1
|
Peters S, Mohort K, Claus H, Stigloher C, Schubert-Unkmeir A. Interaction of Neisseria meningitidis carrier and disease isolates of MenB cc32 and MenW cc22 with epithelial cells of the nasopharyngeal barrier. Front Cell Infect Microbiol 2024; 14:1389527. [PMID: 38756230 PMCID: PMC11096551 DOI: 10.3389/fcimb.2024.1389527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Neisseria meningitidis (Nm, the meningococcus) is considered an asymptomatic colonizer of the upper respiratory tract and a transient member of its microbiome. It is assumed that the spread of N. meningitidis into the bloodstream occurs via transcytosis of the nasopharyngeal epithelial barrier without destroying the barrier layer. Here, we used Calu-3 respiratory epithelial cells that were grown under air-liquid-interface conditions to induce formation of pseudostratified layers and mucus production. The number of bacterial localizations in the outer mucus, as well as cellular adhesion, invasion and transmigration of different carrier and disease N. meningitidis isolates belonging to MenB:cc32 and MenW:cc22 lineages was assessed. In addition, the effect on barrier integrity and cytokine release was determined. Our findings showed that all strains tested resided primarily in the outer mucus layer after 24 h of infection (>80%). Nonetheless, both MenB:cc32 and MenW:cc22 carrier and disease isolates reached the surface of the epithelial cells and overcame the barrier. Interestingly, we observed a significant difference in the number of bacteria transmigrating the epithelial cell barrier, with the representative disease isolates being more efficient to transmigrate compared to carrier isolates. This could be attributed to the capacity of the disease isolates to invade, however could not be assigned to expression of the outer membrane protein Opc. Moreover, we found that the representative meningococcal isolates tested in this study did not damage the epithelial barrier, as shown by TEER measurement, FITC-dextran permeability assays, and expression of cell-junction components.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Katherina Mohort
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
2
|
Herold R, Denzer L, Muranyi W, Stump-Guthier C, Ishikawa H, Schroten H, Schwerk C. The phosphoproteome of choroid plexus epithelial cells following infection with Neisseria meningitidis. Front Cell Infect Microbiol 2023; 13:1113528. [PMID: 37065199 PMCID: PMC10102474 DOI: 10.3389/fcimb.2023.1113528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
The Gram-negative bacterium Neisseria meningitidis, which causes meningitis in humans, has been demonstrated to manipulate or alter host signalling pathways during infection of the central nervous system (CNS). However, these complex signalling networks are not completely understood. We investigate the phosphoproteome of an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with the N. meningitidis serogroup B strain MC58 in presence and absence of the bacterial capsule. Interestingly, our data demonstrates a stronger impact on the phosphoproteome of the cells by the capsule-deficient mutant of MC58. Using enrichment analyses, potential pathways, molecular processes, biological processes, cellular components and kinases were determined to be regulated as a consequence of N. meningitidis infection of the BCSFB. Our data highlight a variety of protein regulations that are altered during infection of CP epithelial cells with N. meningitidis, with the regulation of several pathways and molecular events only being detected after infection with the capsule-deficient mutant. Mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD038560.
Collapse
Affiliation(s)
- Rosanna Herold
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Denzer
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Walter Muranyi
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Vassey M, Firdaus R, Aslam A, Wheldon LM, Oldfield NJ, Ala’Aldeen DAA, Wooldridge KG. G1 Cell Cycle Arrest Is Induced by the Fourth Extracellular Loop of Meningococcal PorA in Epithelial and Endothelial Cells. Cell Microbiol 2023. [DOI: 10.1155/2023/7480033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Neisseria meningitidis is the most frequent cause of bacterial meningitis and is one of the few bacterial pathogens that can breach the blood-brain barrier (BBB). The 37/67 kDa laminin receptor (LamR) was previously identified as a receptor mediating meningococcal binding to rodent and human brain microvascular endothelial cells, which form part of the BBB. The meningococcal surface proteins PorA and PilQ were identified as ligands for this receptor. Subsequently, the fourth extracellular loop of PorA (PorA-Loop4) was identified as the LamR-binding moiety. Here, we show that PorA-Loop4 targets the 37 kDa laminin receptor precursor (37LRP) on the cell surface by demonstrating that deletion of this loop abrogates the recruitment of 37LRP under meningococcal colonies. Using a circularized peptide corresponding to PorA-Loop4, as well as defined meningococcal mutants, we demonstrate that host cell interaction with PorA-Loop4 results in perturbation of p-CDK4 and Cyclin D1. These changes in cell cycle control proteins are coincident with cellular responses including inhibition of cell migration and a G1 cell cycle arrest. Modulation of the cell cycle of host cells is likely to contribute to the pathogenesis of meningococcal disease.
