1
|
Jing T, Tang D. Intratumoral microbiota: a new force in the development and treatment of esophageal cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03757-1. [PMID: 39455494 DOI: 10.1007/s12094-024-03757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Esophageal cancer (EC) ranks among the most prevalent cancers worldwide, with a particularly high incidence in the Asian population. Due to the inconspicuous nature of early symptoms, patients with esophageal cancer are typically diagnosed in the middle to late stages, resulting in suboptimal overall treatment outcomes. Consequently, there is an urgent need to explore and refine therapeutic strategies. Microorganisms have been identified in numerous tumor tissues, including EC, and these microorganisms are referred to as the intratumoral microbiome. Intratumoral microbiota and their metabolic byproducts can influence the progression and treatment of esophageal cancer through various mechanisms, such as modulating tumor cell metabolism and local immune responses. Therefore, the intratumoral microbiota may potentially serve as a target for the treatment of esophageal cancer. This review delineates the composition, origin, and diagnostic significance of intratumoral microbiota in esophageal cancer tissue, and discusses the mechanisms by which intratumoral microbiota contribute to the onset of esophageal cancer. In addition, the impact of intratumoral microbiota on the treatment of esophageal cancer and its intervention measures are also addressed.
Collapse
Affiliation(s)
- Tianyang Jing
- Clinical Medical College, Yangzhou University, Yangzhou, 22500, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
2
|
Park HR, Hogan KA, Harris SM, Chames MC, Loch-Caruso R. Group B streptococcus induces cellular senescence in human amnion epithelial cells through a partial interleukin-1-mediated mechanism. Biol Reprod 2024; 110:329-338. [PMID: 37903065 PMCID: PMC10873272 DOI: 10.1093/biolre/ioad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Group B streptococcus (GBS) infection is a significant public health concern associated with adverse pregnancy complications and increased neonatal mortality and morbidity. However, the mechanisms underlying the impact of GBS on the fetal membrane, the first line of defense against pathogens, are not fully understood. Here, we propose that GBS induces senescence and inflammatory factors (IL-6 and IL-8) in the fetal membrane through interleukin-1 (IL-1). Utilizing the existing transcriptomic data on GBS-exposed human fetal membrane, we showed that GBS affects senescence-related pathways and genes. Next, we treated primary amnion epithelial cells with conditioned medium from the choriodecidual layer of human fetal membrane exposed to GBS (GBS collected choriodecidual [CD] conditioned medium) in the absence or presence of an IL-1 receptor antagonist (IL-1Ra). GBS CD conditioned medium significantly increased β-galactosidase activity, IL-6 and IL-8 release from the amnion epithelial cells. Cotreatment with IL1Ra reduced GBS-induced β-galactosidase activity and IL-6 and IL-8 secretion. Direct treatment with IL-1α or IL-1β confirmed the role of IL-1 signaling in the regulation of senescence in the fetal membrane. We further showed that GBS CD conditioned medium and IL-1 decreased cell proliferation in amnion epithelial cells. In summary, for the first time, we demonstrate GBS-induced senescence in the fetal membrane and present evidence of IL-1 pathway signaling between the choriodecidua and amnion layer of fetal membrane in a paracrine manner. Further studies will be warranted to understand the pathogenesis of adverse pregnancy outcomes associated with GBS infection and develop therapeutic interventions to mitigate these complications.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Kelly A Hogan
- Department of Biochemistry & Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mark C Chames
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Lara B, Loureiro I, Gliosca L, Castagnola L, Merech F, Gallino L, Calo G, Sassot M, Ramhorst R, Vota D, Pérez Leirós C, Hauk V. Porphyromonas gingivalis outer membrane vesicles shape trophoblast cell metabolism impairing functions associated to adverse pregnancy outcome. J Cell Physiol 2023; 238:2679-2691. [PMID: 37842869 DOI: 10.1002/jcp.31138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Periodontitis is proposed as a risk factor for preterm delivery, fetal growth restriction, and preeclampsia with severe consequences for maternal and neonatal health, but the biological mechanisms involved are elusive. Porphyromonas gingivalis gain access to the placental bed and impair trophoblast cell function, as assessed in murine and human pregnancy, suggesting a pathogenic role in adverse pregnancy and neonatal outcomes. P. gingivalis releases outer membrane vesicles (P. gingivalis OMV) during growth that spread to distant tissues and are internalized in host cells as described in metabolic, neurological, and vascular systemic diseases. Here we tested the hypothesis that P. gingivalis OMV internalized in trophoblast cells disrupt their metabolism leading to trophoblast and placenta dysfunction and adverse pregnancy outcomes. An in vitro design with human trophoblast cells incubated with P. gingivalis OMV was used together with ex vivo and in vivo approaches in pregnant mice treated with P. gingivalis OMV. P. gingivalis OMV modulated human trophoblast cell metabolism by reducing glycolytic pathways and decreasing total reactive oxygen species with sustained mitochondrial activity. Metabolic changes induced by P. gingivalis OMV did not compromise cell viability; instead, it turned trophoblast cells into a metabolic resting state where central functions such as migration and invasion were reduced. The effects of P. gingivalis OMV on human trophoblast cells were corroborated ex vivo in mouse whole placenta and in vivo in pregnant mice: P. gingivalis OMV reduced glycolytic pathways in the placenta and led to lower placental and fetal weight gain in vivo with reduced placental expression of the glucose transporter GLUT1. The present results point to OMV as a key component of P. gingivalis involved in adverse pregnancy outcomes, and even more, unveil a metabolic cue in the deleterious effect of P. gingivalis OMV on trophoblast cells and mouse pregnancy, providing new clues to understand pathogenic mechanisms in pregnancy complications and other systemic diseases.
Collapse
Affiliation(s)
- Brenda Lara
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Iñaki Loureiro
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Laura Gliosca
- Universidad de Buenos Aires - Facultad de Odontología, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Lara Castagnola
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Fátima Merech
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Lucila Gallino
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Guillermina Calo
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Matías Sassot
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Daiana Vota
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Vanesa Hauk
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| |
Collapse
|
4
|
Oh JM, Kim H. The effect of oral bacterial infection on DNA damage response in host cells. Am J Cancer Res 2023; 13:3157-3168. [PMID: 37559975 PMCID: PMC10408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Maintaining and transferring intact genomes from one generation to another plays a pivotal role in all living organisms. DNA damage caused by numerous endogenous and exogenous factors must be adequately repaired, as unrepaired and accumulated DNA mutations can cause severe deleterious effects, such as cell death and cancer. To prevent adverse consequences, cells have established DNA damage response mechanisms that address different forms of DNA damage, including DNA double-strand breaks, mismatches, nucleotide excision, and base excision. Among several sources of exogenous DNA damage, bacterial infections cause inflammation in the host, generating reactive oxygen species (ROS) and causing oxidative DNA damage. Recent studies have revealed the importance of the oral microbiome in inflammation and several systemic host diseases. Dysbiosis of oral bacteria can induce chronic inflammation, which enhances ROS-induced DNA damage, and improperly repaired damage can lead to carcinogenesis. This review describes the various DNA repair pathways that are affected by chronic inflammation and the discovery of the DNA damage response induced by oral bacteria such as Porphyromonas gingivalis and Fusobacterium nucleatum.
Collapse
Affiliation(s)
- Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National UniversityYangsan 50612, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National UniversityYangsan 50612, Republic of Korea
| | - Hongtae Kim
- Department of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)Ulsan 44919, Republic of Korea
- Center for Genomic Integrity Institute for Basic Science (IBS), UNISTUlsan 44919, Republic of Korea
| |
Collapse
|
5
|
Ahmad SM, Bhat SS, Shafi S, Dar MA, Saleem A, Haq Z, Farooq N, Nazir J, Bhat B. Identification of key transcription factors and their functional role involved in Salmonella typhimurium infection in chicken using integrated transcriptome analysis and bioinformatics approach. BMC Genomics 2023; 24:214. [PMID: 37098463 PMCID: PMC10127038 DOI: 10.1186/s12864-023-09315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/16/2023] [Indexed: 04/27/2023] Open
Abstract
Salmonella enterica serovar typhimurium is the cause of significant morbidity and mortality worldwide that causes economic losses to poultry and is able to cause infection in humans. Indigenous chicken breeds are a potential source of animal protein and have the added advantage of being disease resistant. An indigenous chicken, Kashmir favorella and commercial broiler were selected for understanding the mechanism of disease resistance. Following infection in Kashmir favorella, three differentially expressed genes Nuclear Factor Kappa B (NF-κB1), Forkhead Box Protein O3 (FOXO3) and Paired box 5 (Pax5) were identified. FOXO3, a transcriptional activator, is the potential marker of host resistance in Salmonella infection. NF-κB1 is an inducible transcription factor which lays the foundation for studying gene network of the innate immune response of Salmonella infection in chicken. Pax5 is essential for differentiation of pre-B cells into mature B cell. The real time PCR analysis showed that in response to Salmonella Typhimurium infection a remarkable increase of NF-κB1 (P˂0.01), FOXO3 (P˂0.01) gene expression in liver and Pax5 (P˂0.01) gene expression in spleen of Kashmir favorella was observed. The protein-protein interaction (PPI) and protein-TF interaction network by STRINGDB analysis suggests that FOXO3 is a hub gene in the network and is closely related to Salmonella infection along with NF-κB1. All the three differentially expressed genes (NF-κB1, FOXO3 and PaX5) showed their influence on 12 interacting proteins and 16 TFs, where cyclic adenosine monophosphate Response Element Binding protein (CREBBP), erythroblast transformation-specific (ETSI), Tumour-protein 53(TP53I), IKKBK, lymphoid enhancer-binding factor-1 (LEF1), and interferon regulatory factor-4 (IRF4) play role in immune responses. This study shall pave the way for newer strategies for treatment and prevention of Salmonella infection and may help in increasing the innate disease resistance.
