1
|
Hussain A, Ong EBB, Balaram P, Ismail A, Kien PK. TolC facilitates the intracellular survival and immunomodulation of Salmonella Typhi in human host cells. Virulence 2024; 15:2395831. [PMID: 39185619 PMCID: PMC11385165 DOI: 10.1080/21505594.2024.2395831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/29/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a systemic infection that affects millions of people worldwide. S. Typhi can invade and survive within host cells, such as intestinal epithelial cells and macrophages, by modulating their immune responses. However, the immunomodulatory capability of S. Typhi in relation to TolC-facilitated efflux pump function remains unclear. The role of TolC, an outer membrane protein that facilitates efflux pump function, in the invasion and immunomodulation of S. Typhi, was studied in human intestinal epithelial cells and macrophages. The tolC deletion mutant of S. Typhi was compared with the wild-type and its complemented strain in terms of their ability to invade epithelial cells, survive and induce cytotoxicity in macrophages, and elicit proinflammatory cytokine production in macrophages. The tolC mutant, which has a defective outer membrane, was impaired in invading epithelial cells compared to the wild-type strain, but the intracellular presence of the tolC mutant exhibited greater cytotoxicity and induced higher levels of proinflammatory cytokines (IL-1β and IL-8) in macrophages compared to the wild-type strain. These effects were reversed by complementing the tolC mutant with a functional tolC gene. Our results suggest that TolC plays a role in S. Typhi to efficiently invade epithelial cells and suppress host immune responses during infection. TolC may be a potential target for the development of novel therapeutics against typhoid fever.
Collapse
Affiliation(s)
- Ashraf Hussain
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL USA
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Prabha Balaram
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Asma Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Phua Kia Kien
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
2
|
Zheng S, Tang X, Yang Q, Zhou X, Li Y, Wu Z. Aeromonas veronii tolC modulates its virulence and the immune response of freshwater pearl mussels, Hyriopsis cumingii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105137. [PMID: 38224762 DOI: 10.1016/j.dci.2024.105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/17/2024]
Abstract
Aeromonas veronii is an opportunistic pathogen that causes diseases in aquatic animals, but its key virulence factors remain unclear. We screened the gene tolC with significantly different expression levels in the two isolates, A. veronii GL2 (higher virulence) and A. veronii FO1 (lower virulence). Therefore, we constructed mutant strain ΔtolC and analyzed its immunological properties. ΔtolC exhibited the reduced ability of biofilms formation, inhibited envelope stress response mediated by several antibiotics except cefuroxime, implying the ability to evade host immunity might be restrained. Challenge tests showed that the LD50 of ΔtolC was 10.89-fold than that of GL2. Enzymatic activities of ΔtolC group were significantly lower and peak time was delayed to 12 h, as demonstrated by qRT-PCR results. Histopathological examination displayed that the degree of tissue damage in ΔtolC group was alleviated. The results show that tolC is an important virulence factor of A. veronii, which provides references for live-attenuated vaccine.
Collapse
Affiliation(s)
- Sichun Zheng
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Xicheng Zhou
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Chung IY, Choi SY, Bae HW, Cho YH. A TetR family regulator of an RND efflux system that directs artemisinin resistance in Vibrio cholerae. mSystems 2024; 9:e0085123. [PMID: 38112429 PMCID: PMC10805010 DOI: 10.1128/msystems.00851-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Artemisinin (ARS) displayed bactericidal activity against Vibrio cholerae. To assess the mechanistic details of its antibacterial action, we have isolated V. cholerae mutants with enhanced ARS resistance and identified a gene (VCA0767) whose loss-of-function resulted in the ARS resistance phenotypes. This gene (atrR) encodes a TetR family transcriptional regulator, and its deletion mutant displayed the reduction in ARS-induced ROS formation and DNA damage. Transcriptomic analysis revealed that the genes encoding a resistance-nodulation-cell division (RND) efflux pump operon (vexRAB) and the outer membrane component (tolC) were highly upregulated in the artR mutant, suggesting that AtrR might act as a negative regulator of this operon and tolC. Gene deletion of vexR, vexB, or tolC abrogated the ARS resistance of the atrR mutant, and more importantly, the ectopic expression of VexAB-TolC was sufficient for the ARS resistance, indicating that the increased expression of the VexAB-TolC efflux system is necessary and sufficient for the ARS resistance of the atrR mutant. The cytoplasmic accumulation of ARS was compromised in the vexBtolC mutant, suggesting that the VexAB-TolC might be the primary efflux system exporting ARS to reduce its toxicity inside of the bacterial cells. The atrR mutant displayed resistance to erythromycin as well in a VexR-dependent manner. This result suggests that AtrR may act as a global regulator responsible for preventing intracellular accumulation of toxic chemicals by enhancing the RND efflux system.IMPORTANCEDrug efflux protein complexes or efflux pumps are considered as the major determinants of multiple antimicrobial resistance by exporting a wide range of structurally diverse antibiotics in bacterial pathogens. Despite the clinical significance of the increased expression of the efflux pumps, their substrate specificity and regulation mechanisms are poorly understood. Here, we demonstrated that VexAB-TolC, a resistance-nodulation-cell division (RND) efflux pump of V. cholerae, is responsible for the resistance to artemisinin (ARS), an antimalarial drug with bactericidal activity. Furthermore, we newly identified AtrR, a TetR family repressor, as a global regulator for VexRAB and the common outer membrane channel, TolC, where VexR functions as the pathway-specific regulator of the vexAB operon. Our findings will help improve our insight into a broad range of substrate specificity of the VexAB-TolC system and highlight the complex regulatory networks of the multiple RND efflux systems during V. cholerae pathogenesis.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, South Korea
| | - Shin-Yae Choi
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, South Korea
| | - Hee-Won Bae
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, South Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam-si, South Korea
| |
Collapse
|
4
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
5
|
Bina XR, Bina JE. Vibrio cholerae RND efflux systems: mediators of stress responses, colonization and pathogenesis. Front Cell Infect Microbiol 2023; 13:1203487. [PMID: 37256112 PMCID: PMC10225521 DOI: 10.3389/fcimb.2023.1203487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Resistance Nodulation Division (RND) efflux systems are ubiquitous transporters in gram-negative bacteria that provide protection against antimicrobial agents and thereby enhance survival in virtually all environments these prokaryotes inhabit. Vibrio cholerae is a dual lifestyle enteric pathogen that spends much of its existence in aquatic environments. An unwitting encounter with a human host can lead to V. cholerae intestinal colonization by strains that encode cholera toxin and toxin co-regulated pilus virulence factors leading to potentially fatal cholera diarrhea and dissemination in the environment. Adaptive response mechanisms to host factors encountered by these pathogens are therefore critical both to engage survival mechanisms such as RND-mediated transporters and to induce timely expression of virulence factors. Sensing of cues encountered in the host may therefore activate more than protective responses such as efflux systems, but also be coordinated to initiate expression of virulence factors. This review summarizes recent advances that contribute towards the understanding of RND efflux physiological functions and how the transport systems interface with the regulation of virulence factor production in V. cholerae.
