1
|
Irons EE, Sajina GC, Lau JT. Sialic acid in the regulation of blood cell production, differentiation and turnover. Immunology 2024; 172:517-532. [PMID: 38503445 PMCID: PMC11223974 DOI: 10.1111/imm.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Sialic acid is a unique sugar moiety that resides in the distal and most accessible position of the glycans on mammalian cell surface and extracellular glycoproteins and glycolipids. The potential for sialic acid to obscure underlying structures has long been postulated, but the means by which such structural changes directly affect biological processes continues to be elucidated. Here, we appraise the growing body of literature detailing the importance of sialic acid for the generation, differentiation, function and death of haematopoietic cells. We conclude that sialylation is a critical post-translational modification utilized in haematopoiesis to meet the dynamic needs of the organism by enforcing rapid changes in availability of lineage-specific cell types. Though long thought to be generated only cell-autonomously within the intracellular ER-Golgi secretory apparatus, emerging data also demonstrate previously unexpected diversity in the mechanisms of sialylation. Emphasis is afforded to the mechanism of extrinsic sialylation, whereby extracellular enzymes remodel cell surface and extracellular glycans, supported by charged sugar donor molecules from activated platelets.
Collapse
Affiliation(s)
| | | | - Joseph T.Y. Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203 USA
| |
Collapse
|
2
|
Alves-Rosa MF, Tayler NM, Dorta D, Coronado LM, Spadafora C. P. falciparum Invasion and Erythrocyte Aging. Cells 2024; 13:334. [PMID: 38391947 PMCID: PMC10887143 DOI: 10.3390/cells13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Plasmodium parasites need to find red blood cells (RBCs) that, on the one hand, expose receptors for the pathogen ligands and, on the other hand, maintain the right geometry to facilitate merozoite attachment and entry into the red blood cell. Both characteristics change with the maturation of erythrocytes. Some Plasmodia prefer younger vs. older erythrocytes. How does the life evolution of the RBC affect the invasion of the parasite? What happens when the RBC ages? In this review, we present what is known up until now.
Collapse
Affiliation(s)
| | | | | | | | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicio de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City 0843-01103, Panama; (M.F.A.-R.); (N.M.T.); (D.D.); (L.M.C.)
| |
Collapse
|
3
|
Erythrocyte-Plasmodium interactions: genetic manipulation of the erythroid lineage. Curr Opin Microbiol 2022; 70:102221. [PMID: 36242898 DOI: 10.1016/j.mib.2022.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
Targeting critical host factors is an emerging concept in the treatment of infectious diseases. As obligate pathogens of erythrocytes, the Plasmodium spp. parasites that cause malaria must exploit erythroid host factors for their survival. However, our understanding of this important aspect of the malaria lifecycle is limited, in part because erythrocytes are enucleated cells that lack a nucleus and DNA, rendering them genetically intractable. Recent advances in genetic analysis of the erythroid lineage using small-hairpin RNAs and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) in red-blood cells derived from stem cells have generated new insights into the functions of several candidate host factors for Plasmodium parasites. Along with efforts in other hematopoietic cells, these advances have also laid a strong foundation for genetic screens to identify novel erythrocyte host factors for malaria.
Collapse
|
4
|
Groomes PV, Kanjee U, Duraisingh MT. RBC membrane biomechanics and Plasmodium falciparum invasion: probing beyond ligand-receptor interactions. Trends Parasitol 2022; 38:302-315. [PMID: 34991983 PMCID: PMC8917059 DOI: 10.1016/j.pt.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
A critical step in malaria blood-stage infections is the invasion of red blood cells (RBCs) by merozoite forms of the Plasmodium parasite. Much progress has been made in defining the parasite ligands and host receptors that mediate this critical step. However, less well understood are the RBC biophysical determinants that influence parasite invasion. In this review we explore how Plasmodium falciparum merozoites interact with the RBC membrane during invasion to modulate RBC deformability and facilitate invasion. We further highlight RBC biomechanics-related polymorphisms that might have been selected for in human populations due to their ability to reduce parasite invasion. Such an understanding will reveal the translational potential of targeting host pathways affecting RBC biomechanical properties for the treatment of malaria.