Collapse
Affiliation(s)
- Syed Mudasir Ahmad
- Division of Animal Biotechnology, FVSc & AH, Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, India.
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, FVSc & AH, Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, India
| | - Shaista Shafi
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Mashooq Ahmad Dar
- Division of Animal Biotechnology, FVSc & AH, Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, India
| | - Afnan Saleem
- Division of Animal Biotechnology, FVSc & AH, Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, India
| | - Zulfqarul Haq
- Division of Livestock Production and Management, FVSc & AH, Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, India
| | - Nida Farooq
- Division of Animal Biotechnology, FVSc & AH, Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, India
| | - Junaid Nazir
- Division of Animal Biotechnology, FVSc & AH, Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, India
| | - Basharat Bhat
- Division of Animal Biotechnology, FVSc & AH, Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
6
|
Mi S, Liu X, Zhang L, Wang Y, Sun L, Yuan S, Cui M, Liu Y. Chinese medicine formula 'Baipuhuang Keli' inhibits triple-negative breast cancer by hindering DNA damage repair via MAPK/ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116077. [PMID: 36572327 DOI: 10.1016/j.jep.2022.116077] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baipuhuang Keli (BPH, constituted by Bai Tou Weng (Pulsatilla chinensis (Bunge) Regel), Pu Gong Ying (Taraxacum mongolicum Hand.-Mazz.), Huang Qin (Scutellaria baicalensis Georgi), Huang Bo (Phellodendron amurense Rupr.)) is a Chinese herbal formula with clearing heat and cooling blood, and removing toxin effects, which is suit for the case of breast cancer. AIM OF THE STUDY Here, we aim to explore the effects of BPH on triple-negative breast cancer (TNBC) and its potential mechanisms. MATERIALS AND METHODS In this study, cell viability assay, colony formation assay, soft agar assay, cell proliferation curve assay, and EdU assay were employed to determine the anti-proliferation effect induced by BPH. Cell cycle distribution was detected by flow cytometry. DNA damage in cells treated with BPH was indicated by comet assay, immunofluorescence, and Western Blot. Both the 4T1 orthotopic tumor model and the MDA-MB-231 subcutaneous tumor model were used to assess in vivo effect of BPH (312.5, and 625 mg/kg). The protein expression levels of the DNA damage response (DDR) pathway and the MAPK/ERK pathway were detected by Western Blot. RESULTS Our results indicated that TNBC cells were more sensitive to BPH than mammary epithelial cells. Cell proliferation of TNBC cells was significantly inhibited by BPH in a dose-dependent manner. Moreover, BPH induced DNA damage in TNBC cells in a concentration and time-dependent manner. DDR of TNBC cells was inhibited by BPH. MAPK/ERK pathway was inhibited in cells treated with BPH, and DNA damage can be reversed while EGF was added to activate MAPK/ERK pathway. The 4T1 orthotopic tumor model and the MDA-MB-231 subcutaneous tumor model further confirmed that BPH inhibited TNBC proliferation via inhibition of DDR and MAPK/ERK pathway in vivo. CONCLUSIONS Collectively, we proved that BPH is a potential anticancer Chinese herbal formula for TNBC in the manner of in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Shichao Mi
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xin Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affliated with Jinan University, Zhuhai, Guangdong, China
| | - Liufeng Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yifan Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Min Cui
- Department of General Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affliated with Jinan University, Zhuhai, Guangdong, China.
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affliated with Jinan University, Zhuhai, Guangdong, China.
| |
Collapse
|
7
|
Yao Y, Shen X, Zhou M, Tang B. Periodontal Pathogens Promote Oral Squamous Cell Carcinoma by Regulating ATR and NLRP3 Inflammasome. Front Oncol 2021; 11:722797. [PMID: 34660289 PMCID: PMC8514820 DOI: 10.3389/fonc.2021.722797] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is closely related to oral cancer, but the molecular mechanism of periodontal pathogens involved in the occurrence and development of oral cancer is still inconclusive. Here, we demonstrate that, in vitro, the cell proliferation ability and S phase cells of the periodontitis group (colonized by Porphyromonas gingivalis and Fusobacterium nucleatum, P+) significantly increased, but the G1 cells were obviously reduced. The animal models with an in situ oral squamous cell carcinoma (OSCC) and periodontitis-associated bacteria treatment were constructed, and micro-CT showed that the alveolar bone resorption of mice in the P+ group (75.3 ± 4.0 μm) increased by about 53% compared with that in the control group (48.8 ± 1.3 μm). The tumor mass and tumor growth rate in the P+ group were all higher than those in the blank control group. Hematoxylin-eosin (H&E) staining of isolated tumor tissues showed that large-scale flaky necrosis was found in the tumor tissue of the P+ group, with lots of damaged vascular profile and cell debris. Immunohistochemistry (IHC) of isolated tumor tissues showed that the expression of Ki67 and the positive rate of cyclin D1 were significantly higher in tumor tissues of the P+ group. The qRT-PCR results of the expression of inflammatory cytokines in oral cancer showed that periodontitis-associated bacteria significantly upregulated interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-18, apoptosis-associated speck-like protein containing a CARD (ASC) (up to six times), and caspase-1 (up to four times), but it downregulated nuclear factor (NF)-κB, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), and IL-1β (less than 0.5 times). In addition, the volume of spleen tissue and the number of CD4+ T cells, CD8+ T cells, and CD206+ macrophages in the P+ group increased significantly. IHC and Western blotting in tumor tissues showed that expression levels of γ-H2AX, p-ATR, RPA32, CHK1, and RAD51 were upregulated, and the phosphorylation level of CHK1 (p-chk1) was downregulated. Together, we identify that the periodontitis-related bacteria could promote tumor growth and proliferation, initiate the overexpressed NLRP3, and activate upstream signal molecules of ATR-CHK1. It is expected to develop a new molecular mechanism between periodontitis-related bacteria and OSCC.
Collapse
Affiliation(s)
- Yufei Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maolin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Pirih FQ, Monajemzadeh S, Singh N, Sinacola RS, Shin JM, Chen T, Fenno JC, Kamarajan P, Rickard AH, Travan S, Paster BJ, Kapila Y. Association between metabolic syndrome and periodontitis: The role of lipids, inflammatory cytokines, altered host response, and the microbiome. Periodontol 2000 2021; 87:50-75. [PMID: 34463996 PMCID: PMC8457155 DOI: 10.1111/prd.12379] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodontitis has been associated with many systemic diseases and conditions, including metabolic syndrome. Metabolic syndrome is a cluster of conditions that occur concomitantly and together they increase the risk of cardiovascular disease and double the risk of type 2 diabetes. In this review, we focus on the association between metabolic syndrome and periodontitis; however, we also include information on diabetes mellitus and cardiovascular disease, since these two conditions are significantly intertwined with metabolic syndrome. With regard to periodontitis and metabolic syndrome, to date, the vast majority of studies point to an association between these two conditions and also demonstrate that periodontitis can contribute to the development of, or can worsen, metabolic syndrome. Evaluating the effect of metabolic syndrome on the salivary microbiome, data presented herein support the hypothesis that the salivary bacterial profile is altered in metabolic syndrome patients compared with healthy patients. Considering periodontitis and these three conditions, the vast majority of human and animal studies point to an association between periodontitis and metabolic syndrome, diabetes, and cardiovascular disease. Moreover, there is evidence to suggest that metabolic syndrome and diabetes can alter the oral microbiome. However, more studies are needed to fully understand the influence these conditions have on each other.
