1
|
Almeida AM, Ali SA, Ceciliani F, Eckersall PD, Hernández-Castellano LE, Han R, Hodnik JJ, Jaswal S, Lippolis JD, McLaughlin M, Miller I, Mohanty AK, Mrljak V, Nally JE, Nanni P, Plowman JE, Poleti MD, Ribeiro DM, Rodrigues P, Roschitzki B, Schlapbach R, Starič J, Yang Y, Zachut M. Domestic animal proteomics in the 21st century: A global retrospective and viewpoint analysis. J Proteomics 2021; 241:104220. [PMID: 33838350 DOI: 10.1016/j.jprot.2021.104220] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Animal production and health are of significant economic importance, particularly regarding the world food supply. Animal and veterinary sciences have evolved immensely in the past six decades, particularly in genetics, nutrition, housing, management and health. To address major challenges such as those posed by climate change or metabolic disorders, it is of utmost importance to use state-of-the-art research tools. Proteomics and the other post-genomic tools (transcriptomics or metabolomics) are among them. Proteomics has experienced a considerable development over the last decades. This brought developments to different scientific fields. The use and adoption of proteomics tools in animal and veterinary sciences has some limitations (database availability or access to proteomics platforms and funding). As a result, proteomics' use by animal science researchers varies across the globe. In this viewpoint article, we focus on the developments of domestic animal proteomics over the last decade in different regions of the globe and how the researchers have coped with such challenges. In the second part of the article, we provide examples of funding, educational and laboratory establishment initiatives designed to foster the development of (animal-based) proteomics. International scientific collaboration is a definitive and key feature in the development and advancement of domestic animal proteomics. SIGNIFICANCE: Animal production and health are very important for food supply worldwide particularly as a source of proteinaceous foods. Animal and veterinary sciences have evolved immensely in the last decades. In order to address the major contemporary challenges facing animal and veterinary sciences, it is of utmost importance to use state-of-the-art research tools such as Proteomics and other Omics. Herein, we focus on the major developments in domestic animal proteomics worldwide during the last decade and how different regions of the world have used the technology in this specific research field. We address also major international efforts aiming to increase the research output in this area and highlight the importance of international cooperation to address specific problems inherent to domestic animal proteomics.
Collapse
Affiliation(s)
- André M Almeida
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milano, Italy
| | - P David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lorenzo E Hernández-Castellano
- Department of Animal Science, AU-Foulum, Aarhus University, 8830 Tjele, Denmark; Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jaka J Hodnik
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Shalini Jaswal
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, United States
| | - Mark McLaughlin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Ingrid Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Vladimir Mrljak
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Jarlath E Nally
- Ruminant Diseases and Immunology Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, United States
| | - Paolo Nanni
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | | - Mirele D Poleti
- FZEA - Faculty of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte - 225, 13635-900 Pirassununga, SP, Brazil
| | - David M Ribeiro
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Pedro Rodrigues
- CCMAR - Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology ETH Zurich / University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Jože Starič
- Veterinary Faculty, Clinic for Reproduction and Large Animals - Section for Ruminants, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization/Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
2
|
Sabna S, Kamboj DV, Kumar RB, Babele P, Rajoria S, Gupta MK, Alam SI. Strategy for the enrichment of protein biomarkers from diverse bacterial select agents. Protein Pept Lett 2021; 28:1071-1082. [PMID: 33820508 DOI: 10.2174/0929866528666210405160131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some pathogenic bacteria can be potentially used for nefarious applications in the event of bioterrorism or biowarfare. Accurate identification of biological agent from clinical and diverse environmental matrices is of paramount importance for implementation of medical countermeasures and biothreat mitigation. OBJECTIVE A novel methodology is reported here for the development of a novel enrichment strategy for the generally conserved abundant bacterial proteins for an accurate downstream species identification using tandem MS analysis in biothreat scenario. METHODS Conserved regions in the common bacterial protein markers were analyzed using bioinformatic tools and stitched for a possible generic immuno-capture for an intended downstream MS/MS analysis. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of 60 kDa chaperonin GroEL. Hyper-immune serum was raised against recombinant synthetic GroEL protein. RESULTS The conserved regions of common bacterial proteins were stitched for a possible generic immuno-capture and subsequent specific identification by tandem MS using variable regions of the molecule. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of GroEL. In a proof-of-concept study, hyper-immune serum raised against recombinant synthetic GroEL protein exhibited reactivity with ~60 KDa proteins from the cell lysates of three bacterial species tested. CONCLUSION The envisaged methodology can lead to the development of a novel enrichment strategy for the abundant bacterial proteins from complex environmental matrices for the downstream species identification with increased sensitivity and substantially reduce the time-to-result.
Collapse
Affiliation(s)
- Sasikumar Sabna
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior. India
| | | | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior-474002. India
| |
Collapse
|
3
|
Immunoproteomic analysis of Clostridium botulinum type B secretome for identification of immunogenic proteins against botulism. Biotechnol Lett 2021; 43:1019-1036. [PMID: 33629143 PMCID: PMC7904509 DOI: 10.1007/s10529-021-03091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022]
Abstract
Objectives To identify immunogenic proteins of C. botulinum type B secretome by immunoproteomic analysis. Results In the present study, an attempt was made to elucidate the vaccine candidates/diagnostic molecules against botulism using immuno proteomic approach. C. botulinum type B secretome was elucidated when it was grown in TPGY as well as CMM media. Predominant 51 proteins were identified in both the media using 2-DE and mass spectrometry analysis. 2D gels (CMM & TPGY) were probed with respected proteins mice antiserum and obtained 17 and 10 immunogenic proteins in TPGY as well as CMM media respectively. Hypothetical protein CLOSPO_00563, ornithine carbamoyl transferase, FlaA, molecular chaperone GroEL and secreted protease proteins were found as the common immuno dominant proteins in both media. Polyclonal Antibodies raised against C. botulinum types A and E showed cross-reactivity with secretome C. botulinum type B at the lowest dilution (1:1000) but did not show cross reactivity with highest dilution (1:30,000) with C. botulinum type B secretome. Polyclonal antibodies against C. botulinum type F secretome did not show cross reactivity with C. botulinum type B secretome. Conclusions Identified immunogenic proteins can be used as vaccine candidates and diagnostic markers for the infant and wound botulism but common immunogenic proteins may be the best vaccine candidate molecule for development of vaccine as well as diagnostic system against the infant and wound botulism. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03091-4.