Collapse
|
4
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
5
|
Mambu J, Barilleau E, Fragnet-Trapp L, Le Vern Y, Olivier M, Sadrin G, Grépinet O, Taieb F, Velge P, Wiedemann A. Rck of Salmonella Typhimurium Delays the Host Cell Cycle to Facilitate Bacterial Invasion. Front Cell Infect Microbiol 2020; 10:586934. [PMID: 33330131 PMCID: PMC7734966 DOI: 10.3389/fcimb.2020.586934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Salmonella Typhimurium expresses on its outer membrane the protein Rck which interacts with the epidermal growth factor receptor (EGFR) of the plasma membrane of the targeted host cells. This interaction activates signaling pathways, leading to the internalization of Salmonella. Since EGFR plays a key role in cell proliferation, we sought to determine the influence of Rck mediated infection on the host cell cycle. By analyzing the DNA content of uninfected and infected cells using flow cytometry, we showed that the Rck-mediated infection induced a delay in the S-phase (DNA replication phase) of the host cell cycle, independently of bacterial internalization. We also established that this Rck-dependent delay in cell cycle progression was accompanied by an increased level of host DNA double strand breaks and activation of the DNA damage response. Finally, we demonstrated that the S-phase environment facilitated Rck-mediated bacterial internalization. Consequently, our results suggest that Rck can be considered as a cyclomodulin with a genotoxic activity.
Collapse
Affiliation(s)
- Julien Mambu
- INRAE, Université de Tours, ISP, Nouzilly, France
| | | | | | - Yves Le Vern
- INRAE, Université de Tours, ISP, Nouzilly, France
| | | | | | | | - Frédéric Taieb
- IRSD-Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | | |
Collapse
|
6
|
Schlegel J, Peters S, Doose S, Schubert-Unkmeir A, Sauer M. Super-Resolution Microscopy Reveals Local Accumulation of Plasma Membrane Gangliosides at Neisseria meningitidis Invasion Sites. Front Cell Dev Biol 2019; 7:194. [PMID: 31572726 PMCID: PMC6753371 DOI: 10.3389/fcell.2019.00194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the β2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection.
Collapse
Affiliation(s)
- Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| | - Simon Peters
- Institute of Hygiene and Microbiology, Julius Maximilian University Würzburg, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Fu S, Zhao W, Xiong C, Guo L, Guo J, Qiu Y, Hu CAA, Ye C, Liu Y, Wu Z, Hou Y. Baicalin modulates apoptosis via RAGE, MAPK, and AP-1 in vascular endothelial cells during Haemophilus parasuis invasion. Innate Immun 2019; 25:420-432. [PMID: 31271085 PMCID: PMC6900640 DOI: 10.1177/1753425919856078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glässer’s disease, caused by Haemophilus parasuis, is a chronic
disease related to an inflammatory immune response. Baicalin exerts important
biological functions. In this study, we explored the protective efficacy of
treatment with baicalin and the potential mechanism of activation of the MAPK
signaling pathway in porcine aortic vascular endothelial cells (PAVECs) induced
by H. parasuis. H. parasuis stimulated
expression of receptor for advanced glycation end products, induced a
significant increase in the level of protein kinase-α and protein kinase-δ
phosphorylation, and significantly up-regulated ERK, c-Jun N-terminal kinase,
and p38 phosphorylation in PAVECs. H. parasuis also
up-regulated the levels of apoptotic genes (Bax,
C-myc, and Fasl) and the expression levels
of c-Jun and c-Fos, and induced S-phase arrest in PAVECs. However, treatment
with baicalin inhibited expression of RAGE, suppressed H.
parasuis-induced protein kinase-α and protein kinase-δ
phosphorylation, reduced ERK, c-Jun N-terminal kinase, and p38 phosphorylation,
down-regulated apoptotic genes (Bax, C-myc,
and Fasl), attenuated phospho-c-Jun production from the
extracellular to the nuclei, and reversed S-phase arrest in PAVECs. In
conclusion, baicalin treatment inhibited the MAPK signaling pathway, thereby
achieving its anti-inflammatory responses, which provides a new strategy to
control H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Wenhua Zhao
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China
| | - Chunhong Xiong
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China
| | - Ling Guo
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Jing Guo
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yinsheng Qiu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Chien-An Andy Hu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,3 Biochemistry and Molecular Biology, University of New Mexico School of Medicine, USA
| | - Chun Ye
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yu Liu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Zhongyuan Wu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yongqing Hou
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| |
Collapse
|
8
|
Borghini L, Hibberd M, Davila S. Changes in H3K27ac following lipopolysaccharide stimulation of nasopharyngeal epithelial cells. BMC Genomics 2018; 19:969. [PMID: 30587130 PMCID: PMC6307289 DOI: 10.1186/s12864-018-5295-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The epithelium is the first line of defense against pathogens. Notably the epithelial cells lining the respiratory track are crucial in sensing airborne microbes and mounting an effective immune response via the expression of target genes such as cytokines and chemokines. Gene expression regulation following microbial recognition is partly regulated by chromatin re-organization and has been described in immune cells but data from epithelial cells is not as detailed. Here, we report genome-wide changes of the H3K27ac mark, characteristic of activated enhancers and promoters, after stimulation of nasopharyngeal epithelial cells with the bacterial endotoxin Lipopolysaccharide (LPS). RESULTS In this study, we have identified 626 regions where the H3K27ac mark showed reproducible increase following LPS induction in epithelial cells. This indicated that sensing of LPS led to opening of the chromatin in our system. Moreover, this phenomenon seemed to happen extensively at enhancers regions and we could observe instances of Super-enhancer formation. As expected, LPS-increased H3K27ac regions were found in the vicinity of genes relevant for LPS response and these changes correlated with up-regulation of their expression. In addition, we found the induction of H3K27ac mark to overlap with the binding of one of the NF-kB members and key regulator of the innate immune response, RELA, following LPS sensing. Indeed, inhibiting the NF-kB pathway abolished the deposition of H3K27ac at the TNF locus, a target of RELA, suggesting that these two phenomena are associated. CONCLUSIONS Enhancers' selection and activation following microbial or inflammatory stimuli has been described previously and shown to be mediated via the NF-kB pathway. Here, we demonstrate that this is also likely to occur in the case of LPS-sensing by nasopharyngeal epithelial cells as well. In addition to validating previous findings, we generated a valuable data set relevant to the host immune response to epithelial cell colonizing or infecting pathogens.
