1
|
Miller JM, Ozyck RG, Pagano PL, Hernandez EF, Davis ME, Karam AQ, Malek JB, Mara AB, Tulman ER, Szczepanek SM, Geary SJ. Rationally designed Mycoplasma gallisepticum vaccine using a recombinant subunit approach. NPJ Vaccines 2024; 9:178. [PMID: 39341840 PMCID: PMC11438903 DOI: 10.1038/s41541-024-00978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Mycoplasma gallisepticum (MG) is an avian respiratory pathogen causing significant global economic losses to the poultry industries. Current live-attenuated and bacterin vaccines provide some measures of protective immunity but exhibit suboptimal efficacy, utility, or safety. To address these shortcomings, we utilized knowledge of MG biology and virulence to develop a subunit vaccine containing recombinantly produced primary adhesin GapA, cytadhesin-related molecule CrmA, and four early-phase-expressed variable lipoprotein hemagglutinins (VlhAs) (3.03, 3.06, 4.07, 5.05) of the virulent strain Rlow. The vaccine was tested in chickens using a subcutaneous dose of 50 µg per protein, a prime-boost schedule, and strain Rlow challenge in multiple studies to compare adjuvant formulations. While different adjuvants resulted in variable levels of protection, only CpG oligodeoxynucleotide (CpG ODN 2007) resulted in significant reductions of both MG recovery and tracheal pathology. These results demonstrate that a rationally designed and safe subunit vaccine is efficacious against MG disease.
Collapse
Affiliation(s)
- Jeremy M Miller
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
| | - Rosemary Grace Ozyck
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
| | - Patrick L Pagano
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Esmeralda F Hernandez
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Megan E Davis
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Anton Q Karam
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Jessica B Malek
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Arlind B Mara
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
| | - Edan R Tulman
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
| | - Steven M Szczepanek
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA
| | - Steven J Geary
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA.
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA.
- US Animal Vaccinology Research Coordination Network, Storrs, CT, USA.
| |
Collapse
|
2
|
Wang Y, Li S, Wang T, Zou M, Peng X. Extracellular Vesicles From Mycoplasma gallisepticum: Modulators of Macrophage Activation and Virulence. J Infect Dis 2024; 229:1523-1534. [PMID: 37929888 DOI: 10.1093/infdis/jiad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transporting proteins. To investigate the pathogenesis of Mycoplasma gallisepticum, a major threat to the poultry industry, we isolated and characterized M. gallisepticum-produced EVs. Our study highlights the significant impact of M. gallisepticum-derived EVs on immune function and macrophage apoptosis, setting them apart from other M. gallisepticum metabolites. These EVs dose-dependently enhance M. gallisepticum adhesion and proliferation, simultaneously modulating Toll-like receptor 2 and interferon γ pathways and thereby inhibiting macrophage activation. A comprehensive protein analysis revealed 117 proteins in M. gallisepticum-derived EVs, including established virulence factors, such as GapA, CrmA, VlhA, and CrmB. Crucially, these EV-associated proteins significantly contribute to M. gallisepticum infection. Our findings advance our comprehension of M. gallisepticum pathogenesis, offering insights for preventive strategies and emphasizing the pivotal role of M. gallisepticum-derived EVs and their associated proteins. This research sheds light on the composition and crucial role of M. gallisepticum-derived EVs in M. gallisepticum pathogenesis, aiding our fight against M. gallisepticum infections.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shiying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Gioia G, Severgnini M, Cremonesi P, Castiglioni B, Freeman J, Sipka A, Santisteban C, Wieland M, Gallardo VA, Scott JG, Moroni P, Addis MF. Genomic Characterization of Mycoplasma arginini Isolated from a Housefly on a Dairy Farm and Comparison with Isolates from Bovine Milk and Lung Tissue. Microbiol Spectr 2023; 11:e0301022. [PMID: 37199649 PMCID: PMC10269790 DOI: 10.1128/spectrum.03010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Mycoplasma mastitis can be highly contagious, unresponsive to treatment, and cause severe economic problems in affected herds. Notable routes of Mycoplasma spp. transmissions are contaminated milking equipment and animal contact through respiratory secretions. Only a few studies report the environment as a possible source of infection. Our group studied the presence of pathogens in houseflies (Musca domestica) in a New York State dairy in the United States. Among others, a Mycoplasma spp. was found in the gut of a housefly captured in the sick pen and identified as M. arginini. Here, we characterized its genome and investigated its relatedness with eight isolates from milk, one isolate from lung tissue collected in the same dairy, and five other dairies in New York State. We applied whole-genome sequencing and phylogenetic analysis based on the sequences of the 16S rRNA gene and 76 conserved proteins. We also assessed an in silico virulence profile by considering a panel of 94 putative virulence genes. As a result of the genome analysis, the housefly M. arginini isolate was highly similar to the milk isolates; interestingly, the similarity was highest with M. arginini isolated from milk on the same dairy farm where the housefly was captured. The housefly and milk M. arginini isolates possessed 54 of the 94 pathogenicity genes considered. Our data support the hypothesis that houseflies are carriers of Mycoplasma spp. and can be considered within the possible roots of environmental transmission of infection in dairy cows. Nevertheless, M. arginini pathogenicity will need to be investigated with dedicated studies. IMPORTANCE It is critical to control the spread of bovine mastitis caused by Mycoplasma spp., as this disease can be highly contagious and have a severe economic impact on affected dairies. A better understanding of possible transmission routes is crucial for infection control and prevention. Based on our data, the composite milk isolates are genetically similar to the housefly isolate. This provides evidence that the same Mycoplasma species found in milk and associated with mastitis can also be isolated from houseflies captured in the dairy environment.
Collapse
Affiliation(s)
- G. Gioia
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - M. Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - P. Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - B. Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - J. Freeman
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - A. Sipka
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - C. Santisteban
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - M. Wieland
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - V. Alanis Gallardo
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - J. G. Scott
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - P. Moroni
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, Lodi, Italy
| | - M. F. Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, Lodi, Italy
| |
Collapse
|
4
|
Mugunthan SP, Kannan G, Chandra HM, Paital B. Infection, Transmission, Pathogenesis and Vaccine Development against Mycoplasma gallisepticum. Vaccines (Basel) 2023; 11:vaccines11020469. [PMID: 36851345 PMCID: PMC9967393 DOI: 10.3390/vaccines11020469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Mycoplasma sp. comprises cell wall-less bacteria with reduced genome size and can infect mammals, reptiles, birds, and plants. Avian mycoplasmosis, particularly in chickens, is primarily caused by Mycoplasma gallisepticum (MG) and Mycoplasma synoviae. It causes infection and pathology mainly in the respiratory, reproductive, and musculoskeletal systems. MG is the most widely distributed pathogenic avian mycoplasma with a wide range of host susceptibility and virulence. MG is transmitted both by horizontal and vertical routes. MG infection induces innate, cellular, mucosal, and adaptive immune responses in the host. Macrophages aid in phagocytosis and clearance, and B and T cells play critical roles in the clearance and prevention of MG. The virulent factors of MG are adhesion proteins, lipoproteins, heat shock proteins, and antigenic variation proteins, all of which play pivotal roles in host cell entry and pathogenesis. Prevention of MG relies on farm and flock biosecurity, management strategies, early diagnosis, use of antimicrobials, and vaccination. This review summarizes the vital pathogenic mechanisms underlying MG infection and recapitulates the virulence factors of MG-host cell adhesion, antigenic variation, nutrient transport, and immune evasion. The review also highlights the limitations of current vaccines and the development of innovative future vaccines against MG.
Collapse
Affiliation(s)
| | - Ganapathy Kannan
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire CH64 7TE, UK
| | - Harish Mani Chandra
- Department of Biotechnology, Thiruvalluvar University, Vellore 632115, India
- Correspondence: (H.M.C.); (B.P.)
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
- Correspondence: (H.M.C.); (B.P.)
| |
Collapse
|
5
|
Fatideh FP, Esmaelizad M, Kargar M, Tebianian M, Kafilzadeh F. Designing of novel chimeric PvpA-pMGA protein of Mycoplasma gallisepticum, applicable for indirect ELISA. J Genet Eng Biotechnol 2022; 20:160. [DOI: 10.1186/s43141-022-00434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022]
Abstract
Abstract
Background
Mycoplasma gallisepticum is the primary agent of chronic respiratory disease in chickens creating important economic losses in poultry industry. pMGA and pvpA genes encode major surface proteins in M. gallisepticum containing pathogenic, antigenic, and immune evasion characteristics. The objective of the present study was to design, express, and purify the recombinant chimeric PvpA-pMGA protein from M.gallisepticum for using in serological diagnostic test.
Methods
Antigenic regions of PvpA and pMGA proteins were predicted for designing chimeric pvpA-pMGA gene construct. The codon optimized sequence was cloned into the expression vector pET32a+ and transformed into the Escherichia coli strain BL21 (DE3). The pET32a-PvpA-pMGA recombinant plasmid was expressed and confirmed by SDS-PAGE and immunoblotting. PvpA-pMGA recombinant protein (20μg and 50μg), ts-11 vaccine strain, and S6 strain that formulated by montanide adjuvant and two control groups (PBS and adjuvant) were injected subcutaneously to six groups of chickens.
Results
High yield of protein was purified amount 138 mg/L by affinity batch formation method. Indirect ELISA showed the levels of antibodies in rPvpA-pMGA was significantly higher than ts-11 and S6 groups (p<0.05). The results indicated that antigen-specific response was successfully elicited by the rpMGA-PvpA in chickens. The result of the ELISA with sera collected from ts-11 and S6 groups showed that indirect PvpA-pMGA-ELISA is appropriate candidate for detection of specific antibodies against M. gallisepticum with 100% sensitivity and specificity.
