1
|
Cai Q, Huang Y, Zhou L, Hu N, Liu Y, Guo F, Liu Q, Huang X, Zhang Y, Zeng L. A Complete Genome of Nocardia terpenica NC_YFY_NT001 and Pan-Genomic Analysis Based on Different Sources of Nocardia spp. Isolates Reveal Possibly Host-Related Virulence Factors. Infect Drug Resist 2022; 15:7259-7270. [PMID: 36536862 PMCID: PMC9758982 DOI: 10.2147/idr.s384673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/29/2022] [Indexed: 04/22/2024] Open
Abstract
OBJECTIVE We aimed to identify the possible virulence genes associated with Nocardia NC_YFY_NT001 isolated by ourselves and other Nocardia spp. METHODS The genome of Nocardia terpenica NC_YFY_NT001 was completed by using PacBio and Illumina platforms. A pan-genomic analysis was applied to selected complete Nocardia genomes. RESULTS Nocardia terpenica NC_YFY_NT001 can cause healthy mice death by tail intravenous injection. The genome of NT001 has one circular chromosome 8,850,000 bp and one circular plasmid 70,000 bp with ~68% GC content. The chromosome and plasmid encode 7914 and 80 proteins, respectively. Furthermore, a pan-genomic analysis showed a total of 45,825 gene clusters, then 304 core, 21,045 shell and 24,476 cloud gene clusters were classified using specific parameters. In addition, we found that catalases were more abundant in human isolates. Furthermore, we also found no significant differences in the MCE proteins between different strains from different sources. The pan-genomic analysis also showed that 67 genes could only be found in humoral isolates. ReX3 and DUF853 domain protein were found in all eight human isolates. The composition of unique genes in humoral isolate genomes indicated that the transcriptional regulators may be important when Nocardia invades the host, which allows them to survive in the new ecological system. CONCLUSION In this study, we confirmed that NT001 could cause infected animal death, and identified many possible virulence factors for our future studies. This study also provides new insight for our further study on Nocardia virulence mechanisms.
Collapse
Affiliation(s)
- Qinming Cai
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yongcheng Huang
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, People’s Republic of China
| | - Niya Hu
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, People’s Republic of China
| | - Yanling Liu
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, People’s Republic of China
| | - Fujia Guo
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, People’s Republic of China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Xiaotian Huang
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, People’s Republic of China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Yunyi Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, People’s Republic of China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
2
|
Xu H, Xu R, Wang X, Liang Q, Zhang L, Liu J, Wei J, Lu Y, Yu D. Co-infections of Aeromonas veronii and Nocardia seriolae in largemouth bass (Micropterus salmoides). Microb Pathog 2022; 173:105815. [DOI: 10.1016/j.micpath.2022.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
|
3
|
Li B, Chen J, Huang P, Weng T, Wen Y, Yang H, Liu Y, Xia L. Induction of attenuated Nocardia seriolae and their use as live vaccine trials against fish nocardiosis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:10-20. [PMID: 36162777 DOI: 10.1016/j.fsi.2022.09.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nocardia seriolae, a Gram-positive facultative intercellular pathogen, has been identified as the causative agent of fish nocardiosis, causing substantial mortality and morbidity of a wide range of fish species. Looking into that fact, the effective vaccine against this pathogen is urgently needed to control the significant losses in aquaculture practices. In order to induct attenuated strains for developing the potential live vaccines, the mutagenic N. seriolae strain S-250 and U-20 were obtained from wild-type strain ZJ0503 through continuous passaging and ultraviolet (UV) irradiation, respectively. Additionally, the biological characteristic, virulence, stability, mediating immune response and supplying protective efficacy to hybrid snakehead of the S-250 and U-20 strains were determined in the present study. The results showed that U-20 strain displayed dramatic changes in morphological characteristic and significant decreased in the virulence to hybrid snakehead, while that of S-250 strain had no obvious different in comparison to ZJ0503 strain. When hybrid snakehead were intraperitoneally injected with ZJ0503, S-250 and U-20 strains at their respective sub-clinical dosage, the non-specific immunity parameters (serum LYZ, POD, ACP, AKP and SOD activities), specific antibody (IgM) titers production and immune-related genes (CC1, CC2, IL-1β, IL-8, TNFα, IFNγ, MHCIα, MHCIIα, CD4, CD8α, TCRα and TCRβ) expression were up-regulated, indicating that they were able to trigger humoral and cell-mediated immune responses. Furthermore, the protective efficacy in hybrid snakehead after vaccination with ZJ0503, S-250 and U-20 strains, in terms of relative percentage survival (RPS), were 28.85%, 56.89% and 89.65% respectively. Taken together, two attenuated N. seriolae strains S-250 and U-20 were obtained successfully and they could elicit strong immune response and supply protective efficacy to hybrid snakehead against N. seriolae, which suggested that these two attenuated strains were the potential candidates for live vaccine development to control fish nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Bei Li