Collapse
Affiliation(s)
- Patrice V Groomes
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Usheer Kanjee
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Yee ME, Francis RO, Luban NL, Easley KA, Lough CM, Roback JD, Josephson CD, Fasano RM. Glucose-6-phosphate dehydrogenase deficiency is more prevalent in Duffy-null red blood cell transfusion in sickle cell disease. Transfusion 2022; 62:551-555. [PMID: 35044697 PMCID: PMC8940658 DOI: 10.1111/trf.16806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Resistance to malaria infection may be conferred by erythrocyte genetic variations including glucose-6-phosphate dehydrogenase (G6PD) deficiency and lack of Duffy antigens. In red blood cell (RBC) transfusion, G6PD deficiency may shorten transfusion survival. Because Duffy-null units are commonly transfused in sickle cell disease (SCD) due to antigen matching protocols, we examined whether Duffy-null donor RBC units have a higher prevalence of G6PD deficiency. MATERIALS AND METHODS Pediatric patients with SCD on chronic transfusion therapy were followed prospectively for multiple transfusions. RBC unit segments were collected to measure G6PD activity and RBC genotyping. The decline in donor hemoglobin (ΔHbA) following transfusion was assessed from immediate posttransfusion estimates and HbA measurements approximately 1 month later. RESULTS Of 564 evaluable RBC units, 59 (10.5%) were G6PD deficient (23 severe, 36 moderate deficiency); 202 (37.6%) units were Duffy-null. G6PD deficiency occurred in 40 (19.8%) Duffy-null units versus 15 (4.5%) Duffy-positive units (p < .0001). In univariate analysis, the fraction of Duffy-null RBC units per transfusion was associated with greater decline in HbA (p = .038); however, in multivariate analysis, severe G6PD deficiency (p = .0238) but not Duffy-null RBC (p = .0139) were associated with ΔHbA. CONCLUSION Selection of Duffy-null RBC units may result in shorter in vivo survival of transfused RBCs due to a higher likelihood of transfusing units from G6PD deficient donors.
Collapse
Affiliation(s)
- Marianne E. Yee
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia., Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia., Department of Pediatrics, Division of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, New York
| | - Naomi L.C. Luban
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Departments of Hematology and Laboratory Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA
| | | | - John D. Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Cassandra D. Josephson
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia., Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia., Department of Pediatrics, Division of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Ross M. Fasano
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia., Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
6
|
Wang X, Meng X, Meng L, Guo Y, Li Y, Yang C, Pei Z, Li J, Wang F. Joint efficacy of the three biomarkers SNCA, GYPB and HBG1 for atrial fibrillation and stroke: Analysis via the support vector machine neural network. J Cell Mol Med 2022; 26:2010-2022. [PMID: 35138035 PMCID: PMC8980947 DOI: 10.1111/jcmm.17224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of persistent arrhythmia. Although its incidence has been increasing, the pathogenesis of AF in stroke remains unclear. In this study, a total of 30 participants were recruited, including 10 controls, 10 patients with AF and 10 patients with AF and stroke (AF + STROKE). Differentially expressed genes (DEGs) were identified, and functional annotation of DEGs, comparative toxicogenomic database analysis associated with cardiovascular diseases, and predictions of miRNAs of hub genes were performed. Using RT‐qPCR, biological process and support vector machine neural networks, numerous DEGs were found to be related to AF. HBG1, SNCA and GYPB were found to be upregulated in the AF group. Higher expression of hub genes in AF and AF + STROKE groups was detected via RT‐PCR. Upon training the biological process neural network of SNCA and GYPB for HBG1, only small differences were detected. Based on the support vector machine, the predicted value of SNCA and GYPB for HBG1 was 0.9893. Expression of the hub genes of HBG1, SNCA and GYPB might therefore be significantly correlated to AF. These genes are involved in the incidence of AF complicated by stroke, and may serve as targets for early diagnosis and treatment.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuyang Meng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingbing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenguang Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zuowei Pei
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahan Li
- The First Mobile Corps of People's Armed Police, Beijing, China