Conclusions
The rPvpA-pMGA is a highly candidate immunogenic protein which induced high amount of humoral immune response. Novel rPvpA-pMGA protein could be useful for evaluation of antibody level in vaccinated poultry flocks.
Collapse
|
6
|
Rüger N, Szostak MP, Rautenschlein S. The expression of GapA and CrmA correlates with the Mycoplasma gallisepticum in vitro infection process in chicken TOCs. Vet Res 2022; 53:66. [PMID: 36056451 PMCID: PMC9440553 DOI: 10.1186/s13567-022-01085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma (M.) gallisepticum is the most pathogenic mycoplasma species in poultry. Infections cause mild to severe clinical symptoms associated with respiratory epithelial lesion development. Adherence, biofilm formation, and cell invasion of M. gallisepticum contribute to successful infection, immune evasion, and survival within the host. The important M. gallisepticum membrane-bound proteins, GapA and CrmA, are key factors for host cell interaction and the bacterial life-cycle, including its gliding motility, although their precise role in the individual infection step is not yet fully understood. In this study, we investigated the correlation between the host-pathogen interaction and the GapA/CrmA expression in an environment that represents the natural host's multicellular compartment. We used an in vitro tracheal organ culture (TOC) model, allowing the investigation of the M. gallisepticum variants, Rlow, RCL1, RCL2, and Rhigh, under standardised conditions. In this regard, we examined the bacterial adherence, motility and colonisation pattern, host lesion development and alterations of mucociliary clearance. Compared to low virulent RCL2 and Rhigh, the high virulent Rlow and RCL1 were more efficient in adhering to TOCs and epithelium colonisation, including faster movement from the cilia tips to the apical membrane and subsequent cell invasion. RCL2 and Rhigh showed a more localised invasion pattern, accompanied by significantly fewer lesions than Rlow and RCL1. Unrelated to virulence, comparable mucus production was observed in all M. gallisepticum infected TOCs. Overall, the present study demonstrates the role of GapA/CrmA in virulence factors from adherence to colonisation, as well as the onset and severity of lesion development in the tracheal epithelium.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael P Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
7
|
Wang Y, Wang L, Luo R, Sun Y, Zou M, Wang T, Guo Q, Peng X. Glycyrrhizic Acid against Mycoplasma gallisepticum-Induced Inflammation and Apoptosis Through Suppressing the MAPK Pathway in Chickens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1996-2009. [PMID: 35128924 DOI: 10.1021/acs.jafc.1c07848] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mycoplasma gallisepticum (MG) is the primary pathogen of chronic respiratory diseases (CRDs) in chickens. In poultry production, antibiotics are mostly used to prevent and control MG infection, but the drug resistance and residue problems caused by them cannot be ignored. Glycyrrhizic acid (GA) is derived from licorice, a herb traditionally used to treat various respiratory diseases. Our study results showed that GA significantly inhibited the mRNA and protein expression of pMGA1.2 and GapA in vitro and in vivo. Furthermore, the network pharmacology study revealed that GA most probably resisted MG infection through the MAPK signaling pathway. Our results demonstrated that GA inhibited MG-induced expression of MMP2/MMP9 and inflammatory factors through the p38 and JUN signaling pathways, but not the ERK pathway in vitro. Besides, histopathological sections showed that GA treatment obviously attenuated tracheal and lung damage caused by MG invasion. In conclusion, GA can inhibit MG-triggered inflammation and apoptosis by suppressing the expression of MMP2/MMP9 through the JNK and p38 pathways and inhibit the expression of virulence genes to resist MG. Our results suggest that GA might serve as one of the antibiotic alternatives to prevent MG infection.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Lulu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ronglong Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Qiao Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
8
|
Wang Y, Han Y, Wang L, Zou M, Sun Y, Sun H, Guo Q, Peng X. Mycoplasma gallisepticum escapes the host immune response via gga-miR-365-3p/SOCS5/STATs axis. Vet Res 2022; 53:103. [PMID: 36471418 PMCID: PMC9721073 DOI: 10.1186/s13567-022-01117-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 12/09/2022] Open
Abstract
A disruption in the expression of gga-miR-365-3p was confirmed in the Mycoplasma gallisepticum (MG)-infected Chicken primary alveolar type II epithelial (CP-II) cells based on previous sequencing results, but the role it plays in the infection was unclear. In the present study, we demonstrate that MG evaded cellular host immunity via a gga-miR-365-3p/SOCS5-JAK/STATs negative feedback loop. Specifically, we found that at the initial stage of MG infection in cells, gga-miR-365-3p was rapidly increased and activated the JAK/STAT signaling pathway by inhibiting SOCS5, which induced the secretion of inflammatory factors and triggered immune response against MG infection. Over time, though, the infection progressed, MG gradually destroyed the immune defences of CP-II cells. In late stages of infection, MG escaped host immunity by reducing intracellular gga-miR-365-3p and inhibiting the JAK/STAT pathway to suppress the secretion of inflammatory factors and promote MG adhesion or invasion. These results revealed the game between MG and host cell interactions, providing a new perspective to gain insight into the pathogenic mechanisms of MG or other pathogens. Meanwhile, they also contributed to novel thoughts on the prevention and control of MG and other pathogenic infections, shedding light on the immune modulating response triggered by pathogen invasion and their molecular targeting.
Collapse
Affiliation(s)
- Yingjie Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Yun Han
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Lulu Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Mengyun Zou
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Yingfei Sun
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Huanling Sun
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Qiao Guo
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| | - Xiuli Peng
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Hubei 430070 Wuhan, China
| |
Collapse
|
9
|
Wang Y, Tong D, Sun Y, Sun H, Liu F, Zou M, Luo R, Peng X. DF-1 cells prevent MG-HS infection through gga-miR-24-3p/RAP1B mediated decreased proliferation and increased apoptosis. Res Vet Sci 2021; 141:164-173. [PMID: 34749101 DOI: 10.1016/j.rvsc.2021.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022]
Abstract
Mycoplasma gallisepticum (MG) is a major poultry pathogen that can induce Chronic Respiratory Disease (CRD) in chickens, causing serious economic losses in the poultry industry worldwide. Increasing evidence suggests that microRNAs (miRNAs) act as a vital role in resisting microbial pathogenesis and maintaining cellular mechanism. Our previous miRNAs sequencing data showed gga-miR-24-3p expression level was significantly increased in MG-infected chicken lungs. The aim of this study is to reveal the cellular mechanism behind the MG-HS infection. We found that gga-miR-24-3p was significantly upregulated and Ras-related protein-B (RAP1B) was downregulated in chicken fibroblast cells (DF-1) with MG infection. Dual luciferase reporting assay and rescue assay confirmed that RAP1B was the target gene of gga-miR-24-3p. Meanwhile, overexpressed gga-miR-24-3p increased the levels of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), and significantly inhibited cell proliferation as well as promoted MG-infected DF-1 cell apoptosis, whereas inhibition of gga-miR-24-3p had the opposite effect. More importantly, the results of overexpression and knockdown of target gene RAP1B demonstrated that the presence of RAP1B promoted cell proliferation and it saved the reduced or increased cell proliferation caused by overexpression or inhibition of gga-miR-24-3p. Furthermore, the overexpression of gga-miR-24-3p could significantly inhibit the expression of MG-HS adhesion protein. Taken together, these findings demonstrate that DF-1 cells can resist MG-HS infection through gga-miR-24-3p/RAP1B mediated decreased proliferation and increased apoptosis, which provides a new mechanism of resistance to MG infection in vitro.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Deng Tong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Huanling Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Fule Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ronglong Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China.
| |
Collapse
|
10
|
Mugunthan SP, Harish MC. Multi-epitope-Based Vaccine Designed by Targeting Cytoadherence Proteins of Mycoplasma gallisepticum. ACS OMEGA 2021; 6:13742-13755. [PMID: 34095666 PMCID: PMC8173551 DOI: 10.1021/acsomega.1c01032] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 05/18/2023]
Abstract
Mycoplasma gallisepticum causes chronic respiratory disease in chickens leading to large economic losses in the poultry industry, and the impacts remain to be a great challenge for a longer period. Among the other approaches, a vaccine targeting the adhesion proteins of M. gallisepticum would be a promising candidate in controlling the infection. Thus, the present study is aimed to design a multi-epitope vaccine candidate using cytoadhesion proteins of M. gallisepticum through an advanced immunoinformatics approach. As a result, the multi-epitope vaccine was constructed, which comprised potential T-cell and B-cell binding epitopes with appropriate adjuvants. The designed multi-epitope vaccine represented high antigenicity with viable physiochemical properties. The prospective three-dimensional structure of the epitope was predicted, refined, and validated. The molecular docking analysis of multi-epitope vaccine candidates with the chicken Toll-like receptor-5 predicted effective binding. Furthermore, codon optimization and in silico cloning ensured high expression. Thus, the present finding indicates that the engineered multi-epitope vaccine is structurally stable and can induce a strong immune response. Furthermore, the multi-epitope vaccine is suggested to be a suitable vaccine candidate for the M. gallisepticum infection due to its effective binding capacity and precise specificity.