Collapse
Affiliation(s)
- Flavia Q Pirih
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California
| | | | - Neelima Singh
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| | | | - Jae Min Shin
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Tsute Chen
- The Forsyth Institute, Cambridge, Massachusetts
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Suncica Travan
- Department of Periodontics & Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Bruce J Paster
- The Forsyth Institute, Cambridge, Massachusetts
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| |
Collapse
|
9
|
Moradali MF, Davey ME. Metabolic plasticity enables lifestyle transitions of Porphyromonas gingivalis. NPJ Biofilms Microbiomes 2021; 7:46. [PMID: 34031416 PMCID: PMC8144566 DOI: 10.1038/s41522-021-00217-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
Our understanding of how the oral anaerobe Porphyromonas gingivalis can persist below the gum line, induce ecological changes, and promote polymicrobial infections remains limited. P. gingivalis has long been described as a highly proteolytic and asaccharolytic pathogen that utilizes protein substrates as the main source for energy production and proliferation. Here, we report that P. gingivalis displays a metabolic plasticity that enables the exploitation of non-proteinaceous substrates, specifically the monocarboxylates pyruvate and lactate, as well as human serum components, for colonization and biofilm formation. We show that anabolism of carbohydrates from pyruvate is powered by catabolism of amino acids. Concomitantly, the expression of fimbrial adhesion is upregulated, leading to the enhancement of biofilm formation, stimulation of multispecies biofilm development, and increase of colonization and invasion of the primary gingival epithelial cells by P. gingivalis. These studies provide the first glimpse into the metabolic plasticity of P. gingivalis and its adaptation to the nutritional condition of the host niche. Our findings support the model that in response to specific nutritional parameters, P. gingivalis has the potential to promote host colonization and development of a pathogenic community.
Collapse
Affiliation(s)
- M Fata Moradali
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Room 355 B, Louisville, KY, USA.
| | - Mary E Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Urmi AS, Inaba H, Nomura R, Yoshida S, Ohara N, Asai F, Nakano K, Matsumoto-Nakano M. Roles of Porphyromonas gulae proteases in bacterial and host cell biology. Cell Microbiol 2021; 23:e13312. [PMID: 33486854 DOI: 10.1111/cmi.13312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023]
Abstract
Porphyromonas gulae, an animal-derived periodontal pathogen, expresses several virulence factors, including fimbria, lipopolysaccharide (LPS) and proteases. We previously reported that its invasive efficiency was dependent on fimbriae types. In addition, P. gulae LPS increased inflammatory responses via toll-like receptors. The present study was conducted to investigate the involvement of P. gulae proteases in bacterial and host cell biology. Porphyromonas gulae strains showed an ability to agglutinate mouse erythrocytes and also demonstrated co-aggregation with Actinomyces viscosus, while the protease inhibitors antipain, PMSF, TLCK and leupeptin diminished P. gulae proteolytic activity, resulting in inhibition of haemagglutination and co-aggregation with A. viscosus. In addition, specific proteinase inhibitors were found to reduce bacterial cell growth. Porphyromonas gulae inhibited Ca9-22 cell proliferation in a multiplicity of infection- and time-dependent manner. Additionally, P. gulae-induced decreases in cell contact and adhesion-related proteins were accompanied by a marked change in cell morphology from well spread to rounded. In contrast, inhibition of protease activity prevented degradation of proteins, such as E-cadherin, β-catenin and focal adhesion kinase, and also blocked inhibition of cell proliferation. Together, these results indicate suppression of the amount of human proteins, such as γ-globulin, fibrinogen and fibronectin, by P. gulae proteases, suggesting that a novel protease complex contributes to bacterial virulence.
Collapse
Affiliation(s)
- Alam Saki Urmi
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Sho Yoshida
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoya Ohara
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and the Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama, Japan
| | - Fumitoshi Asai
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
11
|
Wang N, Yang Q, Gu Y, Zhen X, Shi Y, Gu W, Wang J, He Y, Wang J. MNSFβ Promotes the Proliferation and Migration of Human Extravillous Trophoblast Cells and the Villus Expression Level of MNSFβ Is Decreased in Recurrent Miscarriage Patients. Gynecol Obstet Invest 2020; 86:27-39. [PMID: 33326956 DOI: 10.1159/000506309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/31/2020] [Indexed: 11/19/2022]
Abstract
AIMS The invasion of extravillous trophoblast (EVT) cells into maternal decidua is essential for the establishment and maintenance of pregnancy. Derangement of EVT cell invasion might cause pregnancy complications including recurrent miscarriage (RM). We previously reported that deficiency of monoclonal nonspecific suppressor factor beta (MNSFβ) led to the early pregnancy failure in mice and the decidual MNSFβ expression level in RM patients was significantly decreased, but the underlying molecular mechanism of the role that MNSFβ played at the maternal-fetal interface remains unclear. Thus, in the present study, we determined effects of downregulated MNSFβ expression on human EVT cell activities. METHODS The MNSFβ expression in first-trimester human decidual and placental villus tissues was detected, respectively, by immunofluorescence or immunohistochemical analyses. The MNSFβ expression level in the immortalized first-trimester human EVT cell line HTR8/SVneo was downregulated by transfecting the small interfering RNA against MNSFβ and upregulated by transfecting the recombinant pDsRed-MNSFβ plasmids. The proliferation, migration, invasion, and apoptosis activities of HTR8/SVneo cells were, respectively, determined by cytometry assay, scratch test, transwell assay, and FITC/PI staining. The expression levels of P53, RhoA, Bcl-2, Bax, and MMP-9 in HTR8/SVneo cells, as well as the expression levels of MNSFβ and RhoA in placental villi of RM patients and physically normal pregnant women (NP), were examined by Western blot analysis. RESULTS MNSFβ protein signals were observed in first-trimester human villus and extravillous trophoblast cells. The downregulated MNSFβ expression significantly attenuated the proliferation, migration, and invasion abilities of HTR8/SVneo cells, accompanied with the obviously decreased expression levels of P53, RhoA, Bcl-2, Bax, and MMP-9, whereas the upregulated MNSFβ expression in HTR8/SVneo cells represented the inverse effects. Furthermore, expression levels of MNSFβ and RhoA in first-trimester human placental villus tissues of RM patients were significantly decreased compared to that of NP women. CONCLUSION These data suggested that MNSFβ promotes proliferation and migration of human EVT cells, probably via the P53 signaling pathway, and the deficiency of MNSFβ in placental villi might lead to early pregnancy loss by reducing proliferation and invasion activities of EVTs.
Collapse
Affiliation(s)
- Nan Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Yan Gu
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xingxing Zhen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Yan Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Wenwen Gu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Jianmei Wang
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yaping He
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China,
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Tian Y, Liu J, Pan L. The mechanism of Mitogen-Activated Protein Kinases to mediate apoptosis and immunotoxicity induced by Benzo[a]pyrene on hemocytes of scallop Chlamys farreri in vitro. FISH & SHELLFISH IMMUNOLOGY 2020; 102:64-72. [PMID: 32268177 DOI: 10.1016/j.fsi.2020.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Benzo [a]pyrene (B [a]P) has received widespread attention for serious pollution in the sea, which may reduce immunity and lead to the outbreak of disease in bivalves. However, the mechanism of immunotoxicity induced by B [a]P in bivalves was still unclear. Previous studies have found that Mitogen-Activated Protein Kinases (MAPKs) including three classic pathways (ERK, p38 and JNK) play an important role in mediating this process. Thus, in order to explore the mechanism of immunotoxicity induced by B [a]P in scallop Chlamys farreri, hemocytes were treated with PD98059 (ERK inhibitor), SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) for 1 h and then incubation with B [a]P for 24 h at 1 μg/mL. Indexes including oxidative damage, apoptotic rate, and immune indicators were detected in the present study. The results showed that the increase of Reactive Oxygen Species (ROS) and DNA damage induced by B [a]P was inhibited with PD98059 and SB203580. Besides, lysosomal membrane stability (LMS) damage was promoted by PD98059, while it was opposite when treated with SB203580. Moreover, the ascended apoptosis rate induced by B [a]P was increased significantly after treatment with PD98059, but it was remarkably attenuated by SB203580 and SP600125. However, the opposite pattern was showed in phagocytosis compared with apoptosis rate in all of three inhibitors. In addition, antibacterial activity and bacteriolytic activity were enhanced by SB203580 while inhibited by PD98059. Therefore, these results showed that MAPKs directly or indirectly mediate the decrease of oxidative damage, apoptosis and immune defense ability of C. farreri hemocytes, which suggesting ERK/p38/JNK pathways have different functions in the apoptosis and immunity of C. farreri hemocytes after B [a]P exposure. In conclusion, this study intended to enrich the theoretical basis for immunotoxicology of bivalves exposed to pollutants.