| | - Fang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Thiam LG, Nyarko PB, Kusi KA, Niang M, Aniweh Y, Awandare GA. Blood donor variability is a modulatory factor for P. falciparum invasion phenotyping assays. Sci Rep 2021; 11:7129. [PMID: 33782439 PMCID: PMC8007732 DOI: 10.1038/s41598-021-86438-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/12/2021] [Indexed: 11/26/2022] Open
Abstract
Human erythrocytes are indispensable for Plasmodium falciparum development. Unlike other eukaryotic cells, there is no existing erythroid cell line capable of supporting long-term P. falciparum in vitro experiments. Consequently, invasion phenotyping experiments rely on erythrocytes of different individuals. However, the contribution of the erythrocytes variation in influencing invasion rates remains unknown, which represents a challenge for conducting large-scale comparative studies. Here, we used erythrocytes of different blood groups harboring different hemoglobin genotypes to assess the relative contribution of blood donor variability in P. falciparum invasion phenotyping assays. For each donor, we investigated the relationship between parasite invasion phenotypes and erythrocyte phenotypic characteristics, including the expression levels of surface receptors (e.g. the human glycophorins A and C, the complement receptor 1 and decay accelerating factor), blood groups (e.g. ABO/Rh system), and hemoglobin genotypes (e.g. AA, AS and AC). Across all donors, there were significant differences in invasion efficiency following treatment with either neuraminidase, trypsin or chymotrypsin relative to the control erythrocytes. Primarily, we showed that the levels of key erythrocyte surface receptors and their sensitivity to enzyme treatment significantly differed across donors. However, invasion efficiency did not correlate with susceptibility to enzyme treatment or with the levels of the selected erythrocyte surface receptors. Furthermore, we found no relationship between P. falciparum invasion phenotype and blood group or hemoglobin genotype. Altogether, our findings demonstrate the need to consider erythrocyte donor uniformity and anticipate challenges associated with blood donor variability in early stages of large-scale study design.
Collapse
Affiliation(s)
- Laty G Thiam
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,G4 MEGA Vaccines, Institut Pasteur de Dakar, Dakar, Senegal
| | - Prince B Nyarko
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Laboratory of Pathogen-Host Interaction, UMR5235, CNRS, University of Montpellier, Montpellier, France
| | - Kwadwo A Kusi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Makhtar Niang
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana. .,Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana. .,Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| |
Collapse
|
8
|
Wang J, Jiang N, Sang X, Yang N, Feng Y, Chen R, Wang X, Chen Q. Protein Modification Characteristics of the Malaria Parasite Plasmodium falciparum and the Infected Erythrocytes. Mol Cell Proteomics 2020; 20:100001. [PMID: 33517144 PMCID: PMC7857547 DOI: 10.1074/mcp.ra120.002375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.
Collapse
Affiliation(s)
- Jianhua Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China; College of Food Science, Shenyang Agricultural Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xinyi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; College of Basic Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
9
|
Molecular study of binding of Plasmodium ribosomal protein P2 to erythrocytes. Biochimie 2020; 176:181-191. [PMID: 32717409 DOI: 10.1016/j.biochi.2020.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/13/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022]
Abstract
The ribosomal protein P2 of Plasmodium falciparum, (PfP2), performs certain unique extra-ribosomal functions. During the few hours of cell-division, PfP2 protein moves to the external surface of the infected erythrocytes (IE) as an SDS-resistant oligomer, and at that stage treatment with specific anti- PfP2 antibodies results in an arrest of the parasite cell-division. Amongst the oligomeric forms of PfP2, mainly the homo-tetramer is peripherally anchored on the external surface of the IE. To study the anchoring of PfP2 tetramer on IE-surface, we have explored the binding properties of PfP2 protein. Using NMR and erythrocyte pull-down studies, here we report that the homo-tetrameric PfP2 protein interacted specifically with erythrocytes and not leukocytes. The hydrophobic N-terminal 72 amino acid region is the major interacting domain. The binding of P2 to RBCs was neuraminidase resistant, but trypsin sensitive. The RBC binding was exclusive to the Plasmodium PfP2 protein as even the homologous protein of the closely related Apicomplexan parasite Toxoplasma gondii TgP2 protein did not interact with erythrocytes. Pull down assays, immunoprecipitation and mass spectrometry data showed that erythrocytic Band 3 protein is a possible interactor of Plasmodium PfP2 protein on the erythrocyte surface.