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jianlin Chen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Pujiang Huang
- Shenzhen Fishery Development and Research Center, Shenzhen, Guangdong, China
| | - Tingting Weng
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yiming Wen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Huiyuan Yang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yansheng Liu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| |
Collapse
|
4
|
Wei Y, Chen T, Yang W, Li H, Fang C, Liu Q, Chen Y, Mei Q. Detection of a novel antigen for Crohn's disease. Scand J Gastroenterol 2021; 56:1427-1433. [PMID: 34487462 DOI: 10.1080/00365521.2021.1973088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Accurate serological assays are desirable for the diagnosis of inflammatory bowel disease (IBD). We identify an antigen-like substance called Crohn's disease (CD) antibody binding polypeptide (CABP). As a serological marker, anti-CABP may contribute to the diagnosis of IBD. The present study aims to evaluate the clinical role of anti-CABP as a serological antibody for IBD. METHODS Using enzyme-linked immunosorbent assay (ELISA), serum anti-CABP, anti-Saccharomyces cerevisiae antibody (ASCA) and perinuclear anti-neutrophil cytoplasmic antibody (pANCA), titers were tested in 168 CD patients, 123 ulcerative colitis (UC) patients and 170 controls. The correlation between serum antibody and clinical characteristics was investigated. The diagnostic potential of the anti-CABP was evaluated by receiver operating characteristic (ROC) analysis. RESULTS The titers of anti-CABP (IgA or IgG) and ASCA IgG of CD patients were significantly higher than non-CD group (all p < .01). In the differential diagnosis of CD and non-CD, anti-CABP IgA revealed an area under the curve (AUC) of 0.706 and anti-CABP IgG demonstrated an AUC of 0.788. As an individual antibody, anti-CABP could effectively distinguish CD from non-CD (AUC 0.816), and the diagnostic efficacy was better than that of ASCA (AUC 0.680). The combined use of anti-CABP, ASCA and pANCA significantly improved the diagnostic value (AUC 0.857). Anti-CABP positive rates were associated with perianal lesions and disease location in CD patients (both p < .05). CONCLUSIONS Our results suggested that anti-CABP could be used as a serological marker to assist the diagnosis of CD. CLINICAL TRIAL REGISTRATION This trial is registered with clinical trial registration unique identifier ChiCTR2000037094.
Collapse
Affiliation(s)
- Yarong Wei
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Wu Yang
- Shanxi Ruihao Biotechnology Co. LTD, Taiyuan, China
| | - Huihui Li
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Fang
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiuyuan Liu
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yonghao Chen
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiao Mei
- Department of Gastroenterology, the Key Laboratory of Digestive Diseases of Anhui Province, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Mikami K, Sonobe K, Ishino K, Noda T, Kato M, Hanao M, Hamamoto H, Sekimizu K, Okazaki M. Evaluation of pathogenicity and therapeutic effectiveness of antibiotics using silkworm Nocardia infection model. Drug Discov Ther 2021; 15:73-77. [PMID: 33952779 DOI: 10.5582/ddt.2021.01035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nocardia is a ubiquitous environmental microbe that causes nocardiosis against immunosuppressed and immunocompromised hosts. The assay system for the quantitative evaluation of virulence of Nocardia sp. or therapeutic effectiveness of antimicrobials for treatment of nocardiosis is not established so far. In this study, we established an infection model of Nocardia sp. using silkworm as an alternative animal model. We found that all tested Nocardia sp. such as Nocardia asiatica, Nocardia elegans, Nocardia exalbida, Nocardia farcinica, and Nocardia nova killed silkworm and their killing ability were different by species. N. farcinica showed higher pathogenicity among tested strain, similar to the mouse model as previously reported. In addition, we found that antimicrobials such as amikacin and minocycline showed therapeutic effectiveness in silkworms infected with N. farcinica, and we could determine effective doses 50 (ED₅₀) values. These results suggest that silkworm is a useful alternative animal to evaluate the pathogenicity of Nocardia pathogen and the therapeutic effects of antimicrobials against Nocardia sp. in a quantitative manner.