Collapse
Affiliation(s)
- Susithra Priyadarshni Mugunthan
- Plant Genetic Engineering and Molecular Farming Lab, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Mani Chandra Harish
- Plant Genetic Engineering and Molecular Farming Lab, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| |
Collapse
|
11
|
Yin X, Wang Y, Sun Y, Han Y, Sun H, Zou M, Luo R, Peng X. Down-regulated gga-miR-223 inhibits proliferation and induces apoptosis of MG-infected DF-1 cells by targeting FOXO3. Microb Pathog 2021; 155:104927. [PMID: 33932542 DOI: 10.1016/j.micpath.2021.104927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/12/2023]
Abstract
Mycoplasma gallisepticum (MG) is a major poultry pathogen that can induce Chronic Respiratory Disease (CRD) in chickens, causing serious economic losses in the poultry industry worldwide. Increasing evidence suggests that microRNAs (miRNAs) act as a vital role in resisting microbial pathogenesis and maintaining cellular mechanism. Our previous miRNAs sequencing data showed that gga-miR-223 expression level significantly decreased in MG-infected chicken lungs. The aim of this study was to reveal the role of gga-miR-223 in MG-induced CRD progression. We found that gga-miR-223 was remarkably down regulated and forkhead box O3 (FOXO3) was up-regulated in both MG-infected chicken embryos lungs and the chicken embryonic fibroblast cell line (DF-1) by qPCR. FOXO3 was verified as the target gene of gga-miR-223 through bioinformatics analysis and dual-luciferase reporter assay. Further studies showed that overexpressed gga-miR-223 could promote cell proliferation, cell cycle, and inhibit cell apoptosis by notably promoting the expression of cell cycle marker genes cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase 6 (CDK6) and Cyclin D1 (CCND1) and inhibiting the expression of apoptosis markers Bcl-2-like 11(BIM), FAS ligand (FASLG) and TNF-related apoptosis-inducing ligand (TRAIL). As expected, FOXO3 knockdown group got similar results. Overexpression of gga-miR-223 observably promoted cell multiplication, cell cycle progression, and inhibited apoptosis of MG-infected DF-1 cells, while inhibited gga-miR-223 had the opposite effect. Taken together, upon MG-infection, downregulated gga-miR-223 could decrease proliferation, cycle progression, and increase apoptosis through directly targeting FOXO3 to exert an aggravating MG-infectious effect.
Collapse
Affiliation(s)
- Xun Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yun Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Huanling Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Ronglong Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
12
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
13
|
Xu B, Liu R, Ding M, Zhang J, Sun H, Liu C, Lu F, Zhao S, Pan Q, Zhang X. Interaction of Mycoplasma synoviae with chicken synovial sheath cells contributes to macrophage recruitment and inflammation. Poult Sci 2020; 99:5366-5377. [PMID: 33142453 PMCID: PMC7647830 DOI: 10.1016/j.psj.2020.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/13/2020] [Accepted: 08/15/2020] [Indexed: 11/21/2022] Open
Abstract
Mycoplasma synoviae (MS) is an important avian pathogen causing considerable economic hardship in the poultry industry. A major inflammation caused by MS is synovitis that occurs in the synovial tendon sheath and joint synovium. However, the overall appearance of pathological changes in the tendon sheath and surrounding tissues caused by MS infection at the level of pathological tissue sections was poor. Studies on the role of MS and synovial sheath cells (SSCs) interaction in the development of synovitis have not been carried out. Through histopathological observation, our study found that a major MS-induced pathological change of the tendon sheath synovium was extensive scattered and focal inflammatory cell infiltration of the tendon sheath synovial layer. In vitro research experiments revealed that the CFU numbers of MS adherent and invading SSC, the levels of expression of various pattern recognition receptors, inflammatory cytokines, and chemokines coding genes, such as IL-1β, IL-6, IL-8, CCL-20, RANTES, MIP-1β, TLR7, and TLR15 in SSCs, and chemotaxis of macrophages were significantly increased when the multiplicity of infection (MOI) of MS to SSC were increased tenfold. The expression level of IL-12p40 in SSC was significantly higher when the MOIs of MS to SSC were increased by a factor of 100. The interaction between MS and SSC can activate macrophages, which was manifested by a significant increase in the expression of IL-1β, IL-6, IL-8, CCL-20, RANTES, MIP-1β, and CXCL-13. This study systematically demonstrated that the interaction of MS with chicken SSC contributes to the inflammatory response caused by the robust expression of related cytokines and macrophage chemotaxis. These findings are helpful in elucidating the molecular mechanism of MS-induced synovitis in chickens.
Collapse
Affiliation(s)
- Bin Xu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rui Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Meijuan Ding
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingfeng Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huawei Sun
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chuanmin Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengying Lu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sha Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qunxing Pan
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaofei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-Products, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
14
|
Current status of vaccine research, development, and challenges of vaccines for Mycoplasma gallisepticum. Poult Sci 2020; 99:4195-4202. [PMID: 32867963 PMCID: PMC7598112 DOI: 10.1016/j.psj.2020.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is an important avian pathogen that causes significant economic losses in the poultry industry. Surprisingly, the limited protection and adverse reactions caused by the vaccines, including live vaccines, bacterin-based (killed) vaccines, and recombinant viral vaccines is still a major concern. Mycoplasma gallisepticum strains vary in infectivity and virulence and infection may sometimes unapparent and goes undetected. Although extensive research has been carried out on the biology of this pathogen, information is lacking about the type of immune response that confers protection and selection of appropriate protective antigens and adjuvants. Regardless of numerous efforts focused on the development of safe and effective vaccine for the control of MG, the use of modern DNA vaccine technology selected in silico approaches for the use of conserved recombinant proteins may be a better choice for the preparation of novel effective vaccines. More research is needed to characterize and elucidate MG products modulating MG-host interactions. These products could be used as a reference for the preparation and development of vaccines to control MG infections in poultry flocks.
Collapse
|
15
|
Zhu X, Baranowski E, Dong Y, Li X, Hao Z, Zhao G, Zhang H, Lu D, A. Rasheed M, Chen Y, Hu C, Chen H, Sagné E, Citti C, Guo A. An emerging role for cyclic dinucleotide phosphodiesterase and nanoRNase activities in Mycoplasma bovis: Securing survival in cell culture. PLoS Pathog 2020; 16:e1008661. [PMID: 32598377 PMCID: PMC7373297 DOI: 10.1371/journal.ppat.1008661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
Mycoplasmas are host-restricted prokaryotes with a nearly minimal genome. To overcome their metabolic limitations, these wall-less bacteria establish intimate interactions with epithelial cells at mucosal surfaces. The alarming rate of antimicrobial resistance among pathogenic species is of particular concern in the medical and veterinary fields. Taking advantage of the reduced mycoplasma genome, random transposon mutagenesis was combined with high-throughput screening in order to identify key determinants of mycoplasma survival in the host-cell environment and potential targets for drug development. With the use of the ruminant pathogen Mycoplasma bovis as a model, three phosphodiesterases of the DHH superfamily were identified as essential for the proliferation of this species under cell culture conditions, while dispensable for axenic growth. Despite a similar domain architecture, recombinant Mbov_0327 and Mbov_0328 products displayed different substrate specificities. While rMbovP328 protein exhibited activity towards cyclic dinucleotides and nanoRNAs, rMbovP327 protein was only able to degrade nanoRNAs. The Mbov_0276 product was identified as a member of the membrane-associated GdpP family of phosphodiesterases that was found to participate in cyclic dinucleotide and nanoRNA degradation, an activity which might therefore be redundant in the genome-reduced M. bovis. Remarkably, all these enzymes were able to convert their substrates into mononucleotides, and medium supplementation with nucleoside monophosphates or nucleosides fully restored the capacity of a Mbov_0328/0327 knock-out mutant to grow under cell culture conditions. Since mycoplasmas are unable to synthesize DNA/RNA precursors de novo, cyclic dinucleotide and nanoRNA degradation are likely contributing to the survival of M. bovis by securing the recycling of purines and pyrimidines. These results point toward proteins of the DHH superfamily as promising targets for the development of new antimicrobials against multidrug-resistant pathogenic mycoplasma species.
Collapse
Affiliation(s)
- Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease of Ministry of Science and Technology of China, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | | | - Yaqi Dong
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xixi Li
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad A. Rasheed
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease of Ministry of Science and Technology of China, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Eveline Sagné
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease of Ministry of Science and Technology of China, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| |
Collapse
|
16
|
Zhang X, Liao Z, Wu Y, Yan Y, Chen S, Lin S, Chen F, Xie Q. gga-microRNA-375 negatively regulates the cell cycle and proliferation by targeting Yes-associated protein 1 in DF-1 cells. Exp Ther Med 2020; 20:530-542. [PMID: 32537011 PMCID: PMC7281959 DOI: 10.3892/etm.2020.8711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) serve a key role in regulating the cell cycle and inducing tumorigenesis. Subgroup J of the avian leukosis virus (ALV-J) belongs to the family Retroviridae, subfamily Orthoretrovirinae and genus Alpharetrovirus that causes tumors in susceptible chickens. gga-miR-375 is downregulated and Yes-associated protein 1 (YAP1) is upregulated in ALV-J-induced tumors in the livers of chickens, and it has been further identified that YAP1 is the direct target gene of gga-miR-375. In the present study, it was found that ALV-J infection promoted the cell cycle and proliferation in DF-1 cells. As the cell cycle and cell proliferation are closely associated with tumorigenesis, further experiments were performed to determine whether gga-miR-375 and YAP1 were involved in these cellular processes. It was demonstrated that gga-miR-375 significantly inhibited the cell cycle by inhibiting G1 to S/G2 stage transition and decreasing cell proliferation, while YAP1 significantly promoted the cell cycle and proliferation. Furthermore, these cellular processes in DF-1 cells were affected by gga-miR-375 through the targeting of YAP1. Collectively, the present results suggested that gga-miR-375, downregulated by ALV-J infection, negatively regulated the cell cycle and proliferation via the targeting of YAP1.