Collapse
Affiliation(s)
- Lisa Borghini
- Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Infectious Disease, Genome Institute of Singapore, Singapore, 138672, Singapore.
| | - Martin Hibberd
- Infectious Disease, Genome Institute of Singapore, Singapore, 138672, Singapore.,Present Address: Pathogen Molecular Biology, Infectious & Tropical Disease, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore.,Present Address: SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore, 169609, Singapore
| |
Collapse
|
9
|
Strobel L, Johswich KO. Anticoagulants impact on innate immune responses and bacterial survival in whole blood models of Neisseria meningitidis infection. Sci Rep 2018; 8:10225. [PMID: 29977064 PMCID: PMC6033889 DOI: 10.1038/s41598-018-28583-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis (meningococcus) causes invasive diseases such as meningitis or septicaemia. Ex vivo infection of human whole blood is a valuable tool to study meningococcal virulence factors and the host innate immune responses. In order to consider effects of cellular mediators, the coagulation cascade must be inhibited to avoid clotting. There is considerable variation in the anticoagulants used among studies of N. meningitidis whole blood infections, featuring citrate, heparin or derivatives of hirudin, a polypeptide from leech saliva. Here, we compare the influence of these three different anticoagulants, and additionally Mg/EGTA, on host innate immune responses as well as on viability of N. meningitidis strains isolated from healthy carriers and disease cases, reflecting different sequence types and capsule phenotypes. We found that the anticoagulants significantly impact on cellular responses and, strain-dependently, also on bacterial survival. Hirudin does not inhibit complement and is therefore superior over the other anticoagulants; indeed hirudin-plasma most closely reflects the characteristics of serum during N. meningitidis infection. We further demonstrate the impact of heparin on complement activation on N. meningitidis and its consequences on meningococcal survival in immune sera, which appears to be independent of the heparin binding antigens Opc and NHBA.
Collapse
Affiliation(s)
- Lea Strobel
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Kay O Johswich
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
10
|
Borghini L, Lu J, Hibberd M, Davila S. Variation in Genome-Wide NF-κB RELA Binding Sites upon Microbial Stimuli and Identification of a Virus Response Profile. THE JOURNAL OF IMMUNOLOGY 2018; 201:1295-1305. [PMID: 29959281 DOI: 10.4049/jimmunol.1800246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
NF-κB transcription factors are master regulators of the innate immune response. Activated downstream of pathogen recognition receptors, they regulate the expression of genes to help fight infections as well as recruit the adaptive immune system. NF-κB responds to a wide variety of signals, but the processes by which stimulus specificity is attained remain unclear. In this article, we characterized the response of one NF-κB member, RELA, to four stimuli mimicking infection in human nasopharyngeal epithelial cells. Comparing genome-wide RELA binding, we observed stimulus-specific sites, although most sites overlapped across stimuli. Specifically, the response to poly I:C (mimicking viral dsRNA and signaling through TLR3) induced a distinct RELA profile, binding in the vicinity of antiviral genes and correlating with corresponding gene expression. This group of binding sites was also enriched in IFN regulatory factor motifs and showed overlapping with IFN regulatory factor binding sites. A novel NF-κB target, OASL, was further validated and showed TLR3-specific activation. This work showed that some RELA DNA binding sites varied in activation response following different stimulations and that interaction with more specialized factors could help achieve this stimulus-specific activity. Our data provide a genomic view of regulated host response to different pathogen stimuli.
Collapse
Affiliation(s)
- Lisa Borghini
- Department of Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore; .,Department of Infectious Diseases, Genome Institute of Singapore, Singapore 138672, Singapore; and
| | - Jinhua Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Program, National University of Singapore, Singapore 119077
| | - Martin Hibberd
- Department of Infectious Diseases, Genome Institute of Singapore, Singapore 138672, Singapore; and
| | - Sonia Davila
- Department of Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore;
| |
Collapse
|