Collapse
Affiliation(s)
- Kazuhiro Mikami
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan.,Drug Discoveries by Silkworm Models, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Kazunari Sonobe
- Department of Clinical Laboratory, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Keiko Ishino
- Division of Infection Control Sciences, Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo, Japan
| | - Takumi Noda
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Mami Kato
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Mami Hanao
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| | | | - Kazuhisa Sekimizu
- Drug Discoveries by Silkworm Models, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.,Genome Pharmaceuticals Institute, Tokyo, Japan
| | - Mitsuhiro Okazaki
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
6
|
Nouioui I, Cortés-Albayay C, Neumann-Schaal M, Vicente D, Cilla G, Klenk HP, Marimón JM, Ercibengoa M. Genomic Virulence Features of Two Novel Species Nocardia barduliensis sp. nov. and Nocardia gipuzkoensis sp. nov., Isolated from Patients with Chronic Pulmonary Diseases. Microorganisms 2020; 8:microorganisms8101517. [PMID: 33019781 PMCID: PMC7600791 DOI: 10.3390/microorganisms8101517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
Strains 335427T and 234509T, isolated from two 76-year-old patients with chronic pulmonary diseases, were the subject of polyphasic taxonomic studies and comparative genomic analyses for virulence factors. The 16 rRNA gene sequence similarity between strains 335427T and 234509T and their closest phylogenetic neighbors Nocardia asiatica NBRC 100129T and Nocardia abscessus NBRC 100374T were 99.5% and 100%, respectively. Digital DNA-DNA hybridization values between the aforementioned studied strains were well below the 70% threshold for assigning prokaryotic strains to a novel species. Strains 335427T and 234509T have genome sizes of 8.49 Mpb and 8.07 Mpb, respectively, with G + C content of 68.5%. Isolate 335427T has C16:0, C18:1 ω9c, C18:0 and C18:0 10 methyl as major fatty acids (>15%) and mycolic acids formed of 52-54 carbon atoms. However, only C18:1 ω9c was detected for isolate 234509T, which had mycolic acids with 44-56 carbon. Based on phenotypic and genetic data, strains 335427T (DSM 109819T = CECT 9924T) and 234509T (DSM 111366T = CECT 30129T) merit recognition as novel species, which are named Nocardia barduliensis sp. nov. and Nocardia gipuzkoensis sp. nov., respectively. All the strains studied had homologous VF-associated genes to those described in M. tuberculosis, including experimentally verified virulence genes in humans related to tuberculosis. The narGHIJ (nitrate reduction pathway) and gvpAFGOJLMK (gas vesicles) genetic maps of strains 335427T, 234509T, NBRC 100129T and NBRC 100374T showed the same syntenic block and raise the question of whether their functions are interlinked during the infection of the human host. However, further research is required to decipher the role of the gas vesicle in the pathogenicity mechanism of Nocardia spp.
Collapse
Affiliation(s)
- Imen Nouioui
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
- Correspondence: (I.N.); (M.E.)
| | - Carlos Cortés-Albayay
- Laboratory of Microbial Complexity and Functional Ecology, Antofagasta Institute, University of Antofagasta, Antofagasta 1240000, Chile;
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
| | - Diego Vicente
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group; Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Microbiology Department, 20014 San Sebastian, Spain; (D.V.); (G.C.); (J.M.M.)
| | - Gustavo Cilla
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group; Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Microbiology Department, 20014 San Sebastian, Spain; (D.V.); (G.C.); (J.M.M.)
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Jose María Marimón
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group; Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Microbiology Department, 20014 San Sebastian, Spain; (D.V.); (G.C.); (J.M.M.)
| | - Maria Ercibengoa
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group; Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Microbiology Department, 20014 San Sebastian, Spain; (D.V.); (G.C.); (J.M.M.)