Collapse
|
10
|
Gassner C, Denomme GA, Portmann C, Bensing KM, Mattle-Greminger MP, Meyer S, Trost N, Song YL, Engström C, Jungbauer C, Just B, Storry JR, Forster M, Franke A, Frey BM. Two Prevalent ∼100-kb GYPB Deletions Causative of the GPB-Deficient Blood Group MNS Phenotype S-s-U- in Black Africans. Transfus Med Hemother 2020; 47:326-336. [PMID: 32884505 PMCID: PMC7443675 DOI: 10.1159/000504946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/20/2019] [Indexed: 01/11/2023] Open
Abstract
The U antigen (MNS5) is one of 49 antigens belonging to the MNS blood group system (ISBT002) carried on glycophorins A (GPA) and B (GPB). U is present on the red blood cells in almost all Europeans and Asians but absent in approximately 1.0% of Black Africans. U negativity coincides with negativity for S (MNS3) and s (MNS4) on GPB, thus be called S-s-U-, and is thought to arise from homozygous deletion of GYPB. Little is known about the molecular background of these deletions. Bioinformatic analysis of the 1000 Genomes Project data revealed several candidate regions with apparent deletions in GYPB. Highly specific Gap-PCRs, only resulting in positive amplification from DNAs with deletions present, allowed for the exact genetic localization of 3 different breakpoints; 110.24- and 103.26-kb deletions were proven to be the most frequent in Black Americans and Africans. Among 157 CEPH DNAs, deletions in 6 out of 8 African ethnicities were present. Allele frequencies of the deletions within African ethnicities varied greatly and reached a cumulative 23.3% among the Mbuti Pygmy people from the Congo. Similar observations were made for U+var alleles, known to cause strongly reduced GPB expression. The 110- and 103-kb deletional GYPB haplotypes were found to represent the most prevalent hereditary factors causative of the MNS blood group phenotype S-s-U-. Respective GYPB deletions are now accessible by molecular detection of homo- and hemizygous transmission.
Collapse
Affiliation(s)
- Christoph Gassner
- Independent at www.c-gassner.bio, Zurich, Switzerland
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | | | - Claudia Portmann
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | | | - Maja P. Mattle-Greminger
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Stefan Meyer
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Nadine Trost
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Young-Lan Song
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Charlotte Engström
- Molecular Diagnostics and Research and Development, Blood Transfusion Service Zurich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria, and Burgenland, Austrian Red Cross, Vienna, Austria
| | - Burkhard Just
- German Red Cross Blood Donation Service West, Hagen, Germany
| | - Jill R. Storry
- Division of Laboratory Medicine, Department of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Beat M. Frey
- Head Office, Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| |
Collapse
|
11
|
Ravenhill BJ, Kanjee U, Ahouidi A, Nobre L, Williamson J, Goldberg JM, Antrobus R, Dieye T, Duraisingh MT, Weekes MP. Quantitative comparative analysis of human erythrocyte surface proteins between individuals from two genetically distinct populations. Commun Biol 2019; 2:350. [PMID: 31552303 PMCID: PMC6754445 DOI: 10.1038/s42003-019-0596-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
Red blood cells (RBCs) play a critical role in oxygen transport, and are the focus of important diseases including malaria and the haemoglobinopathies. Proteins at the RBC surface can determine susceptibility to disease, however previous studies classifying the RBC proteome have not used specific strategies directed at enriching cell surface proteins. Furthermore, there has been no systematic analysis of variation in abundance of RBC surface proteins between genetically disparate human populations. These questions are important to inform not only basic RBC biology but additionally to identify novel candidate receptors for malarial parasites. Here, we use 'plasma membrane profiling' and tandem mass tag-based mass spectrometry to enrich and quantify primary RBC cell surface proteins from two sets of nine donors from the UK or Senegal. We define a RBC surface proteome and identify potential Plasmodium receptors based on either diminished protein abundance, or increased variation in RBCs from West African individuals.