Collapse
Affiliation(s)
| | - James E. Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Xiao X, Li W, Pan Y, Wang J, Wei Z, Wang S, Wang N, Jian J, Pang H. Holistic analysis of lysine acetylation in aquaculture pathogenic bacteria Vibrio alginolyticus under bile salt stress. Front Vet Sci 2023; 10:1099255. [PMID: 37180076 PMCID: PMC10172577 DOI: 10.3389/fvets.2023.1099255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Lysine acetylation modification is a dynamic and reversible post-translational modification, which plays an important role in the metabolism and pathogenicity of pathogenic bacteria. Vibrio alginolyticus is a common pathogenic bacterium in aquaculture, and bile salt can trigger the expression of bacterial virulence. However, little is known about the function of lysine acetylation in V. alginolyticus under bile salt stress. In this study, 1,315 acetylated peptides on 689 proteins were identified in V. alginolyticus under bile salt stress by acetyl-lysine antibody enrichment and high-resolution mass spectrometry. Bioinformatics analysis found that the peptides motif ****A*Kac**** and *******Kac****A* were highly conserved, and protein lysine acetylation was involved in regulating various cellular biological processes and maintaining the normal life activities of bacteria, such as ribosome, aminoacyl-tRNA biosynthesis, fatty acid metabolism, two-component system, and bacterial secretion system. Further, 22 acetylated proteins were also found to be related to the virulence of V. alginolyticus under bile salt stress through secretion system, chemotaxis and motility, and adherence. Finally, comparing un-treated and treated with bile salt stress lysine acetylated proteins, it was found that there were 240 overlapping proteins, and found amino sugar and nucleotide sugar metabolism, beta-Lactam resistance, fatty acid degradation, carbon metabolism, and microbial metabolism in diverse environments pathways were significantly enriched in bile salt stress alone. In conclusion, this study is a holistic analysis of lysine acetylation in V. alginolyticus under bile salt stress, especially many virulence factors have also acetylated.
Collapse
Affiliation(s)
- Xing Xiao
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Wanxin Li
- School of Public Health, Fujian Medical University, Fujian, China
| | - Yanfang Pan
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junlin Wang
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Zhiqing Wei
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shi Wang
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Huanying Pang
- Fisheries College of Guangdong Ocean University & Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
- *Correspondence: Huanying Pang
| |
Collapse
|
7
|
Stephen J, Lekshmi M, Ammini P, Kumar SH, Varela MF. Membrane Efflux Pumps of Pathogenic Vibrio Species: Role in Antimicrobial Resistance and Virulence. Microorganisms 2022; 10:microorganisms10020382. [PMID: 35208837 PMCID: PMC8875612 DOI: 10.3390/microorganisms10020382] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases caused by bacterial species of the Vibrio genus have had considerable significance upon human health for centuries. V. cholerae is the causative microbial agent of cholera, a severe ailment characterized by profuse watery diarrhea, a condition associated with epidemics, and seven great historical pandemics. V. parahaemolyticus causes wound infection and watery diarrhea, while V. vulnificus can cause wound infections and septicemia. Species of the Vibrio genus with resistance to multiple antimicrobials have been a significant health concern for several decades. Mechanisms of antimicrobial resistance machinery in Vibrio spp. include biofilm formation, drug inactivation, target protection, antimicrobial permeability reduction, and active antimicrobial efflux. Integral membrane-bound active antimicrobial efflux pump systems include primary and secondary transporters, members of which belong to closely related protein superfamilies. The RND (resistance-nodulation-division) pumps, the MFS (major facilitator superfamily) transporters, and the ABC superfamily of efflux pumps constitute significant drug transporters for investigation. In this review, we explore these antimicrobial transport systems in the context of Vibrio spp. pathogenesis and virulence.
Collapse
Affiliation(s)
- Jerusha Stephen
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Manjusha Lekshmi
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India;
| | - Sanath H. Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
- Correspondence:
| |
Collapse
|