterial-mediated cancer therapy has shown great promise in in vivo tumour models with increased survival rates post-bacterial treatment. Improving efficiency of bacterial-mediated tumour regression has focused on controlling and exacerbating bacterial cytotoxicity towards tumours. One mechanism that has been used to carry this out is the process of bactofection where post-invasion, bacteria deliver plasmid-borne mammalian genes into target cells for expression. Here we utilised the cancer-targeting Salmonella Typhimurium strain, SL7207, to carry out bactofection into triple negative breast cancer MDA-MB-231 cells. However, we noted that post-transformation with the commonly used mammalian expression vector pEGFP, S. Typhimurium became filamentous, attenuated and unable to invade target cells efficiently. Filamentation did not occur in Escherichia coli-transformed with the same plasmid. Further investigation identified the region inducing S. Typhimurium filamentation as being the f1 origin of replication (f1 ori), an artefact of historic use of mammalian plasmids for single stranded DNA production. Other f1 ori-containing plasmids also induced the attenuated phenotype, while removal of the f1 ori from pEGFP restored S. Typhimurium virulence and increased the bactofection capacity. This work has implications for interpretation of prior bactofection studies employing f1 ori-containing plasmids in S. Typhimurium, while also indicating that future use of S. Typhimurium in targeting tumours should avoid the use of these plasmids.
Collapse
|