Collapse
Affiliation(s)
- Xinheng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Zhihong Liao
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Yu Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Yiming Yan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Sheng Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Shaoli Lin
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Qingmei Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
17
|
Yin K, Cui Y, Sun T, Qi X, Zhang Y, Lin H. Antagonistic effect of selenium on lead-induced neutrophil apoptosis in chickens via miR-16-5p targeting of PiK3R1 and IGF1R. CHEMOSPHERE 2020; 246:125794. [PMID: 31918102 DOI: 10.1016/j.chemosphere.2019.125794] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Environmental contamination by heavy metals, such as lead (Pb), can lead to severe immune dysfunction. MicroRNAs (miRNAs) are involved in regulating immunity. Whether Pb can regulate neutrophil apoptosis through miRNA, and whether selenium (Se) can antagonize this response are still unknown. We treated neutrophils with 12.5 μM (CH3OO)2Pb and 1 μM Na2SeO3 for 3 h, after which apoptosis was evaluated using acrideine orange/ethidium bromide (AO/EB) dual fluorescent staining and flow cytometry. The results showed that neutrophil apoptosis was significantly increased following Pb exposure, and that this response was prevented upon Se addition. Pb up-regulates miR-16-5p and leads to the subsequent down-regulation of the target genes phosphoinositide-3-kinase regulatory subunit 1 (PiK3R1), insulin-like growth factor 1 receptor (IGF1R), and phosphatidylinositol 3 kinase (Pi3K)-protein kinase B (AKT), followed by activation of the tumor protein P53 (P53)-B-cell lymphoma-2 (Bcl-2)/Bcl-2-Associated X protein (Bax)-cytochrome c (Cytc)-Caspase 9 (mitochondrial apoptotic pathway) and the tumor necrosis factor receptor superfamily member 6 (Fas)-Fas-associated death domain protein (Fadd)-Caspase 8 (death receptor pathway). Pb also triggered oxidative stress and indirectly activated the mitochondrial apoptotic pathway. We conclude that miR-16-5p plays a key role in the apoptosis of neutrophils exposed to Pb by down-regulating the expression of PiK3R1 and IGFR1, thereby activating the mitochondrial apoptotic pathway and death receptor pathway. Se can prevent Pb-induced apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Sun
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163002, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
18
|
Dowling AJ, Hill GE, Bonneaud C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci Rep 2020; 10:6779. [PMID: 32322086 PMCID: PMC7176683 DOI: 10.1038/s41598-020-63714-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Novel disease emergence is often associated with changes in pathogen traits that enable pathogen colonisation, persistence and transmission in the novel host environment. While understanding the mechanisms underlying disease emergence is likely to have critical implications for preventing infectious outbreaks, such knowledge is often based on studies of viral pathogens, despite the fact that bacterial pathogens may exhibit very different life histories. Here, we investigate the ability of epizootic outbreak strains of the bacterial pathogen, Mycoplasma gallisepticum, which jumped from poultry into North American house finches (Haemorhous mexicanus), to interact with model avian cells. We found that house finch epizootic outbreak strains of M. gallisepticum displayed a greater ability to adhere to, invade, persist within and exit from cultured chicken embryonic fibroblasts, than the reference virulent (R_low) and attenuated (R_high) poultry strains. Furthermore, unlike the poultry strains, the house finch epizootic outbreak strain HF_1994 displayed a striking lack of cytotoxicity, even exerting a cytoprotective effect on avian cells. Our results suggest that, at epizootic outbreak in house finches, M. gallisepticum was particularly adept at using the intra-cellular environment, which may have facilitated colonisation, dissemination and immune evasion within the novel finch host. Whether this high-invasion phenotype is similarly displayed in interactions with house finch cells, and whether it contributed to the success of the host shift, remains to be determined.
Collapse
Affiliation(s)
- Andrea J Dowling
- Biosciences, College of Life and Environmental Science, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL36849-5414, USA
| | - Camille Bonneaud
- Biosciences, College of Life and Environmental Science, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| |
Collapse
|
19
|
Lian CA, Yan GY, Huang JM, Danchin A, Wang Y, He LS. Genomic Characterization of a Novel Gut Symbiont From the Hadal Snailfish. Front Microbiol 2020; 10:2978. [PMID: 31998265 PMCID: PMC6965317 DOI: 10.3389/fmicb.2019.02978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/10/2019] [Indexed: 01/30/2023] Open
Abstract
Hadal trenches are characterized by not only high hydrostatic pressure but also scarcity of nutrients and high diversity of viruses. Snailfishes, as the dominant vertebrates, play an important role in hadal ecology. Although studies have suggested possible reasons for the tolerance of hadal snailfish to high hydrostatic pressure, little is known about the strategies employed by hadal snailfish to cope with low-nutrient and virus-rich conditions. In this study, the gut microbiota of hadal snailfish was investigated. A novel bacterium named "Candidatus Mycoplasma liparidae" was dominant in the guts of three snailfish individuals from both the Mariana and Yap trenches. A draft genome of "Ca. Mycoplasma liparidae" was successfully assembled with 97.8% completeness by hybrid sequencing. A set of genes encoding riboflavin biosynthesis proteins and a clustered regularly interspaced short palindromic repeats (CRISPR) system was present in the genome of "Ca. Mycoplasma liparidae," which was unusual for Mycoplasma. The functional repertoire of the "Ca. Mycoplasma liparidae" genome is likely set to help the host in riboflavin supplementation and to provide protection against viruses via a super CRISPR system. Remarkably, genes encoding common virulence factors usually exist in Tenericutes pathogens but were lacking in the genome of "Ca. Mycoplasma liparidae." All of these characteristics supported an essential role of "Ca. Mycoplasma liparidae" in snailfish living in the hadal zone. Our findings provide further insights into symbiotic associations in the hadal biosphere.
Collapse
Affiliation(s)
- Chun-Ang Lian
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Yong Yan
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiao-Mei Huang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Antoine Danchin
- Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016 – CNRS UMR 8104 – Université Paris Descartes, Paris, France
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
20
|
RETRACTED ARTICLE: Mycoplasmosis in poultry: update on diagnosis and preventive measures. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Behaviors and Energy Source of Mycoplasma gallisepticum Gliding. J Bacteriol 2019; 201:JB.00397-19. [PMID: 31308069 DOI: 10.1128/jb.00397-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/04/2019] [Indexed: 01/06/2023] Open
Abstract
Mycoplasma gallisepticum, an avian-pathogenic bacterium, glides on host tissue surfaces by using a common motility system with Mycoplasma pneumoniae In the present study, we observed and analyzed the gliding behaviors of M. gallisepticum in detail by using optical microscopes. M. gallisepticum glided at a speed of 0.27 ± 0.09 μm/s with directional changes relative to the cell axis of 0.6 degree ± 44.6 degrees/5 s without the rolling of the cell body. To examine the effects of viscosity on gliding, we analyzed the gliding behaviors under viscous environments. The gliding speed was constant in various concentrations of methylcellulose but was affected by Ficoll. To investigate the relationship between binding and gliding, we analyzed the inhibitory effects of sialyllactose on binding and gliding. The binding and gliding speed sigmoidally decreased with sialyllactose concentration, indicating the cooperative binding of the cell. To determine the direct energy source of gliding, we used a membrane-permeabilized ghost model. We permeabilized M. gallisepticum cells with Triton X-100 or Triton X-100 containing ATP and analyzed the gliding of permeabilized cells. The cells permeabilized with Triton X-100 did not show gliding; in contrast, the cells permeabilized with Triton X-100 containing ATP showed gliding at a speed of 0.014 ± 0.007 μm/s. These results indicate that the direct energy source for the gliding motility of M. gallisepticum is ATP.IMPORTANCE Mycoplasmas, the smallest bacteria, are parasitic and occasionally commensal. Mycoplasma gallisepticum is related to human-pathogenic mycoplasmas-Mycoplasma pneumoniae and Mycoplasma genitalium-which cause so-called "walking pneumonia" and nongonococcal urethritis, respectively. These mycoplasmas trap sialylated oligosaccharides, which are common targets among influenza viruses, on host trachea or urinary tract surfaces and glide to enlarge the infected areas. Interestingly, this gliding motility is not related to other bacterial motilities or eukaryotic motilities. Here, we quantitatively analyze cell behaviors in gliding and clarify the direct energy source. The results provide clues for elucidating this unique motility mechanism.
Collapse
|
22
|
GroEL Protein (Heat Shock Protein 60) of Mycoplasma gallisepticum Induces Apoptosis in Host Cells by Interacting with Annexin A2. Infect Immun 2019; 87:IAI.00248-19. [PMID: 31235640 DOI: 10.1128/iai.00248-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma gallisepticum is an avian respiratory and reproductive tract pathogen that has a significant economic impact on the poultry industry worldwide. Although membrane proteins of Mycoplasma spp. are thought to play crucial roles in host interactions, very few have had their biochemical function defined. In this study, we found that the GroEL protein (heat shock protein 60) of Mycoplasma gallisepticum could induce apoptosis in peripheral blood mononuclear cells, and the underlying molecular mechanism was further determined. The GroEL gene from Mycoplasma gallisepticum was cloned and expressed in Escherichia coli to facilitate the functional analysis of recombinant protein. The purified GroEL protein was shown to adhere to peripheral blood mononuclear cells (PBMCs) and DF-1 cells and cause apoptosis in PBMCs. A protein pulldown assay coupled with mass spectrometry identified that annexin A2 possibly interacted with GroEL protein. Coimmunoprecipitation assays confirmed that GroEL proteins could bind to annexin A2, and confocal analysis further demonstrated that GroEL colocolized with annexin A2 in HEK293T cells and PBMCs. Moreover, annexin A2 expression was significantly induced by a recombinant GroEL protein in PBMCs, and knocking down annexin A2 expression resulted in significantly reduced apoptosis. Taken together, these data suggest that GroEL induces apoptosis in host cells by interacting with annexin A2, a novel virulence mechanism in Mycoplasma gallisepticum Our findings lead to a better understanding of molecular pathogenesis in Mycoplasma gallisepticum.