Collapse
Affiliation(s)
- Benjamin J. Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY UK
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Ambroise Ahouidi
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY UK
| | - James Williamson
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY UK
| | - Jonathan M. Goldberg
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY UK
| | - Tandakha Dieye
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
12
|
Rosetting revisited: a critical look at the evidence for host erythrocyte receptors in Plasmodium falciparum rosetting. Parasitology 2019; 147:1-11. [PMID: 31455446 PMCID: PMC7050047 DOI: 10.1017/s0031182019001288] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Malaria remains a major cause of mortality in African children, with no adjunctive treatments currently available to ameliorate the severe clinical forms of the disease. Rosetting, the adhesion of infected erythrocytes (IEs) to uninfected erythrocytes, is a parasite phenotype strongly associated with severe malaria, and hence is a potential therapeutic target. However, the molecular mechanisms of rosetting are complex and involve multiple distinct receptor–ligand interactions, with some similarities to the diverse pathways involved in P. falciparum erythrocyte invasion. This review summarizes the current understanding of the molecular interactions that lead to rosette formation, with a particular focus on host uninfected erythrocyte receptors including the A and B blood group trisaccharides, complement receptor one, heparan sulphate, glycophorin A and glycophorin C. There is strong evidence supporting blood group A trisaccharides as rosetting receptors, but evidence for other molecules is incomplete and requires further study. It is likely that additional host erythrocyte rosetting receptors remain to be discovered. A rosette-disrupting low anti-coagulant heparin derivative is being investigated as an adjunctive therapy for severe malaria, and further research into the receptor–ligand interactions underlying rosetting may reveal additional therapeutic approaches to reduce the unacceptably high mortality rate of severe malaria.
Collapse
|
13
|
Jaskiewicz E, Jodłowska M, Kaczmarek R, Zerka A. Erythrocyte glycophorins as receptors for Plasmodium merozoites. Parasit Vectors 2019; 12:317. [PMID: 31234897 PMCID: PMC6591965 DOI: 10.1186/s13071-019-3575-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/19/2019] [Indexed: 02/02/2023] Open
Abstract
Glycophorins are heavily glycosylated sialoglycoproteins of human and animal erythrocytes. In humans, there are four glycophorins: A, B, C and D. Glycophorins play an important role in the invasion of red blood cells (RBCs) by malaria parasites, which involves several ligands binding to RBC receptors. Four Plasmodium falciparum merozoite EBL ligands have been identified: erythrocyte-binding antigen-175 (EBA-175), erythrocyte-binding antigen-181 (EBA-181), erythrocyte-binding ligand-1 (EBL-1) and erythrocyte-binding antigen-140 (EBA-140). It is generally accepted that glycophorin A (GPA) is the receptor for P. falciparum EBA-175 ligand. It has been shown that α(2,3) sialic acid residues of GPA O-glycans form conformation-dependent clusters on GPA polypeptide chain which facilitate binding. P. falciparum can also invade erythrocytes using glycophorin B (GPB), which is structurally similar to GPA. It has been shown that P. falciparum EBL-1 ligand binds to GPB. Interestingly, a hybrid GPB-GPA molecule called Dantu is associated with a reduced risk of severe malaria and ameliorates malaria-related morbidity. Glycophorin C (GPC) is a receptor for P. falciparum EBA-140 ligand. Likewise, successful binding of EBA-140 depends on sialic acid residues of N- and O-linked oligosaccharides of GPC, which form a cluster or a conformational structure depending on the presence of peptide fragment encompassing amino acids (aa) 36–63. Evaluation of the homologous P. reichenowi EBA-140 unexpectedly revealed that the chimpanzee homolog of human glycophorin D (GPD) is probably the receptor for this ligand. In this review, we concentrate on the role of glycophorins as erythrocyte receptors for Plasmodium parasites. The presented data support the long-lasting idea of high evolutionary pressure exerted by Plasmodium on the human glycophorins, which emerge as important receptors for these parasites.