Collapse
|
4
|
Pacyga K, Razim A, Martirosian G, Aptekorz M, Szuba A, Gamian A, Myc A, Górska S. The Bioinformatic and In Vitro Studies of Clostridioides Difficile Aminopeptidase M24 Revealed the Immunoreactive KKGIK Peptide. Cells 2020; 9:cells9051146. [PMID: 32392707 PMCID: PMC7291276 DOI: 10.3390/cells9051146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023] Open
Abstract
Clostridioides difficile (CD) is a Gram-positive pathogen responsible for CD-associated disease (CDAD), which is characterized by symptoms ranging from mild diarrhea to pseudomembranous colitis. This work is an attempt to respond to the need of novel methods for CD infection (CDI) prevention, since the number of CDI cases is still rising. A bioinformatics approach was applied to design twenty-one peptides consisting of in silico predicted linear B-cell and T-cell epitopes of aminopeptidase M24 from CD. These peptides were mapped for epitopes exploiting PEPSCAN procedure and using sera obtained from CD infected patients, umbilical cord blood, and healthy volunteers. Two new CD epitopes, 131KKGIK135 and 184KGTSTHVIT192, were identified and characterized. Immunoreactivity of the synthetic biotinylated 131KKGIK135 epitope was significantly higher compared to 184KGTSTHVIT192 epitope in Enzyme-Linked Immunosorbent Assay (ELISA) with umbilical cord blood and CDI patients' sera. Hereafter, the conjugate of bovine serum albumin and epitope 131KKGIK135 was evaluated in vitro on lung epithelial cell line. In vitro, a significant induction of IL-6 by conjugate was observed, thereby we postulate that this new 131KKGIK135 epitope possesses immunostimulating properties suggesting possibility of its use in a vaccine against Clostridioides difficile.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
- Correspondence: (A.R.); (S.G.); Tel.: +48-71-3371-172 (ext. 183) (A.R.); +48-71-3371-172 (ext. 148) (S.G.)
| | - Gayane Martirosian
- Department of Medical Microbiology, School of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (G.M.); (M.A.)
| | - Małgorzata Aptekorz
- Department of Medical Microbiology, School of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (G.M.); (M.A.)
| | - Andrzej Szuba
- Division of Angiology, Wroclaw Medical University, 51-618 Wroclaw, Poland;
- Department of Internal Medicine, 4th Military Hospital in Wroclaw, 50-981 Wroclaw, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
| | - Andrzej Myc
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
- MNIMBS, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-5648, USA
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Correspondence: (A.R.); (S.G.); Tel.: +48-71-3371-172 (ext. 183) (A.R.); +48-71-3371-172 (ext. 148) (S.G.)
| |
Collapse
|
5
|
Akerele G, Ramadan N, Renu S, Renukaradhya GJ, Shanmugasundaram R, Selvaraj RK. In vitro characterization and immunogenicity of chitosan nanoparticles loaded with native and inactivated extracellular proteins from a field strain of Clostridium perfringens associated with necrotic enteritis. Vet Immunol Immunopathol 2020; 224:110059. [PMID: 32408182 DOI: 10.1016/j.vetimm.2020.110059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
There are currently no licensed vaccines against Clostridium perfringens which causes necrotic enteritis in poultry. Chitosan nanoparticles were formulated with native (CN) or toxoids (CT) of extracellular proteins (ECP) of C. perfringens, both surface-tagged with Salmonella flagellar proteins. In a pH stability assay, CN and CT nanoparticles released 6% and 0% of their protein at 8.0 pH. In a protein release assay, CN and CT nanoparticles released 16% and 10% of their protein respectively at 7.4 pH after 24 h. CN and CT nanoparticles incubated at 100 μg/mL PBS with Chicken RBCs released 1% and 0% hemoglobin respectively. Ninety broilers were randomly assigned to treatments; sham-vaccinated (Control), CN-vaccinated (CN), and CT-vaccinated (CT). Each bird was orally gavaged with 50 μg vaccine in 0.5 mL PBS or 0.5 mL PBS only on d 0, 3, 7 and 14 of age. At 21 d of age, the CN group had higher anti-ECP IgA than control (P < 0.05). At 21 d of age, the CN and CT group had higher anti-ECP IgA than control (P < 0.05). At 17 d of age, the CN group had higher anti-flagellar IgG than control (P < 0.05). At 10 d of age, the CN group had higher anti-flagellar IgA than control (P < 0.05). Splenic T cells from chickens in the CN and CT group ex-vivo stimulated with 0.05 mg/mL ECP, had higher proliferation control (P < 0.05, P < 0.01 respectively). Splenic T cells from chickens in the CN and CT groups ex-vivo stimulated with 0.1 mg/mL ECP had proliferation than control (P < 0.05). Pooled serum from 17 d of age CN and CT-vaccinated birds partially neutralized toxins in 50 μg of ECP (P < 0.05). Pooled serum from 28 d of age CN-vaccinated birds also partially neutralized toxins in 50 μg of ECP. The result from this study indicates the potential for chitosan loaded with Clostridium perfringens extracellular proteins to be applied to necrotic enteritis challenge studies.