Collapse
|
23
|
Development of Molecular Methods for Rapid Differentiation of Mycoplasma gallisepticum Vaccine Strains from Field Isolates. J Clin Microbiol 2019; 57:JCM.01084-18. [PMID: 30971467 DOI: 10.1128/jcm.01084-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/05/2019] [Indexed: 01/03/2023] Open
Abstract
Mycoplasma gallisepticum is among the most economically significant mycoplasmas causing production losses in poultry. Seven melt-curve and agarose gel-based mismatch amplification mutation assays (MAMAs) and one PCR are provided in the present study to distinguish the M. gallisepticum vaccine strains and field isolates based on mutations in the crmA, gapA, lpd, plpA, potC, glpK, and hlp2 genes. A total of 239 samples (M. gallisepticum vaccine and type strains, pure cultures, and clinical samples) originating from 16 countries and from at least eight avian species were submitted to the presented assays for validation or in blind tests. A comparison of the data from 126 samples (including sequences available at GenBank) examined by the developed assays and a recently developed multilocus sequence typing assay showed congruent typing results. The sensitivity of the melt-MAMA assays varied between 101 and 104 M. gallisepticum template copies/reaction, while that of the agarose-MAMAs ranged from 103 to 105 template copies/reaction, and no cross-reactions occurred with other Mycoplasma species colonizing birds. The presented assays are also suitable for discriminating multiple strains in a single sample. The developed assays enable the differentiation of live vaccine strains by targeting two or three markers/vaccine strain; however, considering the high variability of the species, the combined use of all assays is recommended. The suggested combination provides a reliable tool for routine diagnostics due to the sensitivity and specificity of the assays, and they can be performed directly on clinical samples and in laboratories with basic PCR equipment.
Collapse
|
24
|
Zhang K, Han Y, Wang Z, Zhao Y, Fu Y, Peng X. gga-miR-146c Activates TLR6/MyD88/NF-κB Pathway through Targeting MMP16 to Prevent Mycoplasma Gallisepticum (HS Strain) Infection in Chickens. Cells 2019; 8:cells8050501. [PMID: 31137698 PMCID: PMC6562429 DOI: 10.3390/cells8050501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma gallisepticum (MG), a pathogen that infects chickens and some other birds, triggers chronic respiratory disease (CRD) in chickens, which is characterized by inflammation. The investigation of microbial pathogenesis would contribute to the deep understanding of infection control. Since microribonucleic acids (miRNAs) play a key role in this process, gga-mir-146c, an upregulated miRNA upon MG infection, was selected according to our previous RNA-sequencing data. In this paper, we predicted and validated that MMP16 is one of gga-miR-146c target genes. Results show that MMP16 is the target of gga-miR-146c and gga-miR-146c can downregulate MMP16 expression within limits. gga-miR-146c upregulation significantly increased the expression of TLR6, NF-κB p65, MyD88, and TNF-α, whereas the gga-miR-146c inhibitor led to an opposite result. gga-miR-146c upregulation effectively decreased apoptosis and stimulated DF-1 cells proliferation upon MG infection. On the contrary, gga-miR-146c inhibitor promoted apoptosis and repressed the proliferation. Collectively, our results suggest that gga-miR-146c upregulation upon MG infection represses MMP16 expression, activating TLR6/MyD88/NF-κB pathway, promoting cell proliferation by inhibiting cell apoptosis, and, finally, enhancing cell cycle progression to defend against host MG infection.
Collapse
Affiliation(s)
- Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yun Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zaiwei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yali Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction Ministry of Education, College of Animal science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
25
|
Srisanga K, Suthapot P, Permsirivisarn P, Govitrapong P, Tungpradabkul S, Wongtrakoongate P. Polyphosphate kinase 1 of Burkholderia pseudomallei controls quorum sensing, RpoS and host cell invasion. J Proteomics 2019; 194:14-24. [DOI: 10.1016/j.jprot.2018.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/16/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022]
|
26
|
Upregulated gga-miR-16-5p Inhibits the Proliferation Cycle and Promotes the Apoptosis of MG-Infected DF-1 Cells by Repressing PIK3R1-Mediated the PI3K/Akt/NF-κB Pathway to Exert Anti-Inflammatory Effect. Int J Mol Sci 2019; 20:ijms20051036. [PMID: 30818821 PMCID: PMC6429190 DOI: 10.3390/ijms20051036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Mycoplasma gallisepticum (MG) mainly infects chickens to initiate chronic respiratory disease (CRD). microRNAs (miRNAs) play vital roles according to previously reported studies. Our previous study showed that gga-miR-16-5p, in MG-infected lungs of chicken embryo, was upregulated by Illumina sequencing. The study aimed to reveal what role gga-miR-16-5p plays in CRD progression. gga-miR-16-5p was upregulated in MG-infected fibroblast cells (DF-1). Phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) was demonstrated as the target gene of gga-miR-16-5p. Furthermore, PIK3R1 expression was lower in MG-infected groups than it in noninfected controls measured by qPCR. Additionally, overexpressed gga-miR-16-5p could downregulate PIK3R1 and phosphorylated serine/threonine kinase (p-Akt) to express protein, whereas there is an opposite effect on inhibition. Overexpressed gga-miR-16-5p resulted in decreased activity of tumor necrosis factor alpha (TNF-α) and the nuclear factor-kappaB (NF-κB) by qPCR. Furthermore, overexpressed gga-miR-16-5p restricted cell multiplication, cycle progression, and increased apoptosis of MG-infected DF-1 cells, whereas inhibited gga-miR-16-5p led to the opposite effect. Collectively, upregulated gga-miR-16-5p could decrease multiplication, cycle progression, and increase apoptosis of MG-infected DF-1 cells, at least partly through directly targeting PIK3R1 and inhibiting PI3K/Akt/NF-κB pathway to exert an anti-inflammatory effect. Our results will provide more experimental evidence to bring pathogenesis of MG infection to light.
Collapse
|
27
|
Qi J, Zhang F, Wang Y, Liu T, Tan L, Wang S, Tian M, Li T, Wang X, Ding C, Yu S. Characterization of Mycoplasma gallisepticum pyruvate dehydrogenase alpha and beta subunits and their roles in cytoadherence. PLoS One 2018; 13:e0208745. [PMID: 30532176 PMCID: PMC6287819 DOI: 10.1371/journal.pone.0208745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/21/2018] [Indexed: 12/03/2022] Open
Abstract
Mycoplasma gallisepticum is a causative agent of chronic respiratory disease in chickens, typically causing great economic losses. Cytoadherence is the critical stage for mycoplasma infection, and the associated proteins are important for mycoplasma pathogenesis. Many glycolytic enzymes are localized on the cell surface and can bind the extracellular matrix of host cells. In this study, the M. gallisepticum pyruvate dehydrogenase E1 alpha subunit (PDHA) and beta subunit (PDHB) were expressed in Escherichia coli, and their enzymatic activities were identified based on 2,6-dichlorophenol indophenol reduction. When recombinant PDHA (rPDHA) and recombinant PDHB (rPDHB) were mixed at a 1:1 molar ratio, they exhibited strong enzymatic activity. Alone, rPDHA and rPDHB exhibited no or weak enzymatic activity. Further experiments indicated that both PDHA and PDHB were surface-exposed immunogenic proteins of M. gallisepticum. Bactericidal assays showed that the mouse anti-rPDHA and anti-rPDHB sera killed 48.0% and 75.1% of mycoplasmas respectively. A combination of rPDHA and rPDHB antisera had a mean bactericidal rate of 65.2%, indicating that rPDHA and rPDHB were protective antigens, and combining the two sera did not interfere with bactericidal activity. Indirect immunofluorescence and surface display assays showed that both PDHA and PDHB adhered to DF-1 chicken embryo fibroblast cells and adherence was significantly inhibited by antisera against PDHA and PDHB. Adherence inhibition of M. gallisepticum to DF-1 chicken embryo fibroblast cells was 30.2% for mouse anti-rPDHA serum, 45.1% for mouse anti-rPDHB serum and 72.5% for a combination of rPDHA and rPDHB antisera, suggesting that rPDHA and rPDHB antisera may have synergistically interfered with M. gallisepticum cytoadherence. Plasminogen (Plg)-binding assays further demonstrated that both PDHA and PDHB were Plg-binding proteins, which may have contributed to bacterial colonization. Our results clarified the enzymatic activity of M. gallisepticum PDHA and PDHB and demonstrated these compounds as Plg-binding proteins involved in cytoadherence.