Collapse
Affiliation(s)
- Ewa Jaskiewicz
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. .,Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516, Zielona Góra, Poland.
| | - Marlena Jodłowska
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Radosław Kaczmarek
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Agata Zerka
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
14
|
Aniweh Y, Nyarko PB, Quansah E, Thiam LG, Awandare GA. SMIM1 at a glance; discovery, genetic basis, recent progress and perspectives. Parasite Epidemiol Control 2019; 5:e00101. [PMID: 30906890 PMCID: PMC6416411 DOI: 10.1016/j.parepi.2019.e00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/28/2018] [Accepted: 03/06/2019] [Indexed: 11/18/2022] Open
Abstract
Recent elucidation of the genetic basis of the Vel blood group system has offered the field of blood transfusion medicine an additional consideration in determining the causes of hemolytic reactions after a patient is transfused. The identification of the SMIM1 gene to be responsible for the Vel blood group allows molecular based tools to be developed to further dissect the function of this antigen. Genetic signatures such as the homozygous 17 bp deletion and the heterozygous 17 bp deletion in combination with other single nucleotide polymorphisms (SNPs) and insertion sequences regulate the expression level of the gene. With this knowledge, it is now possible to study this antigen in-depth.
Collapse
Affiliation(s)
- Yaw Aniweh
- West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Prince B. Nyarko
- West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Evelyn Quansah
- West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Laty Gaye Thiam
- West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gordon A. Awandare
- West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
15
|
Ochola-Oyier LI, Wamae K, Omedo I, Ogola C, Matharu A, Musabyimana JP, Njogu FK, Marsh K. Few Plasmodium falciparum merozoite ligand and erythrocyte receptor pairs show evidence of balancing selection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:235-245. [PMID: 30735814 PMCID: PMC6403450 DOI: 10.1016/j.meegid.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
Erythrocyte surface proteins have been identified as receptors of Plasmodium falciparum merozoite proteins. The ligand-receptor interactions enable the parasite to invade human erythrocytes, initiating the clinical symptoms of malaria. These interactions are likely to have had an evolutionary impact on the genes that encode the ligand and receptor proteins. We used sequence data from Kilifi, Kenya to detect departures from neutrality in a paired analysis of P. falciparum merozoite ligands and their erythrocyte receptor genes from the same population. We genotyped parasite and human DNA obtained from 93 individuals with severe malaria. We examined six merozoite ligands EBA175, EBL1, EBA140, MSP1, Rh4 and Rh5, and their corresponding erythrocyte receptors, glycophorin (Gyp) A, GypB, GypC, band 3, complement receptor (CR) 1 and basigin, focusing on the regions involved in the ligand-receptor interactions. Positive Tajima's D values (>1) were observed only in the MSP1 C-terminal region and EBA175 region II, while negative values (<-1) were observed in EBL-1 region II, Rh4, basigin exons 3 and 5, CR1 exon 5, Gyp B exons 2, 3 and 4 and Gyp C exon 2. Additionally, ebl-1 region II and basigin exon 3 showed extreme negative values in all three tests, Tajima's D, Fu & Li D* and F*, ≤ - 2. A large majority of the erythrocyte receptor and merozoite genes have a negative Tajima's D even when compared with previously published whole genome data. Thus, highlighting EBA175 region II and MSP1-33, as outlier genes with a positive Tajima's D (>1). Both these genes contain multiple polymorphisms, which in the case of EBA175 may counteract receptor polymorphisms and/or evade host immune responses and in MSP1 the polymorphisms may primarily evade host immune responses.