Collapse
Affiliation(s)
- Gabriel Akerele
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, United States
| | - Nour Ramadan
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, 44691, OH, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, 44691, OH, United States
| | | | - Ramesh K Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
6
|
Martín-Galiano AJ, McConnell MJ. Using Omics Technologies and Systems Biology to Identify Epitope Targets for the Development of Monoclonal Antibodies Against Antibiotic-Resistant Bacteria. Front Immunol 2019; 10:2841. [PMID: 31921119 PMCID: PMC6914692 DOI: 10.3389/fimmu.2019.02841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, antimicrobial resistance has emerged as an important threat to public health due to the global dissemination of multidrug-resistant strains from several bacterial species. This worrisome trend, in addition to the paucity of new antibiotics with novel mechanisms of action in the development pipeline, warrants the development of non-antimicrobial approaches to combating infection caused by these isolates. Monoclonal antibodies (mAbs) have emerged as highly effective molecules for the treatment of multiple diseases. However, in spite of the fact that antibodies play an important role in protective immunity against bacteria, only three mAb therapies have been approved for clinical use in the treatment of bacterial infections. In the present review, we briefly outline the therapeutic potential of mAbs in the treatment of bacterial diseases and discuss how their development can be facilitated when assisted by “omics” technologies and interpreted under a systems biology paradigm. Specifically, methods employing large genomic, transcriptomic, structural, and proteomic datasets allow for the rational identification of epitopes. Ideally, these include those that are present in the majority of circulating isolates, highly conserved at the amino acid level, surface-exposed, located on antigens essential for virulence, and expressed during critical stages of infection. Therefore, these knowledge-based approaches can contribute to the identification of high-value epitopes for the development of effective mAbs against challenging bacterial clones.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
7
|
Babele P, Verma S, Kumar RB, Bhagyawant SS, Kamboj DV, Alam SI. Elucidation of protein biomarkers in plasma and urine for epsilon toxin exposure in mouse model. Anaerobe 2019; 59:76-91. [PMID: 31145997 DOI: 10.1016/j.anaerobe.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
Epsilon toxin (ETX) is the major virulence determinant of C. perfringens type B or type D strains, causing diseases in animals, besides being a listed biological and toxin warfare (BTW) agent. Keeping in mind the high lethality and the rapid onset of clinical manifestations, early diagnosis of epsilon toxin exposure is of paramount importance for implementation of appropriate medical countermeasures. Using a 2DE-MS approach, the present study is the first comprehensive proteomic elucidation of ETX-induced protein markers in the mouse model, providing putative targets for early diagnosis of ETX exposure. A total of 52 unique proteins showing ETX-induced modulations were identified in plasma and urine samples. Fibrinogen, apolipoprotein, serum amyloid protein, plasminogen, serum albumin, glutathione peroxidase, transferrin, major urinary protein 2, haptoglobin, transthyretin, and vitamin D-binding protein were among the proteins observed in more than one dataset with altered abundance after the ETX-intoxication. The predicted localization, function, and interaction of the ETX-modulated proteins in the plasma and urine indicated involvement of multiple pathways; extracellular proteins, followed by macromolecular complexes associated with blood coagulation and plasminogen activating cascade, being the most prominent among others. The putative markers elucidated here warrants further validation and can be of immense value for the early diagnosis of ETX exposure.
Collapse
Affiliation(s)
- Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Smarti Verma
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | | | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
8
|
Liu D, Yang Z, Chen Y, Zhuang W, Niu H, Wu J, Ying H. Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:315. [PMID: 30479660 PMCID: PMC6245871 DOI: 10.1186/s13068-018-1316-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Biofilms are cell communities wherein cells are embedded in a self-produced extracellular polymeric substances (EPS). The biofilm of Clostridium acetobutylicum confers the cells superior phenotypes and has been extensively exploited to produce a variety of liquid biofuels and bulk chemicals. However, little has been known about the physiology of C. acetobutylicum in biofilm as well as the composition and biosynthesis of the EPS. Thus, this study is focused on revealing the cell physiology and EPS composition of C. acetobutylicum biofilm. RESULTS Here, we revealed a novel lifestyle of C. acetobutylicum in biofilm: elimination of sporulation and vegetative growth. Extracellular polymeric substances and wire-like structures were also observed in the biofilm. Furthermore, for the first time, the biofilm polysaccharides and proteins were isolated and characterized. The biofilm contained three heteropolysaccharides. The major fraction consisted of predominantly glucose, mannose and aminoglucose. Also, a great variety of proteins including many non-classically secreted proteins moonlighting as adhesins were found considerably present in the biofilm, with GroEL, a S-layer protein and rubrerythrin being the most abundant ones. CONCLUSIONS This study evidenced that vegetative C. acetobutylicum cells rather than commonly assumed spore-forming cells were essentially the solvent-forming cells. The abundant non-classically secreted moonlighting proteins might be important for the biofilm formation. This study provides the first physiological and molecular insights into C. acetobutylicum biofilm which should be valuable for understanding and development of the biofilm-based processes.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Zhengjiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Huanqing Niu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| |
Collapse
|
9
|
Identification of a new diagnostic antigen for glanders using immunoproteome analysis. Comp Immunol Microbiol Infect Dis 2017; 53:26-32. [PMID: 28750864 DOI: 10.1016/j.cimid.2017.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/21/2022]
Abstract
Glanders is a disease of horses, donkeys and mules. The causative agent Burkholderia mallei, is a biorisk group 3 pathogen and is also a biothreat agent. Simple and rapid diagnostic tool is essential for control of glanders. Using a proteomic approach and immunoblotting with equine sera, we identified 12 protein antigens that may have diagnostic potential. Various immunoreactive proteins e.g. GroEL, translation elongation factor Tu, elongation factor Ts, arginine deiminase, malate dehydrogenase, DNA directed RNA polymerase subunit alpha were identified on 2-dimentional immunoblots. One of these proteins, GroEL, was cloned and expressed in E. coli and purified using Ni-NTA affinity chromatography. The recombinant GroEL protein was evaluated in ELISA format on a panel of glanders positive (n=49) and negative (n=79) equine serum samples to determine its diagnostic potential. The developed ELISA had a sensitivity and specificity of 96 and 98.7% respectively. The results of this study highlight the potential of GroEL in serodiagnosis of glanders.