Collapse
Affiliation(s)
- Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jing Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
13
|
Xie M, Tang Q, Nie J, Zhang C, Zhou X, Yu S, Sun J, Cheng X, Dong N, Hu Y, Chen L. BMAL1-Downregulation Aggravates Porphyromonas Gingivalis-Induced Atherosclerosis by Encouraging Oxidative Stress. Circ Res 2020; 126:e15-e29. [PMID: 32078488 DOI: 10.1161/circresaha.119.315502] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Atherosclerotic cardiovascular diseases are the leading cause of mortality worldwide. Atherosclerotic cardiovascular diseases are considered as chronic inflammation processes. In addition to risk factors associated with the cardiovascular system itself, pathogenic bacteria such as the periodontitis-associated Porphyromonas gingivalis (P gingivalis) are also closely correlated with the development of atherosclerosis, but the underlying mechanisms are still elusive. OBJECTIVE To elucidate the mechanisms of P gingivalis-accelerated atherosclerosis and explore novel therapeutic strategies of atherosclerotic cardiovascular diseases. METHODS AND RESULTS Bmal1-/- (brain and muscle Arnt-like protein 1) mice, ApoE-/- mice, Bmal1-/-ApoE-/- mice, conditional endothelial cell Bmal1 knockout mice (Bmal1fl/fl; Tek-Cre mice), and the corresponding jet-legged mouse model were used. Pgingivalis accelerates atherosclerosis progression by triggering arterial oxidative stress and inflammatory responses in ApoE-/- mice, accompanied by the perturbed circadian clock. Circadian clock disruption boosts P gingivalis-induced atherosclerosis progression. The mechanistic dissection shows that P gingivalis infection activates the TLRs-NF-κB signaling axis, which subsequently recruits DNMT-1 to methylate the BMAL1 promoter and thus suppresses BMAL1 transcription. The downregulation of BMAL1 releases CLOCK, which phosphorylates p65 and further enhances NF-κB signaling, elevating oxidative stress and inflammatory response in human aortic endothelial cells. Besides, the mouse model exhibits that joint administration of metronidazole and melatonin serves as an effective strategy for treating atherosclerotic cardiovascular diseases. CONCLUSIONS P gingivalis accelerates atherosclerosis via the NF-κB-BMAL1-NF-κB signaling loop. Melatonin and metronidazole are promising auxiliary medications toward atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Mengru Xie
- From the Department of Stomatology (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.)
| | - Qingming Tang
- From the Department of Stomatology (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.)
| | - Jiaming Nie
- From the Department of Stomatology (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.)
| | - Chao Zhang
- Department of Cardiovascular Surgery (C.Z., N.D.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhou
- From the Department of Stomatology (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.)
| | - Shaoling Yu
- From the Department of Stomatology (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.)
| | - Jiwei Sun
- From the Department of Stomatology (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.)
| | - Xiang Cheng
- Department of Cardiology (X.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery (C.Z., N.D.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology (Y.H.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- From the Department of Stomatology (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China (M.X., Q.T., J.N., X.Z., S.Y., J.S., L.C.)
| |
Collapse
|
14
|
Rezatabar S, Karimian A, Rameshknia V, Parsian H, Majidinia M, Kopi TA, Bishayee A, Sadeghinia A, Yousefi M, Monirialamdari M, Yousefi B. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol 2019; 234:14951-14965. [PMID: 30811039 DOI: 10.1002/jcp.28334] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways organize a great constitution network that regulates several physiological processes, like cell growth, differentiation, and apoptotic cell death. Due to the crucial importance of this signaling pathway, dysregulation of the MAPK signaling cascades is involved in the pathogenesis of various human cancer types. Oxidative stress and DNA damage are two important factors which in common lead to carcinogenesis through dysregulation of this signaling pathway. Reactive oxygen species (ROS) are a common subproduct of oxidative energy metabolism and are considered to be a significant physiological modulator of several intracellular signaling pathways including the MAPK pathway. Studies demonstrated that the MAP kinases extracellular signal-regulated kinase (ERK) 1/2 and p38 were activated in response to oxidative stress. In addition, DNA damage is a partly common circumstance in cell life and may result in mutation, cancer, and even cell death. Recently, accumulating evidence illustrated that the MEK/ERK pathway is associated with the suitable performance of cellular DNA damage response (DDR), the main pathway of tumor suppression. During DDR, the MEK/ERK pathway is regularly activated, which contributes to the appropriate activation of DDR checkpoints to inhibit cell division. Therefore, the aim of this review is to comprehensively discuss the critical function of MAPK signaling in oxidative stress, DNA damage, and cancer progression.
Collapse
Affiliation(s)
- Setareh Rezatabar
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Vahid Rameshknia
- Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Tayebeh Azramezani Kopi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida
| | - Ali Sadeghinia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Li Q, Zhou J, Lin L, Zhao H, Miao L, Pan Y. Porphyromonas gingivalis degrades integrin β1 and induces AIF-mediated apoptosis of epithelial cells. Infect Dis (Lond) 2019; 51:793-801. [PMID: 31411895 DOI: 10.1080/23744235.2019.1653490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Porphyromonas gingivalis, a major pathogen of chronic periodontitis, adheres to and invades epithelial cells via an interaction between fimbriae and integrin. P. gingivalis proliferation and infection may affect the survival of cells. In this study, we further examined alternative signaling pathways mediating epithelial-cell death induced by P. gingivalis and the role of the cell-adhesion molecule integrin. Methods: Human epithelial KB cells interacted with P. gingivalis to evaluate cell death by Annexin V-propidium iodide (PI) staining. JC-1 staining was used to measure mitochondrial membrane potential (MMP). The mRNA and protein of integrin β1, apoptosis-inducing factor (AIF) and caspase-3 were detected by real-time PCR and western blot. Caspase-3 activity was analyzed by spectrophotometry. Results: P. gingivalis infection downregulated integrin β1 and led to cell detachment in a dose and time-dependent manner. Large amount of P. gingivalis induced MMP depolarization and apoptosis in KB cells. Moreover, P. gingivalis up-regulated AIF, but not activate caspase-3 during apoptosis. In addition, AIF inhibitor N-Phenylmaleimide almost inhibited the P. gingivalis-induced apoptosis. Conclusions: P. gingivalis disrupts epithelial-cell adhesion by degrading integrin β1 and induces caspase-independent, AIF-mediated mitochondrial apoptosis, which may promote the damage of oral tissue.
Collapse
Affiliation(s)
- Qian Li
- Department of Oral Biology, School of Stomatology, China Medical University , Shenyang , China
| | - Jie Zhou
- Department of Periodontics, School of Stomatology, China Medical University , Shenyang , China
| | - Li Lin
- Department of Periodontics, School of Stomatology, China Medical University , Shenyang , China
| | - Haijiao Zhao
- Department of Periodontics, School of Stomatology, China Medical University , Shenyang , China
| | - Lei Miao
- Department of Periodontics, School of Stomatology, China Medical University , Shenyang , China
| | - Yaping Pan
- Department of Oral Biology, School of Stomatology, China Medical University , Shenyang , China.,Department of Periodontics, School of Stomatology, China Medical University , Shenyang , China
| |
Collapse
|
16
|
Li S, Zhang D, Lu K, Wu Y, Sheng L, Tang Q. Activation of calcium signaling in human gingival fibroblasts by recombinant Porphyromonas gingivalis RgpB protein. Eur J Oral Sci 2019; 127:287-293. [PMID: 31175838 DOI: 10.1111/eos.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 11/28/2022]
Abstract
Arginine-specific cysteine proteinases, such as Arg-gingipain B (RgpB), mediate inflammation by activating protease-activated receptors (PARs). Arg-gingipain B is produced by Porphyromonas gingivalis, and is implicated in the causation of periodontal disease. The purpose of the present study was to observe the influence of recombinant RgpB protein (rRgpB) on PAR activation by monitoring intracellular Ca2+ ion concentration ([Ca2+]i) and inositol-1,4,5-triphosphate (IP3) levels in human gingival fibroblasts (HGFs). Our findings showed that rRgpB could cause a transient increase in [Ca2+]i. This increase in [Ca2+]i was completely suppressed by vorapaxar, a PAR-1 antagonist. Recombinant Arg-gingipain B increased the concentration of IP3, reaching a maximum at 60 s after treatment; this was completely inhibited by vorapaxar. We therefore conclude that rRgpB-induced calcium signaling in HGFs is mainly caused by PAR-1 activation. This suggests that PAR-1 activation plays a significant role in chronic inflammatory periodontal disease induced by P. gingivalis RgpB.