Collapse
Affiliation(s)
- Jingjing Qi
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
| | - Fanqing Zhang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
| | - Yu Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Ting Liu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
| | - Lei Tan
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
| | - Tao Li
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
| | - Chan Ding
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China
- * E-mail: (Shengqing Yu); (Chan Ding)
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China
- * E-mail: (Shengqing Yu); (Chan Ding)
| |
Collapse
|
28
|
Zhao Y, Zhang K, Zou M, Sun Y, Peng X. gga-miR-451 Negatively Regulates Mycoplasma gallisepticum (HS Strain)-Induced Inflammatory Cytokine Production via Targeting YWHAZ. Int J Mol Sci 2018; 19:ijms19041191. [PMID: 29652844 PMCID: PMC5979595 DOI: 10.3390/ijms19041191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is the most economically significant mycoplasma pathogen of poultry that causes chronic respiratory disease (CRD) in chickens. Although miRNAs have been identified as a major regulator effect on inflammatory response, it is largely unclear how they regulate MG-induced inflammation. The aim of this study was to investigate the functional roles of gga-miR-451 and identify downstream targets regulated by gga-miR-451 in MG infection of chicken. We found that the expression of gga-miR-451 was significantly up-regulated during MG infection of chicken embryo fibroblast cells (DF-1) and chicken embryonic lungs. Overexpression of gga-miR-451 decreased the MG-induced inflammatory cytokine production, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), whereas inhibition of gga-miR-451 had the opposite effect. Gene expression data combined with luciferase reporter assays demonstrated that tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta (YWHAZ) was identified as a direct target of gga-miR-451 in the context of MG infection. Furthermore, upregulation of gga-miR-451 significantly inhibited the MG-infected DF-1 cells proliferation, induced cell-cycle arrest, and promoted apoptosis. Collectively, our results demonstrate that gga-miR-451 negatively regulates the MG-induced production of inflammatory cytokines via targeting YWHAZ, inhibits the cell cycle progression and cell proliferation, and promotes cell apoptosis. This study provides a better understanding of the molecular mechanisms of MG infection.
Collapse
Affiliation(s)
- Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Kanci A, Wijesurendra DS, Wawegama NK, Underwood GJ, Noormohammadi AH, Markham PF, Browning GF. Evaluation of Mycoplasma gallisepticum (MG) ts-304 vaccine as a live attenuated vaccine in turkeys. Vaccine 2018; 36:2487-2493. [PMID: 29599086 DOI: 10.1016/j.vaccine.2018.02.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 11/17/2022]
Abstract
Mycoplasma gallisepticum (MG) is an important pathogen of poultry worldwide that causes chronic respiratory disease (CRD) in chickens and infectious sinusitis in turkeys. Vaxsafe MG (strain ts-11) is a live attenuated temperature sensitive vaccine that has been proven to be effective in controlling CRD in chickens, but it is not efficacious in turkeys. The gapA gene, which encodes a mature cytadhesin protein with a molecular weight of approximately 105 kDa, is not expressed in strain ts-11 because a 20 base pair reiterated sequence introduces a frame shift and causes premature truncation of the translated peptide. A GapA positive clone, MG ts-304, isolated from strain ts-11 has been shown to have enhanced efficacy in chickens. Here we describe studies we conducted to assess the safety and efficacy of the MG ts-304 vaccine candidate in turkeys. We found that MG ts-304 was able to colonise the trachea of 3-week-old turkeys and was safe, even at a tenfold overdose, inducing no adverse clinical signs of respiratory disease or significant gross lesions in the respiratory tract (air sacs or trachea), and was poorly transmissible to in-contact birds. We also showed that it was efficacious when administered to 3-week-old turkeys, inducing protective immunity against challenge with the M.gallisepticum wild-type strain Ap3AS. MG ts-304 is therefore a promising live attenuated vaccine candidate for use in turkeys.
Collapse
Affiliation(s)
- Anna Kanci
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Dinidu S Wijesurendra
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J Underwood
- Bioproperties Proprietary Limited, 36 Charter Street, Ringwood, Victoria 3134, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria 3030, Australia
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
30
|
Bacterial Pathogen Emergence Requires More than Direct Contact with a Novel Passerine Host. Infect Immun 2018; 86:IAI.00863-17. [PMID: 29311238 PMCID: PMC5820954 DOI: 10.1128/iai.00863-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
While direct contact may sometimes be sufficient to allow a pathogen to jump into a new host species, in other cases, fortuitously adaptive mutations that arise in the original donor host are also necessary. Viruses have been the focus of most host shift studies, so less is known about the importance of ecological versus evolutionary processes to successful bacterial host shifts. Here we tested whether direct contact with the novel host was sufficient to enable the mid-1990s jump of the bacterium Mycoplasma gallisepticum from domestic poultry to house finches (Haemorhous mexicanus). We experimentally inoculated house finches with two genetically distinct M. gallisepticum strains obtained either from poultry (Rlow) or from house finches (HF1995) during an epizootic outbreak. All 15 house finches inoculated with HF1995 became infected, whereas Rlow successfully infected 12 of 15 (80%) inoculated house finches. Comparisons among infected birds showed that, relative to HF1995, Rlow achieved substantially lower bacterial loads in the host respiratory mucosa and was cleared faster. Furthermore, Rlow-infected finches were less likely to develop clinical symptoms than HF1995-infected birds and, when they did, displayed milder conjunctivitis. The lower infection success of Rlow relative to HF1995 was not, however, due to a heightened host antibody response to Rlow. Taken together, our results indicate that contact between infected poultry and house finches was not, by itself, sufficient to explain the jump of M. gallisepticum to house finches. Instead, mutations arising in the original poultry host would have been necessary for successful pathogen emergence in the novel finch host.
Collapse
|
31
|
Yu Y, Chen Y, Wang Y, Li Y, Zhang L, Xin J. TLR2/MyD88/NF-κB signaling pathway regulates IL-1β production in DF-1 cells exposed to Mycoplasma gallisepticum LAMPs. Microb Pathog 2018; 117:225-231. [PMID: 29471139 DOI: 10.1016/j.micpath.2018.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 01/01/2023]
Abstract
Mycoplasma gallisepticum (M. gallisepticum) is one of the most important pathogens that cause chronic respiratory disease in chickens. M. gallisepticum-derived lipid-associated membrane proteins (LAMPs) are thought to be one of the major factors in mycoplasma pathogenesis and are potent inducers of the host innate immune response. However, the interaction of pathogenic M. gallisepticum-derived LAMPs with Toll-like receptors (TLRs) and the signaling pathways responsible for activating inflammation and NF-κB have not been fully elucidated. In this study, we found that IL-1β expression was induced in DF-1 cells stimulated with M. gallisepticum LAMPs. Subcellular localization experiments using immunofluorescence assays (IFAs) showed p65 translocation from the cytoplasm to the nucleus in DF-1 cells following stimulation with M. gallisepticum LAMPs. Phosphorylation of p65 was detected in LAMP-stimulated DF-1 cells. Treatment with an NF-κB-specific inhibitor showed that NF-κB is required for M. gallisepticum LAMP-induced IL-1β expression. In addition, the results indicated that TLR2 and myeloid differentiation primary-response protein 88 (MyD88)-dependent signaling pathways were involved in the activation of NF-κB by M. gallisepticum LAMPs. Together, these results provide evidence that M. gallisepticum LAMPs activate IL-1β production through the NF-κB pathway via TLR2 and MyD88.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Ying Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yang Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yuan Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Lin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| |
Collapse
|
32
|
Tseng CW, Chiu CJ, Kanci A, Noormohammadi AH, Browning GF, Markham PF. Safety and efficacy of a Mycoplasma gallisepticum oppD knockout mutant as a vaccine candidate. Vaccine 2017; 35:6248-6253. [PMID: 28941621 DOI: 10.1016/j.vaccine.2017.08.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/25/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
Control of the important poultry pathogen Mycoplasma gallisepticum is highly dependent on safe and efficacious attenuated vaccines. In order to assess a novel vaccine candidate we evaluated the safety and efficacy of the M. gallisepticum mutant 26-1. The oppD1 gene in this mutant has been interrupted by a signature-tagged transposon and previous studies have shown that it can colonise the respiratory tract of chickens without inducing significant disease. The capacity of the oppD1 mutant to induce protective immunity in the respiratory tract after vaccination by eye-drop was assessed by challenging vaccinated birds with an aerosol of the virulent M. gallisepticum strain Ap3AS. Vaccination with the oppD1 mutant was shown to fully protect against the lesions caused by pathogenic M. gallisepticum in the air sacs and tracheas. It also protected against the effect of infection on weight gain, and partially protected against colonisation of the trachea by virulent M. gallisepticum. These results indicate that a M. gallisepticum mutant with the oppD1 gene knocked out could be used as a live attenuated vaccine as it is both safe and efficacious when administered by eyedrop to chickens.
Collapse
Affiliation(s)
- Chi-Wen Tseng
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chien-Ju Chiu
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anna Kanci
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
33
|
Zhao Y, Wang Z, Hou Y, Zhang K, Peng X. gga-miR-99a targets SMARCA5 to regulate Mycoplasma gallisepticum (HS strain) infection by depressing cell proliferation in chicken. Gene 2017; 627:239-247. [PMID: 28652181 DOI: 10.1016/j.gene.2017.06.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Mycoplasma gallisepticum (MG), one of the primary etiological agents of poultry chronic respiratory disease, has caused significant economic losses worldwide, and increasing evidence has recently indicated that miRNAs are involved in its microbial pathogenesis. gga-miR-99a, a member of the miR-99 family, plays an essential role in a variety of diseases. Through miRNA Solexa sequencing, we previously found that gga-miR-99a is significantly down-regulated in the lungs of MG-infected chicken embryos. In this study, we further verified that the expression of gga-miR-99 was significantly down-regulated in both MG-infected lungs and a chicken embryonic fibroblast cell line (DF-1) by qPCR. Moreover, we predicted and validated SMARCA5 as its target gene through a luciferase reporter assay, qPCR, and western blot analysis. The over-expression of gga-miR-99a significantly depressed SMARCA5 expression, whereas a gga-miR-99a inhibitor enhanced the expression of SMARCA5. Inversely, SMARCA5 was significantly up-regulated and gga-miR-99a was obviously down-regulated in MG-HS-infected chicken embryonic lungs and DF-1 cells. At 72h post-transfection, the over-expression of gga-miR-99a significantly repressed the proliferation of DF-1 cells by inhibiting the transition from the G1 phase to the S and G2 phases. This study reveals that gga-miR-99a plays a key role in MG infection through the regulation of SMARCA5 expression and provides new insights regarding the mechanisms of MG pathogenesis.