Collapse
|
10
|
Rajoria S, Kumar RB, Gupta P, Alam SI. Postexposure Recovery and Analysis of Biological Agent in a Simulated Biothreat Scenario Using Tandem Mass Spectrometry. Anal Chem 2017; 89:4062-4070. [DOI: 10.1021/acs.analchem.6b04862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sakshi Rajoria
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Pallavi Gupta
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| |
Collapse
|
11
|
Gaur R, Alam SI, Kamboj DV. Immunoproteomic Analysis of Antibody Response of Rabbit Host Against Heat-Killed Francisella tularensis Live Vaccine Strain. Curr Microbiol 2017; 74:499-507. [PMID: 28233060 DOI: 10.1007/s00284-017-1217-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/10/2017] [Indexed: 11/24/2022]
Abstract
Francisella tularensis, the causative agent of tularemia, has attained the status of one of the high priority agents that could be used in the act of bioterrorism. Currently, there is no licensed vaccine for this highly infectious intracellular pathogen. Being a listed 'Category A' agent of the U.S. Center for Disease Control and Prevention (CDC), vaccines and therapeutics are immediately required against this pathogen. In this study, an immunoproteomic approach based on the techniques of 2-dimensional gel electrophoresis (2DE) and immunoblotting combined with mass spectrometry (MS) was used for elucidation of immunogenic components and putative vaccine candidates. Whole-cell soluble protein extract of F. tularensis LVS (Ft LVS) was separated by 2DE, and immunoblots were developed with sera raised in rabbit after immunization with heat-killed Ft LVS. A total of 28 immunoreactive proteins were identified by tandem mass spectrometry. Rabbit immunoproteome of F. tularensis was compared with those previously reported using sera from human patients and in murine model. Out of 28 immunoreactive proteins identified in this study, 12 and 17 overlapping proteins were recognized by human and murine sera, respectively. Nine proteins were found immunogenic in all the three hosts, while eight new immunogenic proteins were found in this study. Identified immunoreactive proteins may find application in design and development of protein subunit vaccine for tularemia.
Collapse
Affiliation(s)
- Ritu Gaur
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, 474002, India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
12
|
Kumar RB, Alam SI. Effect of continuous sub-culturing on infectivity of Clostridium perfringens ATCC13124 in mouse gas gangrene model. Folia Microbiol (Praha) 2017; 62:343-353. [PMID: 28213749 DOI: 10.1007/s12223-017-0503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
Clostridium perfringens is a Validated Biological Agent and a pathogen of medical, veterinary, and military significance. Gas gangrene is the most destructive of all the clostridial diseases and is caused by C. perfringens type A strains wherein the infection spreads quickly (several inches per hour) with production of gas. Influence of repeated in vitro cultivation on the infectivity of C. perfringens was investigated by comparing the surface proteins of laboratory strain and repository strains of the bacterium using 2DE-MS approach. In order to optimize host-pathogen interaction during experimental gas gangrene infection, we also explored the role of particulate matrix on ability of C. perfringens to cause gas gangrene.
Collapse
Affiliation(s)
- Ravi Bhushan Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
13
|
Vazquez-Gutierrez P, Stevens MJA, Gehrig P, Barkow-Oesterreicher S, Lacroix C, Chassard C. The extracellular proteome of two Bifidobacterium species reveals different adaptation strategies to low iron conditions. BMC Genomics 2017; 18:41. [PMID: 28061804 PMCID: PMC5219805 DOI: 10.1186/s12864-016-3472-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/26/2016] [Indexed: 12/30/2022] Open
Abstract
Background Bifidobacteria are among the first anaerobic bacteria colonizing the gut. Bifidobacteria require iron for growth and their iron-sequestration mechanisms are important for their fitness and possibly inhibit enteropathogens. Here we used combined genomic and proteomic analyses to characterize adaptations to low iron conditions of B. kashiwanohense PV20-2 and B. pseudolongum PV8-2, 2 strains isolated from the feces of iron-deficient African infants and selected for their high iron-sequestering ability. Results Analyses of the genome contents revealed evolutionary adaptation to low iron conditions. A ferric and a ferrous iron operon encoding binding proteins and transporters were found in both strains. Remarkably, the ferric iron operon of B. pseudolongum PV8-2 is not found in other B. pseudolongum strains and likely acquired via horizontal gene transfer. The genome B. kashiwanohense PV20-2 harbors a unique region encoding genes putatively involved in siderophore production. Additionally, the secretomes of the two strains grown under low-iron conditions were analyzed using a combined genomic-proteomic approach. A ferric iron transporter was found in the secretome of B. pseudolongum PV8-2, while ferrous binding proteins were detected in the secretome of B. kashiwanohense PV20-2, suggesting different strategies to take up iron in the strains. In addition, proteins such as elongation factors, a glyceraldehyde-3-phosphate dehydrogenase, and the stress proteins GroEL and DnaK were identified in both secretomes. These proteins have been previously associated with adhesion of lactobacilli to epithelial cells. Conclusion Analyses of the genome and secretome of B. kashiwanohense PV20-2 and B. pseudolongum PV8-2 revealed different adaptations to low iron conditions and identified extracellular proteins for iron transport. The identified extracellular proteins might be involved in competition for iron in the gastrointestinal tract. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3472-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pamela Vazquez-Gutierrez
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Marc J A Stevens
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Peter Gehrig
- Functional Genomics Center Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
| | - Christophe Chassard
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.,Present Address: Institut National de la Recherche Agronomique, UR 545 URF, 15000, Aurillac, France
| |
Collapse
|
14
|
Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses. Sci Rep 2016; 6:32593. [PMID: 27581498 PMCID: PMC5007645 DOI: 10.1038/srep32593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain.
