1
|
Fang L, Cosgriff C, Alonzo F. Determinants of maturation of the Staphylococcus aureus autoinducing peptide. J Bacteriol 2024; 206:e0019524. [PMID: 39177535 PMCID: PMC11412329 DOI: 10.1128/jb.00195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The accessory gene regulatory (Agr) system is required for virulence factor gene expression and pathogenesis of Staphylococcus aureus. The Agr system is activated in response to the accumulation of a cyclic autoinducing peptide (AIP), which is matured and secreted by the bacterium. The precursor of AIP, AgrD, consists of the AIP flanked by an N-terminal [Formula: see text]-helical Leader and a charged C-terminal tail. AgrD is matured to AIP by the action of two proteases, AgrB and MroQ. AgrB cleaves the C-terminal tail and promotes the formation of a thiolactone ring, whereas MroQ cleaves the N-terminal Leader in a manner that depends on the four-amino acid linker immediately following a conserved IG helix breaker motif. However, the attributes of AgrD that dictate the sequence of events in peptide maturation are not fully defined. Here, we used engineered AgrD peptide intermediates to ascertain the sufficiency of MroQ for N-terminal peptide cleavage, peptide export, and generation of mature AIP. We found that MroQ promotes the removal of the N-terminal Leader peptide from both linear and cyclic peptide intermediates, while peptide cyclization remained essential for signaling. The expression of the Leader peptide in isolation was sufficient for MroQ-dependent cleavage proximal to the four-amino-acid linker. In addition, active site mutations within AgrB destabilized full-length AgrD and thiolactone-containing intermediates and prevented the release of the Leader peptide. Altogether, our data support a tandem peptide maturation event involving both MroQ and AgrB that appears to couple protease activity and export of bioactive AIP.IMPORTANCEThe accessory gene regulatory (Agr) system is important for S. aureus pathogenesis. Activation of the Agr system requires recognition of a cyclic peptide pheromone, which must be fully matured to exert its biological activity. The complete events in cyclic peptide maturation and export from the bacterial cell remain to be fully defined. We and others recently discovered that the membrane peptidase MroQ is required for pheromone maturation. This study builds off the identification of MroQ and considers the attributes of the pheromone pro-peptide that are required for MroQ-mediated processing as well as uncovers features important for peptide stability and export. Overall, the findings in this study have implications for understanding bacterial pheromone maturation and virulence.
Collapse
Affiliation(s)
- Liwei Fang
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois, USA
| | - Chance Cosgriff
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
2
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
3
|
John MS, Chinnappan M, Artami M, Bhattacharya M, Keogh RA, Kavanaugh J, Sharma T, Horswill AR, Harris-Tryon TA. Androgens at the skin surface regulate S. aureus pathogenesis through the activation of agr quorum sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579753. [PMID: 38370751 PMCID: PMC10871326 DOI: 10.1101/2024.02.10.579753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Staphylococcus aureus, the most frequent cause of skin infections, is more common in men than women and selectively colonizes the skin during inflammation. Yet, the specific cues that drive infection in these settings remain unclear. Here we show that the host androgens testosterone and dihydrotestosterone promote S. aureus pathogenesis and skin infection. Without the secretion of these hormones, skin infection in vivo is limited. Testosterone activates S. aureus virulence in a concentration dependent manner through stimulation of the agr quorum sensing system, with the capacity to circumvent other inhibitory signals in the environment. Taken together, our work defines a previously uncharacterized inter-kingdom signal between the skin and the opportunistic pathogen S. aureus and identifies the mechanism of sex-dependent differences in S. aureus skin infection. One-Sentence Summary Testosterone promotes S. aureus pathogenesis through activation of the agr quorum sensing system.
Collapse
|
4
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
West KHJ, Ma SV, Pensinger DA, Tucholski T, Tiambeng TN, Eisenbraun EL, Yehuda A, Hayouka Z, Ge Y, Sauer JD, Blackwell HE. Characterization of an Autoinducing Peptide Signal Reveals Highly Efficacious Synthetic Inhibitors and Activators of Quorum Sensing and Biofilm Formation in Listeria monocytogenes. Biochemistry 2023; 62:2878-2892. [PMID: 37699554 PMCID: PMC10676741 DOI: 10.1021/acs.biochem.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Bacteria can use chemical signals to assess their local population density in a process called quorum sensing (QS). Many of these bacteria are common pathogens, including Gram-positive bacteria that utilize agr QS systems regulated by macrocyclic autoinducing peptide (AIP) signals. Listeria monocytogenes, an important foodborne pathogen, uses an agr system to regulate a variety of virulence factors and biofilm formation, yet little is known about the specific roles of agr in Listeria infection and its persistence in various environments. Herein, we report synthetic peptide tools that will enable the study of QS in Listeria. We identified a 6-mer AIP signal in L. monocytogenes supernatants and selected it as a scaffold around which a collection of non-native AIP mimics was designed and synthesized. These peptides were evaluated in cell-based agr reporter assays to generate structure-activity relationships for AIP-based agonism and antagonism in L. monocytogenes. We discovered synthetic agonists with increased potency relative to native AIP and a synthetic antagonist capable of reducing agr activity to basal levels. Notably, the latter peptide was able to reduce biofilm formation by over 90%, a first for a synthetic QS modulator in wild-type L. monocytogenes. The lead agr agonist and antagonist in L. monocytogenes were also capable of antagonizing agr signaling in the related pathogen Staphylococcus aureus, further extending their utility and suggesting different mechanisms of agr activation in these two pathogens. This study represents an important first step in the application of chemical methods to modulate QS and concomitant virulence outcomes in L. monocytogenes.