Collapse
Affiliation(s)
- Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiwei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
34
|
Identification of Strain-Specific Sequences That Distinguish a Mycoplasma gallisepticum Vaccine Strain from Field Isolates. J Clin Microbiol 2016; 55:244-252. [PMID: 27847370 PMCID: PMC5228237 DOI: 10.1128/jcm.00833-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/21/2016] [Indexed: 11/20/2022] Open
Abstract
Despite attempts to control avian mycoplasmosis through management, vaccination, and surveillance, Mycoplasma gallisepticum continues to cause significant morbidity, mortality, and economic losses in poultry production. Live attenuated vaccines are commonly used in the poultry industry to control avian mycoplasmosis; unfortunately, some vaccines may revert to virulence and vaccine strains are generally difficult to distinguish from natural field isolates. In order to identify genome differences among vaccine revertants, vaccine strains, and field isolates, whole-genome sequencing of the M. gallisepticum vaccine strain ts-11 and several “ts-11-like” strains isolated from commercial flocks was performed using Illumina and 454 pyrosequencing and the sequenced genomes compared to the M. gallisepticum Rlow reference genome. The collective contigs for each strain were annotated using the fully annotated Mycoplasma reference genome. The analysis revealed genetic differences among vlhA alleles, as well as among genes annotated as coding for a cell wall surface anchor protein (mg0377) and a hypothetical protein gene, mg0359, unique to M. gallisepticum ts-11 vaccine strain. PCR protocols were designed to target 5 sequences unique to the M. gallisepticum ts-11 strain: vlhA3.04a, vlhA3.04b, vlhA3.05, mg0377, and mg0359. All ts-11 isolates were positive for the five gene alleles tested by PCR; however, 5 to 36% of field isolates were also positive for at least one of the alleles tested. A combination of PCR tests for vlhA3.04a, vlhA3.05, and mg0359 was able to distinguish the M. gallisepticum ts-11 vaccine strain from field isolates. This method will further supplement current approaches to quickly distinguish M. gallisepticum vaccine strains from field isolates.
Collapse
|
35
|
Tian W, Zhao C, Hu Q, Sun J, Peng X. Roles of Toll-like receptors 2 and 6 in the inflammatory response to Mycoplasma gallisepticum infection in DF-1 cells and in chicken embryos. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:39-47. [PMID: 26797426 DOI: 10.1016/j.dci.2016.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
While Mycoplasma gallisepticum (MG) is a major pathogen that causes chronic respiratory diseases in chicken, the molecular mechanism of MG infection is not clear. In this study, we investigated the roles of Toll-like receptor 2 (TLR2) and 6 (TLR6) in MG infection. We found that TLR2 type 2 (TLR2-2) and TLR6 had differential expressions in chicken embryo fibroblasts (DF-1 cells), where TLR6 was highly expressed, but TLR2-2 was barely expressed. Upon MG infection, TLR6 expression was upregulated, followed by upregulation of downstream factors, MyD88, NF-κB, IL2, IL6, and TNF-α. Knockdown of TLR6 expression by shRNA abolished the MG-induced inflammatory responses. More interestingly, in the presence of TLR6, TLR2-2 didn't respond to MG infection in DF-1 cells. When TLR6 was knocked down by shRNA, however, TLR2 was upregulated upon MG infection, which was followed by upregulation of proinflammatory genes. Finally, we tested effects of the MG infection on expression of TLR2-2 and TLR6 in the lungs and trachea tissues of chicken embryos. We found both TLR2-2 and TLR6 were upregulated upon MG infection, followed by upregulation of the downstream NF-κB-mediated inflammatory responses. This study was the first to report the differential roles of TLR2-2 and TLR6 in MG-infected DF-1 cells and chicken embryos.
Collapse
Affiliation(s)
- Wei Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengcheng Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingchuang Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
36
|
Mycoplasma gallisepticum modifies the pathogenesis of influenza A virus in the avian tracheal epithelium. Int J Med Microbiol 2016; 306:174-86. [PMID: 27079856 DOI: 10.1016/j.ijmm.2016.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 11/24/2022] Open
Abstract
Multiple respiratory infections have a significant impact on health and economy. Pathogenesis of co-infecting viruses and bacteria and their interaction with mucosal surfaces are poorly characterized. In this study we established a co-infection model based on pre-incubation of tracheal organ cultures (TOC) with Mycoplasma (M.) gallisepticum and a subsequent infection with avian influenza virus (AIV). Mycoplasma gallisepticum modified the pathogenesis of AIV as demonstrated in TOC of two different avian species (chickens and turkeys). Co-infection promoted bacterial growth in tracheal epithelium. Depending on the interaction time of M. gallisepticum with the host cells, AIV replication was either promoted or suppressed. M. gallisepticum inhibited the antiviral gene expression and affected AIV attachment to the host cell by desialylation of α-2,3 linked sialic acids. Ultrastructural analysis of co-infected TOC suggests that both pathogens may attach to and possibly infect the same epithelial cell. The obtained results contribute to better understanding of the interaction dynamics between M. gallisepticum and AIV. They highlight the importance of the time interval between infections as well as the biological properties of the involved pathogens as influencing factors in the outcome of respiratory infections.
Collapse
|
37
|
Gga-miR-101-3p Plays a Key Role in Mycoplasma gallisepticum (HS Strain) Infection of Chicken. Int J Mol Sci 2015; 16:28669-82. [PMID: 26633386 PMCID: PMC4691068 DOI: 10.3390/ijms161226121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma gallisepticum (MG), one of the most pathogenic Mycoplasma, has caused tremendous economic loss in the poultry industry. Recently, increasing evidence has suggested that micro ribonucleic acids (miRNAs) are involved in microbial pathogenesis. However, little is known about potential roles of miRNAs in MG infection of chicken. In the present study, using miRNA Solexa sequencing we have found that gga-miR-101-3p was up-regulated in the lungs of MG-infected chicken embryos. Moreover, gga-miR-101-3p regulated expression of the host enhancer of zeste homolog 2 (EZH2) through binding to the 3’ un-translated region (3’-UTR) of EZH2 gene. Over-expression of gga-miR-101-3p significantly inhibited EZH2 expression and hence inhibited proliferation of chicken embryonic fibroblast (DF-1 cells) by blocking the G1-to-S phase transition. Similar results were obtained in MG-infected chicken embryos and DF-1 cells, where gga-miR-101-3p was significantly up-regulated, while EZH2 was significantly down-regulated. This study reveals that gga-miR-101-3p plays an important role in MG infection through regulation of EZH2 expression and provides a new insight into the mechanisms of MG pathogenesis.
Collapse
|
38
|
Interaction of Mycoplasma gallisepticum with Chicken Tracheal Epithelial Cells Contributes to Macrophage Chemotaxis and Activation. Infect Immun 2015; 84:266-74. [PMID: 26527215 DOI: 10.1128/iai.01113-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/24/2015] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma gallisepticum colonizes the chicken respiratory mucosa and mediates a severe inflammatory response hallmarked by subepithelial leukocyte infiltration. We recently reported that the interaction of M. gallisepticum with chicken tracheal epithelial cells (TECs) mediated the upregulation of chemokine and inflammatory cytokine genes in these cells (S. Majumder, F. Zappulla, and L. K. Silbart, PLoS One 9:e112796, http://dx.doi.org/10.1371/journal.pone.0112796). The current study extends these observations and sheds light on how this initial interaction may give rise to subsequent inflammatory events. Conditioned medium from TECs exposed to the virulent Rlow strain induced macrophage chemotaxis to a much higher degree than the nonvirulent Rhigh strain. Coculture of chicken macrophages (HD-11) with TECs exposed to live mycoplasma revealed the upregulation of several proinflammatory genes associated with macrophage activation, including interleukin-1β (IL-1β), IL-6, IL-8, CCL20, macrophage inflammatory protein 1β (MIP-1β), CXCL-13, and RANTES. The upregulation of these genes was similar to that observed upon direct contact of HD-11 cells with live M. gallisepticum. Coculture of macrophages with Rlow-exposed TECs also resulted in prolonged expression of chemokine genes, such as those encoding CXCL-13, MIP-1β, RANTES, and IL-8. Taken together, these studies support the notion that the initial interaction of M. gallisepticum with host respiratory epithelial cells contributes to macrophage chemotaxis and activation by virtue of robust upregulation of inflammatory cytokine and chemokine genes, thereby setting the stage for chronic tissue inflammation.