Collapse
MESH Headings
- Alleles
- Child
- Child, Preschool
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Female
- Gene Frequency
- Host-Parasite Interactions
- Humans
- Infant
- Infant, Newborn
- Ligands
- Malaria, Falciparum/genetics
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Male
- Merozoites/metabolism
- Models, Molecular
- Plasmodium falciparum/classification
- Plasmodium falciparum/physiology
- Polymorphism, Genetic
- Protein Conformation
- Protozoan Proteins/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Lynette Isabella Ochola-Oyier
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya; Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya.
| | - Kevin Wamae
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Irene Omedo
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Christabel Ogola
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Abneel Matharu
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Jean Pierre Musabyimana
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Francis K Njogu
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya
| |
Collapse
|
16
|
Moderately Neutralizing Epitopes in Nonfunctional Regions Dominate the Antibody Response to Plasmodium falciparum EBA-140. Infect Immun 2019; 87:IAI.00716-18. [PMID: 30642904 DOI: 10.1128/iai.00716-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023] Open
Abstract
Plasmodium falciparum erythrocyte-binding antigen 140 (EBA-140) plays a role in tight junction formation during parasite invasion of red blood cells and is a potential vaccine candidate for malaria. Individuals in areas where malaria is endemic possess EBA-140-specific antibodies, and individuals with high antibody titers to this protein have a lower rate of reinfection by parasites. The red blood cell binding segment of EBA-140 is comprised of two Duffy-binding-like domains, called F1 and F2, that together create region II. The sialic acid-binding pocket of F1 is essential for binding, whereas the sialic acid-binding pocket in F2 appears dispensable. Here, we show that immunization of mice with the complete region II results in poorly neutralizing antibodies. In contrast, immunization of mice with the functionally relevant F1 domain of region II results in antibodies that confer a 2-fold increase in parasite neutralization compared to that of the F2 domain. Epitope mapping of diverse F1 and F2 monoclonal antibodies revealed that the functionally relevant F1 sialic acid-binding pocket is a privileged site inaccessible to antibodies, that the F2 sialic acid-binding pocket contains a nonneutralizing epitope, and that two additional epitopes reside in F1 on the opposite face from the sialic acid-binding pocket. These studies indicate that focusing the immune response to the functionally important F1 sialic acid binding pocket improves the protective immune response of EBA-140. These results have implications for improving future vaccine designs and emphasize the importance of structural vaccinology for malaria.
Collapse
|
17
|
Awandare GA, Nyarko PB, Aniweh Y, Ayivor-Djanie R, Stoute JA. Plasmodium falciparum strains spontaneously switch invasion phenotype in suspension culture. Sci Rep 2018; 8:5782. [PMID: 29636510 PMCID: PMC5893586 DOI: 10.1038/s41598-018-24218-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/28/2018] [Indexed: 01/11/2023] Open
Abstract
The extensive redundancy in the use of invasion ligands by Plasmodium falciparum, and its unique ability to switch between invasion pathways have hampered vaccine development. P. falciparum strains Dd2 and W2mef have been shown to change from sialic acid (SA)-dependent to SA-independent phenotypes when selected on neuraminidase-treated erythrocytes. Following an observation of increasing ability of Dd2 to invade neuraminidase-treated cells when cultured for several weeks, we systematically investigated this phenomenon by comparing invasion phenotypes of Dd2, W2mef and 3D7 strains of P. falciparum that were cultured with gentle shaking (Suspended) or under static (Static) conditions. While Static Dd2 and W2mef remained SA-dependent for the entire duration of the investigation, Suspended parasites spontaneously and progressively switched to SA-independent phenotype from week 2 onwards. Furthermore, returning Suspended cultures to Static conditions led to a gradual reversal to SA-dependent phenotype. The switch to SA-independent phenotype was accompanied by upregulation of the key invasion ligand, reticulocyte-binding homologue 4 (RH4), and the increased invasion was inhibited by antibodies to the RH4 receptor, CR1. Our data demonstrates a novel mechanism for inducing the switching of invasion pathways in P. falciparum parasites and may provide clues for understanding the mechanisms involved.
Collapse
Affiliation(s)
- Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana. .,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana.
| | - Prince B Nyarko
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Reuben Ayivor-Djanie
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana.,Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - José A Stoute
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|