Collapse
|
15
|
Secretome, surfome and immunome: emerging approaches for the discovery of new vaccine candidates against bacterial infections. World J Microbiol Biotechnol 2016; 32:155. [DOI: 10.1007/s11274-016-2107-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
16
|
Alam SI, Dwivedi P. Putative function of hypothetical proteins expressed by Clostridium perfringens type A strains and their protective efficacy in mouse model. INFECTION GENETICS AND EVOLUTION 2016; 44:147-156. [PMID: 27353489 DOI: 10.1016/j.meegid.2016.06.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/26/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
The whole genome sequencing and annotation of Clostridium perfringens strains revealed several genes coding for proteins of unknown function with no significant similarities to genes in other organisms. Our previous studies clearly demonstrated that hypothetical proteins CPF_2500, CPF_1441, CPF_0876, CPF_0093, CPF_2002, CPF_2314, CPF_1179, CPF_1132, CPF_2853, CPF_0552, CPF_2032, CPF_0438, CPF_1440, CPF_2918, CPF_0656, and CPF_2364 are genuine proteins of C. perfringens expressed in high abundance. This study explored the putative role of these hypothetical proteins using bioinformatic tools and evaluated their potential as putative candidates for prophylaxis. Apart from a group of eight hypothetical proteins (HPs), a putative function was predicted for the rest of the hypothetical proteins using one or more of the algorithms used. The phylogenetic analysis did not suggest an evidence of a horizontal gene transfer event except for HP CPF_0876. HP CPF_2918 is an abundant extracellular protein, unique to C. perfringens species with maximum strain coverage and did not show any significant match in the database. CPF_2918 was cloned, recombinant protein was purified to near homogeneity, and probing with mouse anti-CPF_2918 serum revealed surface localization of the protein in C. perfringens ATCC13124 cultures. The purified recombinant CPF_2918 protein induced antibody production, a mixed Th1 and Th2 kind of response, and provided partial protection to immunized mice in direct C. perfringens challenge.
Collapse
Affiliation(s)
- Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Pratistha Dwivedi
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India
| |
Collapse
|
17
|
Martinović T, Andjelković U, Gajdošik MŠ, Rešetar D, Josić D. Foodborne pathogens and their toxins. J Proteomics 2016; 147:226-235. [PMID: 27109345 DOI: 10.1016/j.jprot.2016.04.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Foodborne pathogens, mostly bacteria and fungi, but also some viruses, prions and protozoa, contaminate food during production and processing, but also during storage and transport before consuming. During their growth these microorganisms can secrete different components, including toxins, into the extracellular environment. Other harmful substances can be also liberated and can contaminate food after disintegration of food pathogens. Some bacterial and fungal toxins can be resistant to inactivation, and can survive harsh treatment during food processing. Many of these molecules are involved in cellular processes and can indicate different mechanisms of pathogenesis of foodborne organisms. More knowledge about food contaminants can also help understand their inactivation. In the present review the use of proteomics, peptidomics and metabolomics, in addition to other foodomic methods for the detection of foodborne pathogenic fungi and bacteria, is overviewed. Furthermore, it is discussed how these techniques can be used for discovering biomarkers for pathogenicity of foodborne pathogens, determining the mechanisms by which they act, and studying their resistance upon inactivation in food of animal and plant origin. BIOLOGICAL SIGNIFICANCE Comprehensive and comparative view into the genome and proteome of foodborne pathogens of bacterial or fungal origin and foodomic, mostly proteomic, peptidomic and metabolomic investigation of their toxin production and their mechanism of action is necessary in order to get further information about their virulence, pathogenicity and survival under stress conditions. Furthermore, these data pave the way for identification of biomarkers to trace sources of contamination with food-borne microorganisms and their endo- and exotoxins in order to ensure food safety and prevent the outbreak of food-borne diseases. Therefore, detection of pathogens and their toxins during production, transport and before consume of food produce, as well as protection against food spoilage is a task of great social, economic and public health importance.
Collapse
Affiliation(s)
- Tamara Martinović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Uroš Andjelković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Martina Šrajer Gajdošik
- Department of Chemistry, University of J. J. Strossmayer, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Dina Rešetar
- Centre of High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
18
|
Proteomic analysis and identification of cell surface-associated proteins of Clostridium chauvoei. Anaerobe 2016; 39:77-83. [PMID: 26971466 DOI: 10.1016/j.anaerobe.2016.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 01/18/2023]
Abstract
Blackleg is a highly fatal disease of cattle and sheep, caused by Clostridium chauvoei, a Gram positive, anaerobic, spore forming bacteria. Cell surface-associated proteins play a major role in inducing the protective immunity. However, the identity of a majority of cell surface-associated proteins of C. chauvoei is not known. In the present investigation, we have used SDS-PAGE, 2D-gel electrophoresis and Western blotting followed by mass spectrometry to identify cell surface-associated proteins of C. chauvoei. Among the identified proteins, which have shown to offer protective antigencity in other bacteria, Enolase, Chaperonin, Ribosomal protein L10, Glycosyl Hydrolase and Flavoprotein were characterized by sequencing and their overexpression in Escherichia coli. In conclusion, cell surface-associated proteins were identified using proteomic approach and the genes for the immunoreactive proteins were expressed, which may prove to be potential diagnostic or vaccine candidates.
Collapse
|
19
|
Chaubey K, Rao MK, Alam SI, Waghmare C, Bhattacharya BK. Increased expression of immune modulator proteins and decreased expression of apolipoprotein A-1 and haptoglobin in blood plasma of sarin exposed rats. Chem Biol Interact 2016; 246:36-44. [DOI: 10.1016/j.cbi.2016.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/28/2022]
|
20
|
Dwivedi P, Alam SI, Kumar O, Kumar RB. Lipoproteins from Clostridium perfringens and their protective efficacy in mouse model. INFECTION GENETICS AND EVOLUTION 2015; 34:434-43. [DOI: 10.1016/j.meegid.2015.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/10/2023]
|
21
|
Dwivedi P, Alam SI, Kumar O, Kumar RB. Comparative analysis of extractable proteins from Clostridium perfringens type A and type C strains showing varying degree of virulence. Anaerobe 2015; 35:77-91. [PMID: 26238688 DOI: 10.1016/j.anaerobe.2015.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023]
Abstract
The prevailing scenario of bioterrorism warrants development of medical countermeasures with expanded coverage of select agents. Clostridium perfringens is a pathogen of medical, veterinary and military importance, and has been listed as Validated Biological Agent. We employed 2DE-MS approach to identify a total of 134 unique proteins (529 protein spot features) from the extractable proteome of four type A and type C strains. Proteins showing altered expression under host-simulated conditions from virulent type A strain (ATCC13124) were also elucidated. Significant among the differentially expressed proteins were elongation factor, molecular chaperones, ribosomal proteins, carbamoyl phosphate synthase, clpB protein, choloylglycine hydrolase, phosphopyruvate hydratase, and trigger factor. Predictive elucidation, of putative virulence associated proteins and sequence conservation pattern of selected candidates, was carried out using homologous proteins from other bacterial select agents to screen for the commonality of putative antigenic determinants. Pathogens (17 select agents) were observed to form three discrete clusters; composition of I and II being consistent in most of the phylogenetic reconstructions. This work provides a basis for further validation of putative candidate proteins as prophylactic agents and for their ability to provide protection against clusters of pathogenic select bacterial agents; aimed at mitigating the shadows of biothreat.