- Correspondence: (I.N.); (M.E.)
| |
Collapse
|
7
|
Ji X, Zhang X, Sun L, Hou X, Song J, Tan X, Song H, Qiu X, Li M, Tang L, Han L, Li Z. Mce1C and Mce1D facilitate N. farcinica invasion of host cells and suppress immune responses by inhibiting innate signaling pathways. Sci Rep 2020; 10:14908. [PMID: 32913259 PMCID: PMC7484815 DOI: 10.1038/s41598-020-71860-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
The mammalian cell entry (Mce) family of proteins consists of invasin-like membrane-associated proteins. The roles of Mce1C and Mce1D proteins in host–pathogen interactions have not been investigated. In this study, we demonstrate that Mce1C and Mce1D protein is localized in the cell wall fraction of N. farcinica. Both N. farcinica Mce1C and Mce1D proteins are expressed at the level of protein and mRNA and elicit antibody responses during infection. Mce1C and Mce1D facilitate the internalization of Escherichia coli expressing Mce1C protein or latex beads coated with Mce1D protein by HeLa cells, respectively. We further demonstrate that Mce1C and Mce1D can suppress the secretion of the proinflammatory factors TNF-α and IL-6 in macrophages infected with Mycobacterium smegmatis expressing Mce1C or Mce1D and promote the survival of M. smegmatis expressing Mce1C or Mce1D in macrophages. In addition, Mce1C and Mce1D supress the activation of the NF-κB and MAPK signaling pathways by blocking the phosphorylation of AKT, P65, ERK1/2, JNK, or P38 in macrophages. These findings suggest that Mce1C and Mce1D proteins facilitate N. farcinica invasion of HeLa cells and suppress host innate immune responses by manipulating NF-κB and MAPK signaling pathways, which may provide a target for N. farcinica treatment.
Collapse
Affiliation(s)
- Xingzhao Ji
- Shandong Academy of Clinical Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xiujuan Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lina Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xuexin Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Jingdong Song
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoluo Tan
- Chenzhou Center for Disease Control and Prevention, Chenzhou, China
| | - Han Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xiaotong Qiu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Minghui Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Lu Tang
- First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lichao Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China.
| |
Collapse
|
8
|
Herisse M, Ishida K, Porter JL, Howden B, Hertweck C, Stinear TP, Pidot SJ. Identification and Mobilization of a Cryptic Antibiotic Biosynthesis Gene Locus from a Human-Pathogenic Nocardia Isolate. ACS Chem Biol 2020; 15:1161-1168. [PMID: 31697466 DOI: 10.1021/acschembio.9b00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genus Nocardia contains >50 human pathogenic species that cause a range of illnesses from skin and soft tissue infections to lung and brain infections. However, despite their membership in the most prominent family of secondary metabolite producers (the Actinomycetes), the ability of Nocardia species, especially those that cause human infections, to produce secondary metabolites has not been as well studied. Using genome mining, we have investigated cryptic secondary metabolite biosynthesis gene clusters from Nocardia species and identified a conserved locus within human pathogenic strains of Nocardia brasiliensis and Nocardia vulneris. Direct capture and heterologous expression in a Streptomyces host activated the biosynthetic locus, revealing it to be the source of the brasiliquinones, benz[a]anthraquinone antibiotics whose biosynthetic pathway has remained hidden for over two decades, until now. Our findings highlight these hitherto neglected human pathogenic Nocardia as a source of diverse and important natural products.
Collapse
Affiliation(s)
- Marion Herisse
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Jessica L. Porter
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Ben Howden
- Microbiological Diagnostic Unit, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
- Natural Product Chemistry, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
9
|
Han L, Ji X, Xu S, Fan S, Wang C, Wei K, Wang X, Song H, Zheng N, Sun L, Qiu X, Hou X, Li Z. Microbiological profile of distinct virulence of Nocardia cyriacigeorgica strains in vivo and in vitro. Microb Pathog 2020; 142:104042. [PMID: 32045646 DOI: 10.1016/j.micpath.2020.104042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/08/2023]
Abstract
There are significant differences between different Nocardia species regarding geographical distribution, biochemical features, phenotypic characterization, and drug sensitivity. In this study, we explored the differences in virulence and pathogenic mechanisms of two Nocardia cyriacigeorgica strains. We examined the difference in virulence between N. cyriacigeorgica ATCC14759 and N. cyriacigeorgica GUH-2 by measuring cytotoxicity, animal survival after infection, the ability of host cell invasion, and viability in host cells. Western blotting was used to compare the differences in activation of MAPKs, including p38, ERK, and JNK, the NF-κB signaling pathway, and the PI3K/Akt signaling pathway in A549 and RAW264.7 cells. We measured the difference in stimulatory effects on production of the cytokines IL-6, IL-10, and TNF-α by ELISA. We found that N. cyriacigeorgica ATCC14759 causes higher cytotoxicity in cultured cells and higher lethality in mice, and exhibits superior invasion ability and viability in host cells compared with N. cyriacigeorgica GUH-2. Moreover, these two strains show marked differences in activation of the expression of cytokines and signaling pathways. N. cyriacigeorgica ATCC14759 is more virulent than N. cyriacigeorgica GUH-2. Furthermore, there is a significant difference in pathogenesis between the two strains. Our results provide a theoretical basis for the prevention and treatment of Nocardia infection.