Collapse
|
39
|
Ron M, Gorelick-Ashkenazi A, Levisohn S, Nir-Paz R, Geary SJ, Tulman E, Lysnyansky I, Yogev D. Mycoplasma gallisepticum in vivo induced antigens expressed during infection in chickens. Vet Microbiol 2014; 175:265-74. [PMID: 25575879 DOI: 10.1016/j.vetmic.2014.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022]
Abstract
Until now only a few genes encoding virulence factors have been characterized in the avian pathogen Mycoplasma gallisepticum. In order to identify candidate targets associated with infection we applied an immunoscreening technique-in vivo induced antigen technology (IVIAT)-to detect immunogens of M. gallisepticum strain Rlow expressed preferentially during in vivo infection. We identified 13 in vivo-induced (IVI) proteins that correspond to different functional categories including: previously reported putative virulence factors (GapA, PlpA, Hlp3, VlhA 1.07 and VlhA 4.01), transport (PotE, MGA_0241 and 0654), translation (L2, L23, ValS), chaperone (GroEL) and a protein with unknown function (MGA_0042). To validate the in vivo antigenic reactivity, 10 IVI proteins were tested by Western blot analysis using serum samples collected from chickens experimentally (with strain Rlow) and naturally (outbreaks, N=3) infected with M. gallisepticum. All IVI proteins tested were immunogenic. To corroborate these results, we tested expression of IVI genes in chickens experimentally infected with M. gallisepticum Rlow, and in MRC-5 human lung fibroblasts cell culture by using relative real time reverse-transcription PCR (RT-PCR). With the exception of MGA_0338, all six genes tested (MGA_1199, 0042, 0654, 0712, 0928 and 0241) were upregulated at least at one time point during experimental infection (2-4 week post-infection). In contrast, the expression of seven out of eight IVI genes (MGA_1199, 0152, 0338, 0042, 0654, 0712, 0928) were downregulated in MRC-5 cell culture at both 2 and 4h PI; MGA_0241 was upregulated 2h PI. Our data suggest that the identified IVI antigens may have important roles in the pathogenesis of M. gallisepticum infection in vivo.
Collapse
Affiliation(s)
- Merav Ron
- Department of Molecular Genetics and Microbiology, The Hebrew University-Haddassah Medical School, Jerusalem 91120, Israel
| | - Anna Gorelick-Ashkenazi
- Department of Molecular Genetics and Microbiology, The Hebrew University-Haddassah Medical School, Jerusalem 91120, Israel
| | - Sharon Levisohn
- Mycoplasma Unit, Department of Avian and Aquatic Diseases, Kimron Veterinary Institute, Beit Dagan 50250, Israel
| | - Ran Nir-Paz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Steven J Geary
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
| | - Edan Tulman
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
| | - Inna Lysnyansky
- Mycoplasma Unit, Department of Avian and Aquatic Diseases, Kimron Veterinary Institute, Beit Dagan 50250, Israel.
| | - David Yogev
- Department of Molecular Genetics and Microbiology, The Hebrew University-Haddassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
40
|
Mycoplasma gallisepticum lipid associated membrane proteins up-regulate inflammatory genes in chicken tracheal epithelial cells via TLR-2 ligation through an NF-κB dependent pathway. PLoS One 2014; 9:e112796. [PMID: 25401327 PMCID: PMC4234737 DOI: 10.1371/journal.pone.0112796] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/20/2014] [Indexed: 01/20/2023] Open
Abstract
Mycoplasma gallisepticum-mediated respiratory inflammation in chickens is associated with accumulation of leukocytes in the tracheal submucosa. However the molecular mechanisms underpinning these changes have not been well described. We hypothesized that the initial inflammatory events are initiated upon ligation of mycoplasma lipid associated membrane proteins (LAMP) to TLRs expressed on chicken tracheal epithelial cells (TEC). To test this hypothesis, live bacteria or LAMPs isolated from a virulent (Rlow) or a non-virulent (Rhigh) strain were incubated with primary TECs or chicken tracheae ex vivo. Microarray analysis identified up-regulation of several inflammatory and chemokine genes in TECs as early as 1.5 hours post-exposure. Kinetic analysis using RT-qPCR identified the peak of expression for most genes to be at either 1.5 or 6 hours. Ex-vivo exposure also showed up-regulation of inflammatory genes in epithelial cells by 1.5 hours. Among the commonly up-regulated genes were IL-1β, IL-6, IL-8, IL-12p40, CCL-20, and NOS-2, all of which are important immune-modulators and/or chemo-attractants of leukocytes. While these inflammatory genes were up-regulated in all four treatment groups, Rlow exposed epithelial cells both in vitro and ex vivo showed the most dramatic up-regulation, inducing over 100 unique genes by 5-fold or more in TECs. Upon addition of a TLR-2 inhibitor, LAMP-mediated gene expression of IL-1β and CCL-20 was reduced by almost 5-fold while expression of IL-12p40, IL-6, IL-8 and NOS-2 mRNA was reduced by about 2–3 fold. Conversely, an NF-κB inhibitor abrogated the response entirely for all six genes. miRNA-146a, a negative regulator of TLR-2 signaling, was up-regulated in TECs in response to either Rlow or Rhigh exposure. Taken together we conclude that LAMPs isolated from both Rhigh and Rlow induced rapid, TLR-2 dependent but transient up-regulation of inflammatory genes in primary TECs through an NF-κB dependent pathway.
Collapse
|
41
|
Indikova I, Vronka M, Szostak MP. First identification of proteins involved in motility of Mycoplasma gallisepticum. Vet Res 2014; 45:99. [PMID: 25323771 PMCID: PMC4207318 DOI: 10.1186/s13567-014-0099-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/23/2014] [Indexed: 01/23/2023] Open
Abstract
Mycoplasma gallisepticum, the most pathogenic mycoplasma in poultry, is able to glide over solid surfaces. Although this gliding motility was first observed in 1968, no specific protein has yet been shown to be involved in gliding. We examined M. gallisepticum strains and clonal variants for motility and found that the cytadherence proteins GapA and CrmA were required for gliding. Loss of GapA or CrmA resulted in the loss of motility and hemadsorption and led to drastic changes in the characteristic flask-shape of the cells. To identify further genes involved in motility, a transposon mutant library of M. gallisepticum was generated and screened for motility-deficient mutants, using a screening assay based on colony morphology. Motility-deficient mutants had transposon insertions in gapA and the neighbouring downstream gene crmA. In addition, insertions were seen in gene mgc2, immediately upstream of gapA, in two motility-deficient mutants. In contrast to the GapA/CrmA mutants, the mgc2 motility mutants still possessed the ability to hemadsorb. Complementation of these mutants with a mgc2-hexahistidine fusion gene restored the motile phenotype. This is the first report assigning specific M. gallisepticum proteins to involvement in gliding motility.
Collapse
Affiliation(s)
- Ivana Indikova
- Department of Pathobiology, Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210, Vienna, Austria.
| | - Martin Vronka
- Department of Pathobiology, Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210, Vienna, Austria.
| | - Michael P Szostak
- Department of Pathobiology, Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210, Vienna, Austria.
| |
Collapse
|
42
|
Factors influencing the cell adhesion and invasion capacity of Mycoplasma gallisepticum. Acta Vet Scand 2013; 55:63. [PMID: 24011130 PMCID: PMC3847126 DOI: 10.1186/1751-0147-55-63] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/31/2013] [Indexed: 12/24/2022] Open
Abstract
Background The cell invasiveness of Mycoplasma gallisepticum, the causative agent of respiratory disease in chickens and infectious sinusitis in turkeys, may be a substantial factor in the well-known chronicity of these diseases and in the systemic spread of infection. To date, not much is known about the host factors and mechanisms involved in promotion or obstruction of M. gallisepticum adherence and/or cell invasion. In the current study, the influence of extracellular matrix (ECM) proteins such as fibronectin, collagen type IV and heparin, as well as plasminogen/plasmin, on the adhesion and cell invasion levels of M. gallisepticum to chicken erythrocytes and HeLa cells was investigated in vitro. Two strains, Rhigh and Rlow, which differ in their adhesion and invasion capacity, were analyzed by applying a modified gentamicin invasion assay. Binding of selected ECM molecules to M. gallisepticum was proven by Western blot analysis. Results Collagen type IV, fibronectin, and plasminogen exerted positive effects on adhesion and cell invasion of M. gallisepticum, with varying degrees, depending on the strain used. Especially strain Rhigh, with its highly reduced cell adhesion and invasion capabilities seemed to profit from the addition of plasminogen. Western and dot blot analyses showed that Rhigh as well as Rlow are able to adsorb horse fibronectin and plasminogen present in the growth medium. Depletion of HeLa cell membranes from cholesterol resulted in increased adhesion, but decreased cell invasion. Conclusion ECM molecules seem to play a supportive role in the adhesion/cell invasion process of M. gallisepticum. Cholesterol depletion known to affect lipid rafts on the host cell surface had contrary effects on cell adherence and cell invasion of M. gallisepticum.
Collapse
|
43
|
Adamu JY, Wawegama NK, Browning GF, Markham PF. Membrane proteins of Mycoplasma bovis and their role in pathogenesis. Res Vet Sci 2013; 95:321-5. [PMID: 23810376 DOI: 10.1016/j.rvsc.2013.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022]
Abstract
Mycoplasma membrane proteins influence cell shape, cell division, motility and adhesion to host cells, and are thought to be integrally involved in the pathogenesis of mycoplasmoses. Many of the membrane proteins predicted from mycoplasma genome sequences remain hypothetical, as their presence in cellular protein preparations is yet to be established experimentally. Recent genome sequences of several strains of Mycoplasma bovis have provided further insight into the potential role of the membrane proteins of this pathogen in colonisation and infection. This review highlights recent advances in knowledge about the influence of M. bovis membrane proteins on the pathogenesis of infection with this species and identifies future research directions for enhancing our understanding of the role of these proteins.
Collapse
Affiliation(s)
- James Y Adamu
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|