Collapse
Affiliation(s)
- Pratistha Dwivedi
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Om Kumar
- Defence Research and Development Organisation, New Delhi, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India
| |
Collapse
|
22
|
Abstract
We are rapidly returning to a world in which bacterial infections are a major health issue. Pathogenic bacteria are able to colonize and cause pathology due to the possession of virulence factors such as adhesins, invasins, evasins and toxins. These are generally specifically evolved proteins with selective actions. It is, therefore, surprising that most human bacterial pathogens employ moonlighting proteins as virulence factors. Currently, >90 bacterial species employ one or more moonlighting protein families to aid colonization and induce disease. These organisms employ 90 moonlighting bacterial protein families and these include enzymes of the glycolytic pathway, tricarboxylic acid (TCA) cycle, hexosemonophosphate shunt, glyoxylate cycle and a range of other metabolic enzymes, proteases, transporters and, also, molecular chaperones and protein-folding catalysts. These proteins have homologues in eukaryotes and only a proportion of the moonlighting proteins employed are solely bacterial in origin. Bacterial moonlighting proteins can be divided into those with single moonlighting functions and those with multiple additional biological actions. These proteins contribute significantly to the population of virulence factors employed by bacteria and some are obvious therapeutic targets. Where examined, bacterial moonlighting proteins bind to target ligands with high affinity. A major puzzle is the evolutionary mechanism(s) responsible for bacterial protein moonlighting and a growing number of highly homologous bacterial moonlighting proteins exhibit widely different moonlighting actions, suggesting a lack in our understanding of the mechanism of evolution of protein active sites.
Collapse
|
23
|
Bhatia B, Ponia SS, Solanki AK, Dixit A, Garg LC. Identification of glutamate ABC-Transporter component in Clostridium perfringens as a putative drug target. Bioinformation 2014; 10:401-5. [PMID: 25187678 PMCID: PMC4135286 DOI: 10.6026/97320630010401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 01/17/2023] Open
Abstract
Clostridium perfringens is an anaerobic pathogen known to cause vast number of diseases in mammals and birds. Various toxins and hydrolysing enzymes released by the organism are responsible for the necrosis of soft tissues. Due to serious safety issues associated with current vaccines against C. perfringens, there is a need for new drug or vaccine targets. C. perfringens is extremely dependent on its host for nutrition which can be targeted for vaccine development or drug design. Therefore, it is of interest to identify the unique transport systems used by C. perfringens involved in uptake of essential amino acids that are synthesized by the host, so that therapeutic agents can be designed to target the specific transport systems. Use of bioinformatics tools resulted in the identification of a protein component of the glutamate transport system that is not present in the host. Analysis of the conservation profile of the protein domain indicated it to be a glutamate binding protein which also stimulates the ATPase activity of ATP Binding Cassettes (ABC) transporters. Homology modelling of the protein showed two distinct lobes, which is a characteristic of substrate binding proteins. This suggests that the carboxylates of glutamate might be stabilized by electrostatic interactions with basic residues as is observed with other binding proteins. Hence, the homology model of this potential drug target can be employed for in silico docking studies by suitable inhibitors.
Collapse
Affiliation(s)
- Bharti Bhatia
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
| | - Sanket Singh Ponia
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
| | - Amit Kumar Solanki
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
| | - Aparna Dixit
- School of Biotechnololgy, Jawaharlal Nehru University, New Delhi-110067, India
| | - Lalit C Garg
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
| |
Collapse
|
24
|
Modulation of neuronal proteome profile in response to Japanese encephalitis virus infection. PLoS One 2014; 9:e90211. [PMID: 24599148 PMCID: PMC3943924 DOI: 10.1371/journal.pone.0090211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/29/2014] [Indexed: 11/19/2022] Open
Abstract
In this study we have reported the in vivo proteomic changes during Japanese Encephalitis Virus (JEV) infection in combination with in vitro studies which will help in the comprehensive characterization of the modifications in the host metabolism in response to JEV infection. We performed a 2-DE based quantitative proteomic study of JEV-infected mouse brain as well as mouse neuroblastoma (Neuro2a) cells to analyze the host response to this lethal virus. 56 host proteins were found to be differentially expressed post JEV infection (defined as exhibiting ≥1.5-fold change in protein abundance upon JEV infection). Bioinformatics analyses were used to generate JEV-regulated host response networks which reported that the identified proteins were found to be associated with various cellular processes ranging from intracellular protein transport, cellular metabolism and ER stress associated unfolded protein response. JEV was found to invade the host protein folding machinery to sustain its survival and replication inside the host thereby generating a vigorous unfolded protein response, subsequently triggering a number of pathways responsible for the JEV associated pathologies. The results were also validated using a human cell line to correlate them to the human response to JEV. The present investigation is the first report on JEV-host interactome in in vivo model and will be of potential interest for future antiviral research in this field.