Collapse
Affiliation(s)
- Lichao Han
- Department of Medical, Tibet University, Lhasa, China
| | - Xingzhao Ji
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shihong Fan
- Department of Medical, Tibet University, Lhasa, China
| | | | - Kongjiao Wei
- Department of Medical, Tibet University, Lhasa, China
| | - Xuebing Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Han Song
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ningwei Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lina Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaotong Qiu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuexin Hou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenjun Li
- Department of Medical, Tibet University, Lhasa, China; State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
10
|
García-Lozano JA, García-Berlanga CC, Viveros-Rosado RT, Ocampo-Candiani J, Vargas-Villarreal J, Vera-Cabrera L. A novel experimental immunomodulatory therapy against Nocardia brasiliensis in a BALB/c murine model. Clin Exp Dermatol 2019; 45:544-548. [PMID: 31729068 DOI: 10.1111/ced.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mycetoma is recognized as a neglected tropical disease and there are still therapeutic challenges, especially in cases recalcitrant to standard therapy or with high risk of dissemination. Subcultures have been used previously to decrease the virulence of human pathogens. Previous reports have demonstrated that after carrying out 200 subcultures of Nocardia brasiliensis, a decrease in virulence was observed. AIM To evaluate the effect of attenuated N. brasiliensis strains on the development of lesions in an established mycetoma infection. METHODS Female 8-12-week-old BALB/c mice were injected with N. brasiliensis suspension to establish a mycetoma. Sixty mice were selected and divided into three groups: two of these groups were inoculated in the dorsum with N. brasiliensis subcultured 200 and 400 times, respectively, while the third group served as control. The thickness of each lesion was measured with calipers every week for 12 weeks. RESULTS After 12 weeks, we observed that inoculation of 1 × 105 colony-forming units of attenuated N. brasiliensis strains was able to modify the natural history of the infection, with a decrease in the size of the lesions, particularly with P400, compared with the control group (P < 0.01). CONCLUSION In this experimental evaluation of an immunomodulatory therapy with attenuated N. brasiliensis strains in a murine model, there was a greater stability in the size of the lesion over time in BALB/c mice inoculated with the P400 strain. This treatment could open the possibility of using the attenuated strain as immunomodulatory therapy in patients recalcitrant to standard therapy, with high risk of dissemination or who develop drug-related adverse effects.
Collapse
Affiliation(s)
- J A García-Lozano
- Dermatology Service, Hospital Universitario 'Dr. José E. González', Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - C C García-Berlanga
- Dermatology Service, Hospital Universitario 'Dr. José E. González', Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - R T Viveros-Rosado
- Dermatology Service, Hospital Universitario 'Dr. José E. González', Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - J Ocampo-Candiani
- Dermatology Service, Hospital Universitario 'Dr. José E. González', Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - J Vargas-Villarreal
- Northeast Biomedical Research Centre, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - L Vera-Cabrera
- Dermatology Service, Hospital Universitario 'Dr. José E. González', Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
11
|
Pulkkinen K, Pekkala N, Ashrafi R, Hämäläinen DM, Nkembeng AN, Lipponen A, Hiltunen T, Valkonen JK, Taskinen J. Effect of resource availability on evolution of virulence and competition in an environmentally transmitted pathogen. FEMS Microbiol Ecol 2019; 94:4962392. [PMID: 29659817 DOI: 10.1093/femsec/fiy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/21/2023] Open
Abstract
Understanding ecological and epidemiological factors driving pathogen evolution in contemporary time scales is a major challenge in modern health management. Pathogens that replicate outside the hosts are subject to selection imposed by ambient environmental conditions. Increased nutrient levels could increase pathogen virulence by pre-adapting for efficient use of resources upon contact to a nutrient rich host or by favouring transmission of fast-growing virulent strains. We measured changes in virulence and competition in Flavobacterium columnare, a bacterial pathogen of freshwater fish, under high and low nutrient levels. To test competition between strains in genotype mixtures, we developed a quantitative real-time PCR assay. We found that a virulent strain maintained its virulence and outcompeted less virulent strains independent of the nutrient level and resource renewal rate while a less virulent strain further lost virulence in chemostats under low nutrient level and over long-term serial culture under high nutrient level. Our results suggest that increased outside-host nutrient levels might maintain virulence in less virulent strains and increase their contribution to epidemics in aquaculture. The results highlight a need to further explore the role of resource in the outside-host environment in maintaining strain diversity and driving evolution of virulence among environmentally growing pathogens.