Collapse
Affiliation(s)
- Korbin H J West
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Stella V Ma
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Daniel A Pensinger
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Emma L Eisenbraun
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, Wisconsin 53705, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Williams P, Hill P, Bonev B, Chan WC. Quorum-sensing, intra- and inter-species competition in the staphylococci. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001381. [PMID: 37578829 PMCID: PMC10482373 DOI: 10.1099/mic.0.001381] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
In Gram-positive bacteria such as Staphylococcus aureus and the coagulase-negative staphylococci (CoNS), the accessory gene regulator (agr) is a highly conserved but polymorphic quorum-sensing system involved in colonization, virulence and biofilm development. Signalling via agr depends on the interaction of an autoinducing peptide (AIP) with AgrC, a transmembrane sensor kinase that, once phosphorylated activates the response regulator AgrA. This in turn autoinduces AIP biosynthesis and drives target gene expression directly via AgrA or via the post-transcriptional regulator, RNAIII. In this review we describe the molecular mechanisms underlying the agr-mediated generation of, and response to, AIPs and the molecular basis of AIP-dependent activation and inhibition of AgrC. How the environment impacts on agr functionality is considered and the consequences of agr dysfunction for infection explored. We also discuss the concept of AIP-driven competitive interference between S. aureus and the CoNS and its anti-infective potential.
Collapse
Affiliation(s)
- Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Phil Hill
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Boyan Bonev
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Weng C. Chan
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
7
|
Otto M. Critical Assessment of the Prospects of Quorum-Quenching Therapy for Staphylococcus aureus Infection. Int J Mol Sci 2023; 24:ijms24044025. [PMID: 36835436 PMCID: PMC9958572 DOI: 10.3390/ijms24044025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that causes a high number of infections and is one of the leading causes of death in hospitalized patients. Widespread antibiotic resistance such as in methicillin-resistant S. aureus (MRSA) has prompted research into potential anti-virulence-targeted approaches. Targeting the S. aureus accessory gene regulator (Agr) quorum-sensing system, a master regulator of virulence, is the most frequently proposed anti-virulence strategy for S. aureus. While much effort has been put into the discovery and screening for Agr inhibitory compounds, in vivo analysis of their efficacy in animal infection models is still rare and reveals various shortcomings and problems. These include (i) an almost exclusive focus on topical skin infection models, (ii) technical problems that leave doubt as to whether observed in vivo effects are due to quorum-quenching, and (iii) the discovery of counterproductive biofilm-increasing effects. Furthermore, potentially because of the latter, invasive S. aureus infection is associated with Agr dysfunctionality. Altogether, the potential of Agr inhibitory drugs is nowadays seen with low enthusiasm given the failure to provide sufficient in vivo evidence for their potential after more than two decades since the initiation of such efforts. However, current Agr inhibition-based probiotic approaches may lead to a new application of Agr inhibition strategies in preventing S. aureus infections by targeting colonization or for otherwise difficult-to-treat skin infections such as atopic dermatitis.
Collapse
Affiliation(s)
- Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Tamai M, Yamazaki Y, Ito T, Nakagawa S, Nakamura Y. Pathogenic role of the staphylococcal accessory gene regulator quorum sensing system in atopic dermatitis. Front Cell Infect Microbiol 2023; 13:1178650. [PMID: 37124047 PMCID: PMC10140505 DOI: 10.3389/fcimb.2023.1178650] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
The skin is home to various bacteria, archaea, fungi, and viruses, collectively referred to as the skin microbiota. Patients with certain skin diseases reportedly have unique skin "dysbiosis," a condition involving imbalanced microbiota, suggesting that dysbiosis in the skin may be either causal or a consequence of specific skin diseases. Atopic dermatitis (AD) is the most common allergic skin disease that affects 15-20% of children and 2-10% of adults worldwide. Both intrinsic genetic factors, such as susceptibility to type 2 inflammation or skin barrier dysfunction, and extrinsic environmental factors, such as air pollen and skin microbiota, contribute to AD. Staphylococcus aureus, which does not often colonize the skin of healthy individuals, is commonly identified in the lesional skin of patients with AD and is correlated with the disease flare. However, the role of S. aureus in the pathogenesis of AD has not been elucidated. Here, we discuss the pathological behavior of S. aureus, focusing on accessory gene regulator (Agr) quorum sensing, which is a fundamental bacterial cell-to-cell interaction mechanism that affects the behavior of S. aureus and other members of the microbial community. Importantly, beyond bacteria-bacteria interactions, the Agr quorum sensing system also regulates various virulence factors, which induce type 2 and IL-17-dependent skin inflammation in the host. Furthermore, the colonization of Agr-positive S. aureus in early life accelerates the development of pediatric AD. Finally, we aim to highlight the current efforts to establish novel therapeutic methods to ameliorate or prevent AD through Agr-targeted intervention.
Collapse
Affiliation(s)
- Masakazu Tamai
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuriko Yamazaki
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- *Correspondence: Yuumi Nakamura, ; Yuriko Yamazaki,
| | - Tomoka Ito
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yuumi Nakamura
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- *Correspondence: Yuumi Nakamura, ; Yuriko Yamazaki,
| |
Collapse
|