Collapse
|
25
|
Ghosh N, Goel AK, Alam SI. Exoproteome analysis of a novel strain of Bacillus cereus implicated in disease resembling cutaneous anthrax. INFECTION GENETICS AND EVOLUTION 2014; 22:1-11. [PMID: 24412723 DOI: 10.1016/j.meegid.2013.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/06/2013] [Accepted: 12/11/2013] [Indexed: 12/15/2022]
Abstract
Bacillus cereus belongs to B. cereus sensu lato group, shared by six other related species including Bacillus anthracis. B. anthracis is the causative agent for serious illness affecting a wide range of animals as well as humans and is a category A Biological and Toxin Warfare (BTW) agent. Recent studies indicate that a Bacillus species other than B. anthracis can cause anthrax-like disease and role of anthrax virulence plasmids (pXO1 and pXO2) on the pathogenicity of B. cereus has been documented. B. cereus strain TF5 was isolated from the tissue fluid of cutaneous anthrax-like skin lesions of a human patient from an anthrax endemic area in India. The strain harboured a PA gene, however, presence of pXO1 or pXO2-like plasmids could not be ascertained using reported primers. Abundant exoproteome of the strain in the early stationary phase was elucidated using a 2-DE MS approach and compared with that from a reference B. cereus strain. Analysis of proteins showing qualitative and quantitative differences between the two strains indicated an altered regulatory mechanism and putative role of S-layer protein and sphingomyelinase in the pathogenesis of strain TF5. Phylogenetic analysis of the S-layer protein indicated close affiliation of the strain with anthracis-like B. cereus strains such as B. cereus var. anthracis strain CI; whereas sphingomyelinase exhibited specific relationship with all the strains of B. anthracis apart from that with anthracis-like B. cereus strains.
Collapse
Affiliation(s)
- Neha Ghosh
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Ajay Kumar Goel
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| |
Collapse
|
26
|
Identification of a novel zinc metalloprotease through a global analysis of Clostridium difficile extracellular proteins. PLoS One 2013; 8:e81306. [PMID: 24303041 PMCID: PMC3841139 DOI: 10.1371/journal.pone.0081306] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis.
Collapse
|
27
|
The MprB extracytoplasmic domain negatively regulates activation of the Mycobacterium tuberculosis MprAB two-component system. J Bacteriol 2013; 196:391-406. [PMID: 24187094 DOI: 10.1128/jb.01064-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is an acid-fast pathogen of humans and the etiological agent of tuberculosis (TB). It is estimated that one-third of the world's population is latently (persistently) infected with M. tuberculosis. M. tuberculosis persistence is regulated, in part, by the MprAB two-component signal transduction system, which is activated by and mediates resistance to cell envelope stress. Here we identify MprAB as part of an evolutionarily conserved cell envelope stress response network and demonstrate that MprAB-mediated signal transduction is negatively regulated by the MprB extracytoplasmic domain (ECD). In particular, we report that deregulated production of the MprB sensor kinase, or of derivatives of this protein, negatively impacts M. tuberculosis growth. The observed growth attenuation is dependent on MprAB-mediated signal transduction and is exacerbated in strains of M. tuberculosis producing an MprB variant lacking its ECD. Interestingly, full-length MprB, and the ECD of MprB specifically, immunoprecipitates the Hsp70 chaperone DnaK in vivo, while overexpression of dnaK inhibits MprAB-mediated signal transduction in M. tuberculosis grown in the absence or presence of cell envelope stress. We propose that under nonstress conditions, or under conditions in which proteins present in the extracytoplasmic space are properly folded, signaling through the MprAB system is inhibited by the MprB ECD. Following exposure to cell envelope stress, proteins present in the extracytoplasmic space become unfolded or misfolded, leading to removal of the ECD-mediated negative regulation of MprB and subsequent activation of MprAB.
Collapse
|
28
|
Dorella FA, Gala-Garcia A, Pinto AC, Sarrouh B, Antunes CA, Ribeiro D, Aburjaile FF, Fiaux KK, Guimarães LC, Seyffert N, El-Aouar RA, Silva R, Hassan SS, Castro TLP, Marques WS, Ramos R, Carneiro A, de Sá P, Miyoshi A, Azevedo V, Silva A. Progression of 'OMICS' methodologies for understanding the pathogenicity of Corynebacterium pseudotuberculosis: the Brazilian experience. Comput Struct Biotechnol J 2013; 6:e201303013. [PMID: 24688721 PMCID: PMC3962224 DOI: 10.5936/csbj.201303013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 11/22/2022] Open
Abstract
Since the first successful attempt at sequencing the Corynebacterium pseudotuberculosis genome, large amounts of genomic, transcriptomic and proteomic data have been generated. C. pseudotuberculosis is an interesting bacterium due to its great zoonotic potential and because it causes considerable economic losses worldwide. Furthermore, different strains of C. pseudotuberculosis are capable of causing various diseases in different hosts. Currently, we seek information about the phylogenetic relationships between different strains of C. pseudotuberculosis isolates from different hosts across the world and to employ these data to develop tools to diagnose and eradicate the diseases these strains cause. In this review, we present the latest findings on C. pseudotuberculosis that have been obtained with the most advanced techniques for sequencing and genomic organization. We also discuss the development of in silico tools for processing these data to prompt a better understanding of this pathogen.
Collapse
Affiliation(s)
- Fernanda A Dorella
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Alfonso Gala-Garcia
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Anne C Pinto
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Boutros Sarrouh
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Camila A Antunes
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Dayana Ribeiro
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Flavia F Aburjaile
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Karina K Fiaux
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Luis C Guimarães
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Núbia Seyffert
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Rachid A El-Aouar
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Renata Silva
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Syed S Hassan
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Thiago L P Castro
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Wanderson S Marques
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Rommel Ramos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Adriana Carneiro
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Pablo de Sá
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Anderson Miyoshi
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| |
Collapse
|
29
|
Jain S, Kumar S, Dohre S, Afley P, Sengupta N, Alam SI. Identification of a protective protein from stationary-phase exoproteome of Brucella abortus. Pathog Dis 2013; 70:75-83. [PMID: 23913725 DOI: 10.1111/2049-632x.12079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a worldwide zoonotic disease. No Brucella vaccine is available for use in humans, and existing animal vaccines have limitations. To search the putative vaccine candidates, we studied the exoproteome of Brucella abortus NCTC 10093 using 2-DE-MS approach. Twenty-six proteins were identified using MALDI-TOF/TOF tandem mass spectrometry. Outer membrane protein 25, d-galactose periplasmic-binding protein, oligopeptide ABC transporter protein and isopropylmalate synthase were found to be the most abundant proteins. Most proteins (6, 23%) were predicted to be involved in amino acid transport and metabolism followed by carbohydrate transport and metabolism (4, 15%). Outer membrane protein 25, Omp2b porin and one hypothetical protein were predicted as outer membrane proteins. In addition, Omp28, Omp31 and one ribosomal protein (L9) were also identified. The ribosomal protein L9 was produced as a recombinant protein and was studied in mouse model for vaccine potential. It was found to be immunogenic in terms of generating serum antibody response and release of IFN-γ from mice spleen cells. Recombinant L9-immunized mice were protected against challenge with virulent B. abortus strain 544, suggesting usefulness of ribosomal protein L9 as a good vaccine candidate against brucellosis.