Collapse
Affiliation(s)
- Katja Pulkkinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Nina Pekkala
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Roghaieh Ashrafi
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä,Finland
| | - Dorrit M Hämäläinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Aloysius N Nkembeng
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, P. O. Box 1627, (Neulaniementie 2), University of Eastern Finland, Kuopio, Finland
| | - Teppo Hiltunen
- Department of Microbiology, P. O. Box 56, (Viikinkaari 9), University of Helsinki, Helsinki, Finland
| | - Janne K Valkonen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä,Finland
| | - Jouni Taskinen
- Department of Biological and Environmental Science, P. O. Box 35, (Survontie 9), University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
12
|
Yasuike M, Nishiki I, Iwasaki Y, Nakamura Y, Fujiwara A, Shimahara Y, Kamaishi T, Yoshida T, Nagai S, Kobayashi T, Katoh M. Analysis of the complete genome sequence of Nocardia seriolae UTF1, the causative agent of fish nocardiosis: The first reference genome sequence of the fish pathogenic Nocardia species. PLoS One 2017; 12:e0173198. [PMID: 28257489 PMCID: PMC5336288 DOI: 10.1371/journal.pone.0173198] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/16/2017] [Indexed: 01/15/2023] Open
Abstract
Nocardiosis caused by Nocardia seriolae is one of the major threats in the aquaculture of Seriola species (yellowtail; S. quinqueradiata, amberjack; S. dumerili and kingfish; S. lalandi) in Japan. Here, we report the complete nucleotide genome sequence of N. seriolae UTF1, isolated from a cultured yellowtail. The genome is a circular chromosome of 8,121,733 bp with a G+C content of 68.1% that encodes 7,697 predicted proteins. In the N. seriolae UTF1 predicted genes, we found orthologs of virulence factors of pathogenic mycobacteria and human clinical Nocardia isolates involved in host cell invasion, modulation of phagocyte function and survival inside the macrophages. The virulence factor candidates provide an essential basis for understanding their pathogenic mechanisms at the molecular level by the fish nocardiosis research community in future studies. We also found many potential antibiotic resistance genes on the N. seriolae UTF1 chromosome. Comparative analysis with the four existing complete genomes, N. farcinica IFM 10152, N. brasiliensis HUJEG-1 and N. cyriacigeorgica GUH-2 and N. nova SH22a, revealed that 2,745 orthologous genes were present in all five Nocardia genomes (core genes) and 1,982 genes were unique to N. seriolae UTF1. In particular, the N. seriolae UTF1 genome contains a greater number of mobile elements and genes of unknown function that comprise the differences in structure and gene content from the other Nocardia genomes. In addition, a lot of the N. seriolae UTF1-specific genes were assigned to the ABC transport system. Because of limited resources in ocean environments, these N. seriolae UTF1 specific ABC transporters might facilitate adaptation strategies essential for marine environment survival. Thus, the availability of the complete N. seriolae UTF1 genome sequence will provide a valuable resource for comparative genomic studies of N. seriolae isolates, as well as provide new insights into the ecological and functional diversity of the genus Nocardia.
Collapse
Affiliation(s)
- Motoshige Yasuike
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
- * E-mail: (AF); (MY)
| | - Issei Nishiki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Yuki Iwasaki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Yoji Nakamura
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Atushi Fujiwara
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
- * E-mail: (AF); (MY)
| | - Yoshiko Shimahara
- Research Center of Fish Diseases, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Saiki, Oita, Japan
| | - Takashi Kamaishi
- Fisheries Agency, Ministry of Agriculture, Forestry and Fisheries, Chiyoda-ku, Tokyo, Japan
| | | | - Satoshi Nagai
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Takanori Kobayashi
- Headquarters, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Masaya Katoh
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| |
Collapse
|