Collapse
Affiliation(s)
- Shenglai Li
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Diya Zhang
- Dental Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Lu
- Department of Oral Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmin Wu
- Department of Oral Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lieping Sheng
- Dental Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Tang
- Department of Oral Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Inaba H, Nomura R, Kato Y, Takeuchi H, Amano A, Asai F, Nakano K, Lamont RJ, Matsumoto-Nakano M. Adhesion and invasion of gingival epithelial cells by Porphyromonas gulae. PLoS One 2019; 14:e0213309. [PMID: 30870452 PMCID: PMC6417775 DOI: 10.1371/journal.pone.0213309] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gulae, an animal periodontal pathogen, possess fimbriae classified into three genotypes (A-C) based on the diversity of fimA genes encoding FimA. Accumulating evidence suggests that P. gulae strains with type C fimbriae are more virulent as compared to those with other types. The ability of these organisms to adhere to and invade gingival epithelial cells has yet to be examined. P. gulae showed the greatest levels of adhesion and invasion at a multiplicity of infection of 100 for 90 min. P. gulae type C and some type B strains invaded gingival epithelial cells at significantly greater levels than the other strains, at the same level of efficiency as P. gingivalis with type II fimbriae. Adhesion and invasion of gingival epithelial cells by P. gulae were inhibited by cytochalasin D and sodium azide, indicating the requirements of actin polymerization and energy metabolism for those activities. Invasion within gingival epithelial cells was blocked by staurosporine, whereas those inhibitors showed little effects on adhesion, while nocodazole and cycloheximide had negligible effects on either adhesion or invasion. P. gulae proteases were found to be essential for adhesion and invasion of gingival epithelial cells, while its DNA and RNA, and protein synthesis were unnecessary for those activities. Additionally, α5β1 integrin antibodies significantly inhibited adhesion and invasion by P. gulae. This is the first report to characterize P. gulae adhesion and invasion of human gingival epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Yukio Kato
- Department of Veterinary Public Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Fumitoshi Asai
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States of America
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
18
|
Huang L, Ying H, Chen Z, Zhu YL, Gu Y, Hu L, Chen D, Zhong N. Down-regulation of DKK1 and Wnt1/β-catenin pathway by increased homeobox B7 resulted in cell differentiation suppression of intrauterine fetal growth retardation in human placenta. Placenta 2019; 80:27-35. [PMID: 31103063 DOI: 10.1016/j.placenta.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study aimed to test the influence of homeobox B7 (HoxB7) on the proliferation, invasion, and migration of human trophoblast cells and to reveal the down-regulation of HoxB7 on the transcriptional suppression of Dick Kopf-related protein1 (DKK1) and of Cysteine-rich glycosylated wingless protein 1 (Wnt1)/β-catenin in intrauterine fetal growth retardation (FGR). METHODS Quantitative measurement of HoxB7, DKK1, Wnt1, and β-catenin was performed in human placentas collected from normal pregnancies and from FGR with quantitative real time PCR (qRT-PCR). Cultured HTR-8/SVneo cells, transfected with a lentiviral plasmid that in-frame expresses human HoxB7 gene, were applied to functional assessment to study the biological impact of HoxB7 gene on DKK1, Wnt1, and β-catenin. Counting Kit-8, Transwell invasion assays, and flow cytometry were applied for the functional measurements. RESULTS The expression of HoxB7 was significantly increased, and of DKK1, Wnt1, and β-catenin was decreased, in FGR placenta tissues and in HTR-8/SVneo cells. Function studies revealed that overexpression of HoxB7 inhibited proliferation, migration, and invasion in HTR-8/SVneo cells. DKK1, Wnt1, and β-catenin were down-regulated in HTR-8/SVneo cells, inversely correlated with HoxB7 expression. Overexpression of HoxB7 showed a suppressive effect on proliferation, migration, and invasion in the HTR-8/SVneo cells. CONCLUSIONS Our results indicate that HoxB7 inhibited human trophoblast cell differentiation by down-regulating DKK1 expression and that it may affect transcription of Wnt1/β-catenin. The activation of HoxB7 might suppress the cell differentiation in HTR-8/SVneo cell cultures. The Wnt/β-catenin signaling pathway may play a significant role in the pathogenesis of FGR by regulating the invasion and proliferation of trophoblasts.
Collapse
Affiliation(s)
- Lu Huang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Huaishuxiang Road, Chong an Street, Wuxi, 214002, China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 536 Changle Road, Shanghai, 200040, China
| | - Zhong Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Huaishuxiang Road, Chong an Street, Wuxi, 214002, China
| | - Yun Long Zhu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Huaishuxiang Road, Chong an Street, Wuxi, 214002, China
| | - Ying Gu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Huaishuxiang Road, Chong an Street, Wuxi, 214002, China
| | - Lingqing Hu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Huaishuxiang Road, Chong an Street, Wuxi, 214002, China
| | - Daozhen Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Huaishuxiang Road, Chong an Street, Wuxi, 214002, China.
| | - Nanbert Zhong
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Huaishuxiang Road, Chong an Street, Wuxi, 214002, China; New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.
| |
Collapse
|
19
|
Sagrillo-Fagundes L, Bienvenue-Pariseault J, Legembre P, Vaillancourt C. An insight into the role of the death receptor CD95 throughout pregnancy: Guardian, facilitator, or foe. Birth Defects Res 2019; 111:197-211. [PMID: 30702213 DOI: 10.1002/bdr2.1470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 12/24/2022]
Abstract
The prototype death receptor CD95 (Fas) and its ligand, CD95L (FasL), have been thoroughly studied due to their role in immune homeostasis and elimination of infected and transformed cells. The fact that CD95 is present in female reproductive cells and modulated during embryogenesis and pregnancy has raised interest in its role in immune tolerance to the fetoplacental unit. CD95 has been shown to be critical for proper embryonic formation and survival. Moreover, altered expression of CD95 or its ligand causes autoimmunity and has also been directly involved in recurrent pregnancy losses and pregnancy disorders. The objective of this review is to summarize studies that evaluate the mechanisms involved in the activation of CD95 to provide an updated global view of its effect on the regulation of the maternal immune system. Modulation of the CD95 system components may be the immune basis of several common pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Josianne Bienvenue-Pariseault
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Patrick Legembre
- Oncogenesis, Stress & Signaling Laboratory INSERM ERL440, Centre Eugène Marquis, Inserm U1242, Equipe Ligue Contre Le Cancer, Rennes, France
| | - Cathy Vaillancourt
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| |
Collapse
|
20
|
Phosphatidylinositol 3-Kinase/Akt signal pathway resists the apoptosis and inflammation in human extravillous trophoblasts induced by Porphyromonas gingivalis. Mol Immunol 2018; 104:100-107. [DOI: 10.1016/j.molimm.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
|
21
|
Liang S, Ren H, Guo H, Xing W, Liu C, Ji Y, Jiang H, Zhang P, Du M. Periodontal infection with Porphyromonas gingivalis induces preterm birth and lower birth weight in rats. Mol Oral Microbiol 2018; 33:312-321. [PMID: 29754448 DOI: 10.1111/omi.12227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 12/29/2022]
Abstract
Preterm birth (PTB), accompanied by low birth weight (LBW) or not, is a syndrome with tremendous risk factors and long-term health consequences for children. In recent decades, overwhelming studies have shown that periodontitis contributes to prematurity and LBW. This study was conducted to determine the link between maternal periodontitis and the pathogenesis of PTB and/or LBW through a rat infection model induced by Porphyromonas gingivalis, an important periodontopathic bacterium. The murine model was established by surgically ligating the left mandibular first molars and inoculating with P. gingivalis, and then all female rats initiated mating 6 weeks post infection. The gestational day and birth weight were recorded, and blood, amniotic fluid, and placental specimens were collected. Rats with a PTB and LBW newborns were observed in the P. gingivalis-infected group. Additionally, P. gingivalis infection significantly increased the maternal serum levels of interferon-γ and interleukin-1β, whereas no significant difference in the cytokine response was observed in the amniotic fluid. Moreover, with the translocation of P. gingivalis to placentas, remarkable changes in gestational tissues were found, followed by significantly enhanced expression of Toll-like receptor 2 (TLR2) as well as Fas and Fas ligand (FasL). These results support the concept that severe cases of periodontitis caused by P. gingivalis infection may be indicative of rats being more susceptible to PTB/LBW, probably through the activation of the TLR2 and Fas/FasL pathways within the placental tissues. This study gave us new insight into how maternal periodontopathogens might be linked to placental damage and premature pathogenesis.
Collapse
Affiliation(s)
- S Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Ren
- Xiangyang Hospital of Stomatology, Xiangyang, China
| | - H Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - W Xing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - P Zhang
- School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Cell Cycle Arrest and Apoptosis Induced by Porphyromonas gingivalis Require Jun N-Terminal Protein Kinase- and p53-Mediated p38 Activation in Human Trophoblasts. Infect Immun 2018; 86:IAI.00923-17. [PMID: 29339463 DOI: 10.1128/iai.00923-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, has been implicated as a causative agent of preterm delivery of low-birth-weight infants. We previously reported that P. gingivalis activated cellular DNA damage signaling pathways and ERK1/2 that lead to G1 arrest and apoptosis in extravillous trophoblast cells (HTR-8 cells) derived from the human placenta. In the present study, we further examined alternative signaling pathways mediating cellular damage caused by P. gingivalis. P. gingivalis infection of HTR-8 cells induced phosphorylation of p38 and Jun N-terminal protein kinase (JNK), while their inhibitors diminished both G1 arrest and apoptosis. In addition, heat shock protein 27 (HSP27) was phosphorylated through both p38 and JNK, and knockdown of HSP27 with small interfering RNA (siRNA) prevented both G1 arrest and apoptosis. Furthermore, regulation of G1 arrest and apoptosis was associated with p21 expression. HTR-8 cells infected with P. gingivalis exhibited upregulation of p21, which was regulated by p53 and HSP27. These results suggest that P. gingivalis induces G1 arrest and apoptosis via novel molecular pathways that involve p38 and JNK with its downstream effectors in human trophoblasts.
Collapse
|
23
|
Galectin-3 Plays an Important Role in Preterm Birth Caused by Dental Infection of Porphyromonas gingivalis. Sci Rep 2018; 8:2867. [PMID: 29434245 PMCID: PMC5809409 DOI: 10.1038/s41598-018-21072-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/25/2018] [Indexed: 11/17/2022] Open
Abstract
Dental infection is risk for preterm birth (PTB) through unclear mechanisms. We established a dental infection-induced PTB mouse model, in which Porphyromonas gingivalis (P.g.) induced PTB by 2 days. We analysed pathogenic factors contributing to PTB and their effects on trophoblasts in vitro. TNF-α, IL-8, and COX-2 were upregulated in P.g.-infected placenta. Galectin-3 (Gal-3), an immune regulator, was significantly upregulated in placenta, amniotic fluid, and serum. In vitro, P.g.-lipopolysaccharide (P.g.-LPS) increased TNF-α and Gal-3 in trophoblasts via NF-κB/MAPK signalling. Gal-3 inhibition significantly downregulated P.g.-LPS-induced TNF-α production. TNF-α upregulated Gal-3. Gal-3 also increased cytokines and Gal-3 through NF-κB/MAPK signalling. Moreover, Gal-3 suppressed CD-66a expression at the maternal-foetal interface. Co-stimulation with Gal-3 and P.g.-LPS upregulated cytokine levels, while Gal-3 plus Aggregatibacter actinomycetemcomitans (A.a.)- or Escherichia coli (E. coli)-LPS treatment downregulated them, indicating the critical role of Gal-3 especially in P.g. dental infection-induced PTB. P.g.-dental infection induced PTB, which was associated with Gal-3-dependent cytokine production. New therapies and/or diagnostic systems targeting Gal-3 may reduce PTB.
Collapse
|
24
|
Qin Z, Hou H, Fu F, Wu J, Han B, Yang W, Zhang L, Cao J, Jin X, Cheng S, Yang Z, Zhang M, Lan X, Yao T, Dong Q, Wu S, Zhang J, Xu Z, Li Y, Chen Y. Fine particulate matter exposure induces cell cycle arrest and inhibits migration and invasion of human extravillous trophoblast, as determined by an iTRAQ-based quantitative proteomics strategy. Reprod Toxicol 2017; 74:10-22. [DOI: 10.1016/j.reprotox.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/20/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023]
|
25
|
Reyes L, Phillips P, Wolfe B, Golos TG, Walkenhorst M, Progulske-Fox A, Brown M. Porphyromonas gingivalis and adverse pregnancy outcome. J Oral Microbiol 2017; 10:1374153. [PMID: 29291034 PMCID: PMC5646603 DOI: 10.1080/20002297.2017.1374153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 01/12/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative, anaerobic bacterium considered to be an important pathogen of periodontal disease that is also implicated in adverse pregnancy outcome (APO). Until recently, our understanding of the role of P. gingivalis in APO has been limited and sometimes contradictory. The purpose of this review is to provide an overview of past and current research on P. gingivalis that addresses some of the controversies concerning the role of this organism in the pathogenesis of APO.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Priscilla Phillips
- Microbiology & Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Bryce Wolfe
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Molly Walkenhorst
- Microbiology & Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Ann Progulske-Fox
- Department of Oral Microbiology, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - Mary Brown
- Infectious Disease and Immunology, College of Veterinary Medicine and D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Nakayama M, Ohara N. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:134-140. [PMID: 29201258 PMCID: PMC5703693 DOI: 10.1016/j.jdsr.2017.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/03/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a major oral pathogen and associated with periodontal diseases including periodontitis and alveolar bone loss. In this review, we indicate that two virulence factors, which are hemoglobin receptor protein (HbR) and cysteine proteases “gingipains”, expressed by P. gingivalis have novel functions on the pathogenicity of P. gingivalis. P. gingivalis produces three types of gingipains and concomitantly several adhesin domains. Among the adhesin domains, hemoglobin receptor protein (HbR), also called HGP15, has the function of induction of interleukin-8 (IL-8) expression in human gingival epithelial cells, indicating the possibility that HbR is associated with P. gingivalis-induced periodontal inflammation. On bacteria-host cells contact, P. gingivalis induces cellular signaling alteration in host cells. Phosphatidylinositol 3-kinase (PI3K) and Akt are well known to play a pivotal role in various cellular physiological functions including cell survival and glucose metabolism in mammalian cells. Recently, we demonstrated that gingipains attenuate the activity of PI3K and Akt, which might have a causal influence on periodontal diseases by chronic infection to the host cells from the speculation of molecular analysis. In this review, we discuss new molecular and biological characterization of the virulence factors from P. gingivalis.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,The Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama 700-8558, Japan
| | - Naoya Ohara
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,The Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
27
|
Nakayama M, Ohara N. Novel function of Porphyromonas gingivalis gingipains in the PI3K/Akt signaling pathway. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Ren H, Du M. Role of Maternal Periodontitis in Preterm Birth. Front Immunol 2017; 8:139. [PMID: 28243243 PMCID: PMC5303728 DOI: 10.3389/fimmu.2017.00139] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 01/26/2017] [Indexed: 01/22/2023] Open
Abstract
In the last two decades, many studies have focused on whether periodontitis is a risk factor for preterm birth (PTB). However, both epidemiological investigation and intervention trials have reached contradictory results from different studies. What explains the different findings, and how should future studies be conducted to better assess this risk factor? This article reviews recent epidemiological, animal, and in vitro studies as well as intervention trials that evaluate the link between periodontitis and PTB. Periodontitis may act as a distant reservoir of microbes and inflammatory mediators and contribute to the induction of PTB. Animal studies revealed that maternal infections with periodontal pathogens increase levels of circulating IL-1β, IL-6, IL-8, IL-17, and TNF-α and induce PTB. In vitro models showed that periodontal pathogens/byproducts induce COX-2, IL-8, IFN-γ, and TNF-α secretion and/or apoptosis in placental tissues/cells. The effectiveness of periodontal treatment to prevent PTB is influenced by the diagnostic criteria of periodontitis, microbial community composition, severity of periodontitis, treatment strategy, treatment efficiency, and the period of treatment during pregnancy. Although intervention trials reported contradictory results, oral health maintenance is an important part of preventive care that is both effective and safe throughout pregnancy and should be supported before and during pregnancy. As contradictory epidemiological and intervention studies continue to be published, two new ideas are proposed here: (1) severe and/or generalized periodontitis promotes PTB and (2) periodontitis only promotes PTB for pregnant women who are young or HIV-infected or have preeclampsia, pre-pregnancy obesity, or susceptible genotypes.
Collapse
Affiliation(s)
- Hongyu Ren
- MOST KLOS and KLOBM, School and Hospital of Stomatology, Wuhan University , Wuhan , China
| | - Minquan Du
- MOST KLOS and KLOBM, School and Hospital of Stomatology, Wuhan University , Wuhan , China
| |
Collapse
|
29
|
Liu H, Li Z, Wang C, Feng L, Huang H, Liu C, Li F. Expression of long non-coding RNA-HOTAIR in oral squamous cell carcinoma Tca8113 cells and its associated biological behavior. Am J Transl Res 2016; 8:4726-4734. [PMID: 27904675 PMCID: PMC5126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
As a long noncoding RNA, HOX transcript antisense intergenic RNA (HOTAIR) is highly expressed in many types of tumors. However, its expression and function in oral squamous cell carcinoma (OSCC) cells and tissues remains largely unknown. We herein studied the biological functions of HOTAIR in OSCC Tca8113 cells. Real-time quantitative PCR showed that HOTAIR, p21 and p53 mRNA expressions in doxorubicin (DOX)-treated or γ-ray-irradiated Tca8113 cells were up-regulated. Knockdown of p53 expression inhibited DOX-induced HOTAIR up-regulation, suggesting that DNA damage-induced HOTAIR expression may be associated with p53. Transfection and CCK-8 assays showed that compared with the control group, overexpression of HOTAIR promoted the proliferation of Tca8113 cells, while interfering with its expression played an opposite role. Flow cytometry exhibited that HOTAIR overexpression decreased the rate of DOX-induced apoptosis. When HOTAIR expression was inhibited by siRNA, the proportions of cells in G2/M and S phases increased and decreased respectively. Meanwhile, the rate of DOX-induced apoptosis rose. DNA damage-induced HOTAIR expression facilitated the proliferation of Tca8113 cells and decreased their apoptosis. However, whether the up-regulation depends on p53 still needs in-depth studies.
Collapse
Affiliation(s)
- Huawei Liu
- Department of Stomatology, Chinese PLA General HospitalBeijing 100853, China
| | - Zhiyong Li
- Department of Military Special Clinic Surgery, 451th Hospital of The People’s Liberation ArmyXi’an 710049, China
| | - Chao Wang
- Department of Stomatology, Chinese PLA General HospitalBeijing 100853, China
| | - Lin Feng
- Department of Stomatology, Chinese PLA General HospitalBeijing 100853, China
| | - Haitao Huang
- Department of Stomatology, Chinese PLA General HospitalBeijing 100853, China
| | - Changkui Liu
- Department of Military Special Clinic Surgery, 451th Hospital of The People’s Liberation ArmyXi’an 710049, China
| | - Fengxia Li
- Department of Stomatology, Ankang Hospital of Traditional Chinese MedicineAnkang 725000, China
| |
Collapse
|
30
|
Ren H, Li Y, Jiang H, Du M. Porphyromonas gingivalis induces IL-8 and IFN-gamma secretion and apoptosis in human extravillous trophoblast derived HTR8/SVneo cells via activation of ERK1/2 and p38 signaling pathways. Placenta 2016; 45:8-15. [PMID: 27577704 DOI: 10.1016/j.placenta.2016.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Preterm birth is a major cause for infant mortality and morbidity. A large number of studies have suggested a link between periodontal disease and preterm birth. The purpose of this study was to investigate the interaction between a periodontopathic bacterium Porphyromonas gingivalis and human extravillous trophoblast derived HTR8/SVneo cells. METHODS Production of cytokines in HTR8 cells was measured via ELISA. Annexin V/PI flow cytometry was performed to assess apoptosis. Protein expression was measured by western blot. Specific pharmacological inhibitors were used to inactivate relevant signaling pathways (p38 MAPK, SB203580; ERK1/2, U0126; JNK, SP600125; NF-κB, JSH-23) to determine their roles in inflammation and apoptosis. RESULTS HTR8 cells released significant amounts of IL-8 and IFN-γ during exposure to P. gingivalis. Meanwhile, the percentages of both early and late apoptotic cells increased significantly in response to P. gingivalis. The most significant effect on inflammation was found using SB203580 and U0126, followed by SP600125 and JSH-23. Moreover, U0126 and SB203580 both partially but significantly suppressed P. gingivalis-induced apoptosis, with a large effect by U0126. Additionally, both heat-killed P. gingivalis and P. gingivalis lipopolysaccharide significantly induced IL-8 production. CONCLUSION P. gingivalis induces inflammation and apoptosis in HTR8 cells, and we demonstrated for the first time that activation of ERK1/2 and p38 MAPK pathways participates in P. gingivalis-induced inflammation and apoptosis. The abnormal regulation of inflammation and apoptosis in human trophoblasts by P. gingivalis infection may give new insights into how maternal periodontal disease and periodontal pathogens might be linked to preterm birth.
Collapse
Affiliation(s)
- Hongyu Ren
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yuhong Li
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Han Jiang
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Minquan Du
- MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
31
|
Gao S, Li S, Ma Z, Liang S, Shan T, Zhang M, Zhu X, Zhang P, Liu G, Zhou F, Yuan X, Jia R, Potempa J, Scott DA, Lamont RJ, Wang H, Feng X. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect Agent Cancer 2016; 11:3. [PMID: 26788120 PMCID: PMC4717526 DOI: 10.1186/s13027-016-0049-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 12/16/2022] Open
Abstract
Background Mounting evidence suggests a causal relationship between specific bacterial infections and the development of certain malignancies. However, the possible role of the keystone periodontal pathogen, Porphyromonas gingivalis, in esophageal squamous cell carcinoma (ESCC) remains unknown. Therefore, we examined the presence of P. gingivalis in esophageal mucosa, and the relationship between P. gingivalis infection and the diagnosis and prognosis of ESCC. Methods The presence of P. gingivalis in the esophageal tissues from ESCC patients and normal controls was examined by immunohistochemistry using antibodies targeting whole bacteria and its unique secreted protease, the gingipain Kgp. qRT-PCR was used as a confirmatory approach to detect P. gingivalis 16S rDNA. Clinicopathologic characteristics were collected to analyze the relationship between P. gingivalis infection and development of ESCC. Results P. gingivalis was detected immunohistochemically in 61 % of cancerous tissues, 12 % of adjacent tissues and was undetected in normal esophageal mucosa. A similar distribution of lysine-specific gingipain, a catalytic endoprotease uniquely secreted by P. gingivalis, and P. gingivalis 16S rDNA was also observed. Moreover, statistic correlations showed P. gingivalis infection was positively associated with multiple clinicopathologic characteristics, including differentiation status, metastasis, and overall survival rate. Conclusion These findings demonstrate for the first time that P. gingivalis infects the epithelium of the esophagus of ESCC patients, establish an association between infection with P. gingivalis and the progression of ESCC, and suggest P. gingivalis infection could be a biomarker for this disease. More importantly, these data, if confirmed, indicate that eradication of a common oral pathogen could potentially contribute to a reduction in the overall ESCC burden. Electronic supplementary material The online version of this article (doi:10.1186/s13027-016-0049-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Shuoguo Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Zhikun Ma
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Shuo Liang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Tanyou Shan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Mengxi Zhang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Xiaojuan Zhu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Pengfei Zhang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Gang Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Fuyou Zhou
- Department of Oncology, Anyang People's Hospital, Anyang, 471500 China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Ruinuo Jia
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland ; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Room 263D, 501 South Preston Street, Louisville, KY 40202 USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Room 263D, 501 South Preston Street, Louisville, KY 40202 USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Room 263D, 501 South Preston Street, Louisville, KY 40202 USA
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Room 263D, 501 South Preston Street, Louisville, KY 40202 USA
| | - Xiaoshan Feng
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China ; Department of Oncology, Henan University of Science and Technology, 24 Jinghua Road, Jianxi Qu, Luoyang, 471500 Henan China
| |
Collapse
|
32
|
Noncanonical activation of β-catenin by Porphyromonas gingivalis. Infect Immun 2015; 83:3195-203. [PMID: 26034209 DOI: 10.1128/iai.00302-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023] Open
Abstract
Porphyromonas gingivalis is an established pathogen in periodontal disease and an emerging pathogen in serious systemic conditions, including some forms of cancer. We investigated the effect of P. gingivalis on β-catenin signaling, a major pathway in the control of cell proliferation and tumorigenesis. Infection of gingival epithelial cells with P. gingivalis did not influence the phosphorylation status of β-catenin but resulted in proteolytic processing. The use of mutants deficient in gingipain production, along with gingipain-specific inhibitors, revealed that gingipain proteolytic activity was required for β-catenin processing. The β-catenin destruction complex components Axin1, adenomatous polyposis coli (APC), and GSK3β were also proteolytically processed by P. gingivalis gingipains. Cell fractionation and Western blotting demonstrated that β-catenin fragments were translocated to the nucleus. The accumulation of β-catenin in the nucleus following P. gingivalis infection was confirmed by immunofluorescence microscopy. A luciferase reporter assay showed that P. gingivalis increased the activity of the β-catenin-dependent TCF/LEF promoter. P. gingivalis did not increase Wnt3a mRNA levels, a finding consistent with P. gingivalis-induced proteolytic processing causing the increase in TCF/LEF promoter activity. Thus, our data indicate that P. gingivalis can induce the noncanonical activation of β-catenin and disassociation of the β-catenin destruction complex by gingipain-dependent proteolytic processing. β-Catenin activation in epithelial cells by P. gingivalis may contribute to a proliferative phenotype.
Collapse
|
33
|
Nakayama M, Inoue T, Naito M, Nakayama K, Ohara N. Attenuation of the phosphatidylinositol 3-kinase/Akt signaling pathway by Porphyromonas gingivalis gingipains RgpA, RgpB, and Kgp. J Biol Chem 2015; 290:5190-5202. [PMID: 25564612 DOI: 10.1074/jbc.m114.591610] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Porphyromonas gingivalis is a major pathogen of periodontal diseases, including periodontitis. We have investigated the effect of P. gingivalis infection on the PI3K/Akt (protein kinase B) signaling pathway in gingival epithelial cells. Here, we found that live P. gingivalis, but not heat-killed P. gingivalis, reduced Akt phosphorylation at both Thr-308 and Ser-473, which implies a decrease in Akt activity. Actually, PI3K, which is upstream of Akt, was also inactivated by P. gingivalis. Furthermore, glycogen synthase kinase 3α/β, mammalian target of rapamycin, and Bad, which are downstream proteins in the PI3K/Akt cascade, were also dephosphorylated, a phenomenon consistent with Akt inactivation by P. gingivalis. However, these events did not require direct interaction between bacteria and host cells and were independent of P. gingivalis invasion into the cells. The use of gingipain-specific inhibitors and a gingipain-deficient P. gingivalis mutant KDP136 revealed that the gingipains and their protease activities were essential for the inactivation of PI3K and Akt. The associations between the PI3K regulatory subunit p85α and membrane proteins were disrupted by wild-type P. gingivalis. Moreover, PDK1 translocation to the plasma membrane was reduced by wild-type P. gingivalis, but not KDP136, indicating little production of phosphatidylinositol 3,4,5-triphosphate by PI3K. Therefore, it is likely that PI3K failed to transmit homeostatic extracellular stimuli to intracellular signaling pathways by gingipains. Taken together, our findings indicate that P. gingivalis attenuates the PI3K/Akt signaling pathway via the proteolytic effects of gingipains, resulting in the dysregulation of PI3K/Akt-dependent cellular functions and the destruction of epithelial barriers.
Collapse
Affiliation(s)
- Masaaki Nakayama
- From the Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and; the Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama 700-8558 and
| | - Tetsuyoshi Inoue
- From the Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and; the Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama 700-8558 and
| | - Mariko Naito
- the Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Koji Nakayama
- the Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Naoya Ohara
- From the Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and; the Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama 700-8558 and.
| |
Collapse
|
34
|
Shoji M, Takeshita T, Maruyama F, Inaba H, Imai K, Kawada-Matsuo M. [Recent advances in the field of oral bacteriology]. Nihon Saikingaku Zasshi 2015; 70:333-338. [PMID: 26028214 DOI: 10.3412/jsb.70.333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The oral cavity is inhabited by more than 600 bacterial species; these species compete for nutrients or coexist in order to survive along with the indigenous population. Extreme conditions are prevalent in the oral cavity, and these conditions are influenced by our immunity and variations in nutrition, temperature, and pH. Pathogens that cause dental caries or periodontal disease can survive in these extreme environments; these pathogens are virulent and can cause several diseases. Therefore, research on oral bacteriology is warranted to analyze the virulence factors of these bacteria as well as to ascertain environmental stress responses, interactions between bacteria and human immunity, comparisons of bacterial genomes, and oral microflora. In this review, we provide new data in the fields of bacteriology, immunology, and genomics and describe recent advances in the field of oral bacteriology.
Collapse
Affiliation(s)
- Mikio Shoji
- Department of Microbiology and Oral Infection, Unit of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| | | | | | | | | | | |
Collapse
|
35
|
Porphyromonas gingivalis lipopolysaccharide inhibits trophoblast invasion in the presence of nicotine. Placenta 2015; 36:27-33. [DOI: 10.1016/j.placenta.2014.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/22/2014] [Accepted: 10/29/2014] [Indexed: 12/16/2022]
|
36
|
Future directions of clinical laboratory evaluation of pregnancy. Cell Mol Immunol 2014; 11:582-8. [PMID: 25042633 DOI: 10.1038/cmi.2014.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 01/23/2023] Open
Abstract
In recent years, our understanding of how the immune system interacts with the developing fetus and placenta has greatly expanded. There are many laboratories that provide tests for diagnosis of pregnancy outcome in women who have recurrent pregnancy loss (RPL) or pre-eclampsia. These tests are based on the premise that immune response to the fetus is equivalent to the adaptive immune response to a transplant. New understanding leads to the concept that the activated innate response is vital for pregnancy and this can result in more effective testing and treatment to prevent an abnormal pregnancy in the future. We describe here only three such areas for future testing: one area involves sperm and semen and factors necessary for successful fertilization; another area would determine conditions for production of growth factors necessary for implantation in the uterus; finally, the last area would be to determine conditions necessary for the vascularization of the placenta and growing fetus by activated natural killer (NK) cells (combinations of killer cell immunoglobulin-like receptor (KIR) family genes with HLA-C haplotypes) that lead to capability of secreting angiogenic growth factors. These areas are novel but understanding their role in pregnancy can lead to insight into how to maintain and treat pregnancies with complicating factors.
Collapse
|
37
|
Cho TJ, Wee SW, Woo VH, Choi JI, Kim SJ, Shin HI, Lee JH, Park HR. Porphyromonas gingivalis-induced autophagy suppresses cell proliferation through G1 arrest in oral cancer cells. Arch Oral Biol 2014; 59:370-8. [PMID: 24606908 DOI: 10.1016/j.archoralbio.2014.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/16/2013] [Accepted: 01/02/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVES We investigated the response of oral cancer cells to intracellular invasion of Porphyromonas gingivalis to define changes in the biological characteristics of oral cancer cells evoked by the presence of oral pathogenic bacteria within a tumour microenvironment. DESIGNS The proliferative activity, cell cycle, and autophagic response were evaluated in oral cancer cells infected with P. gingivalis 381. ROS generation was detected in these cells by DCFDA assay, and its role in the responses of oral cancer cells to P. gingivalis infection was further investigated. RESUTLS P. gingivalis inhibited proliferation of oral cancer cells by inducing G1 cell cycle arrest, but had no effect on apoptosis. Following infection with P. gingivalis, the expression of cyclin D1 and cdk4 was decreased in oral cancer cells, whereas p21, a Cdk inhibitor, was upregulated, in comparison with non-infected controls. Autophagy was prominently enhanced in these infected cells, presumably contributing to the suppressed proliferation. Further experiments revealed that such autophagic response was activated by the formation of reactive oxygen species, as evidenced by the lack of autophagic response and cell proliferation upon removal of reactive oxygen species. CONCLUSIONS These findings provide a novel insight into the mechanism by which cancer cells are influenced by tumour microenvironment including oral bacteria.
Collapse
Affiliation(s)
- Tae Jin Cho
- Department of Oral Pathology, School of Dentistry, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan, 626-870, South Korea
| | - Shin Wook Wee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan, 626-870, South Korea
| | - Vok Hee Woo
- Department of Oral Pathology, School of Dentistry, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan, 626-870, South Korea
| | - Jeom Il Choi
- Department of Periodontology, School of Dentistry, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan 626-870, South Korea
| | - Seung Jo Kim
- Department of Periodontology, School of Dentistry, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan 626-870, South Korea
| | - Hong In Shin
- Department of Oral Pathology, School of Dentistry, Kyungpook National University, Joong-gu, Daegu 700-412, South Korea
| | - Ji Hye Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan, 626-870, South Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan, 626-870, South Korea; Institute of Translational Dental Sciences, Pusan National University, Beomeo-ri, Mulgeum-eup, Yangsan 626-870, South Korea.
| |
Collapse
|
38
|
Review of Ets1 structure, function, and roles in immunity. Cell Mol Life Sci 2013; 70:3375-90. [PMID: 23288305 DOI: 10.1007/s00018-012-1243-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/20/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
The Ets1 transcription factor is a member of the Ets gene family and is highly conserved throughout evolution. Ets1 is known to regulate a number of important biological processes in normal cells and in tumors. In particular, Ets1 has been associated with regulation of immune cell function and with an aggressive behavior in tumors that express it at high levels. Here we review and summarize the general features of Ets1 and describe its roles in immunity and autoimmunity, with a focus on its roles in B lymphocytes. We also review evidence that suggests that Ets1 may play a role in malignant transformation of hematopoietic malignancies including B cell malignancies.
Collapse
|