Collapse
Affiliation(s)
- Shikha Jain
- Division of Microbiology, Defence Research & Development Establishment, Gwalior, Madhya Pradesh, India
| | | | | | | | | | | |
Collapse
|
30
|
Papasergi S, Galbo R, Lanza-Cariccio V, Domina M, Signorino G, Biondo C, Pernice I, Poyart C, Trieu-Cuot P, Teti G, Beninati C. Analysis of the Streptococcus agalactiae exoproteome. J Proteomics 2013; 89:154-64. [PMID: 23770297 DOI: 10.1016/j.jprot.2013.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/13/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED The two-component regulatory system CovRS is the main regulator of virulence gene expression in Group B Streptococcus (GBS), the leading cause of invasive infections in neonates. In this study we analyzed by mass spectrometry the GBS extracellular protein complex (i.e. the exoproteome) of NEM316 wild-type (WT) strain and its isogenic covRS deletion mutant (ΔcovRS). A total of 53 proteins, 49 of which had classical secretion signals, were identified: 12 were released by both strains while 21 and 20 were released exclusively by WT and ΔcovRS strains, respectively. In addition to known surface proteins, we detected here unstudied cell-wall associated proteins and/or orthologs of putative virulence factors present in other pathogenic streptococci. While the functional role of these proteins remains to be elucidated, our data suggest that the analysis of the exoproteome of bacterial pathogens under different gene expression conditions may be a powerful tool for the rapid identification of novel virulence factors and vaccine candidates. BIOLOGICAL SIGNIFICANCE We believe that this manuscript will be of interest to Journal of Proteomics readers since the paper describes the identification of several putative virulence factors and vaccine candidates of the group B streptococcus, an important pathogen, using a simple proteomics strategy involving LC-MS analysis of culture supernatants obtained from two strains with divergent gene expression patterns. This technique provided the most comprehensive inventory of extracellular proteins obtained from a single streptococcal species thus far. The approach described has the added benefit of being easily applicable to a large number of different strains, making it ideal for the identification of conserved vaccine candidates.
Collapse
|
31
|
Differential Exoproteome Analysis of Two Corynebacterium pseudotuberculosis Biovar Ovis Strains Isolated from Goat (1002) and Sheep (C231). Curr Microbiol 2013; 67:460-5. [DOI: 10.1007/s00284-013-0388-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/17/2013] [Indexed: 01/25/2023]
|
32
|
Kumar B, Alam SI, Kumar O. Host response to intravenous injection of epsilon toxin in mouse model: A proteomic view. Proteomics 2013; 13:89-107. [DOI: 10.1002/pmic.201200227] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/12/2012] [Accepted: 10/25/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Bhoj Kumar
- Biotechnology Division; Defence Research & Development Establishment; Gwalior India
| | - Syed Imteyaz Alam
- Biotechnology Division; Defence Research & Development Establishment; Gwalior India
| | - Om Kumar
- Pharmacology and Toxicology Division; Defence Research & Development Establishment; Gwalior India
| |
Collapse
|
33
|
Use of a mariner-based transposon mutagenesis system to isolate Clostridium perfringens mutants deficient in gliding motility. J Bacteriol 2012. [PMID: 23204460 DOI: 10.1128/jb.01288-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens is an anaerobic Gram-positive pathogen that causes many human and animal diseases, including food poisoning and gas gangrene. C. perfringens lacks flagella but possesses type IV pili (TFP). We have previously shown that C. perfringens can glide across an agar surface in long filaments composed of individual bacteria attached end to end and that two TFP-associated proteins, PilT and PilC, are needed for this. To discover additional gene products that play a role in gliding, we developed a plasmid-based mariner transposon mutagenesis system that works effectively in C. perfringens. More than 10,000 clones were screened for mutants that lacked the ability to move away from the edge of a colony. Twenty-four mutants (0.24%) were identified that fit the criteria. The genes containing insertions that affected gliding motility fell into nine different categories. One gene, CPE0278, which encodes a homolog of the SagA cell wall-dependent endopeptidase, acquired distinct transposon insertions in two independent mutants. sagA mutants were unable to form filaments due to a complete lack of end-to-end connections essential for gliding motility. Complementation of the sagA mutants with a wild-type copy of the gene restored gliding motility. We constructed an in-frame deletion mutation in the sagA gene and found that this mutant had a phenotype similar to those of the transposon mutants. We hypothesize that the sagA mutant strains are unable to form the molecular complexes which are needed to keep the cells in an end-to-end orientation, leading to separation of daughter cells and the inability to carry out gliding motility.
Collapse
|
34
|
Pacheco LGC, Castro TLP, Carvalho RD, Moraes PM, Dorella FA, Carvalho NB, Slade SE, Scrivens JH, Feelisch M, Meyer R, Miyoshi A, Oliveira SC, Dowson CG, Azevedo V. A Role for Sigma Factor σ(E) in Corynebacterium pseudotuberculosis Resistance to Nitric Oxide/Peroxide Stress. Front Microbiol 2012; 3:126. [PMID: 22514549 PMCID: PMC3322355 DOI: 10.3389/fmicb.2012.00126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/17/2012] [Indexed: 11/16/2022] Open
Abstract
Pathogenic intracellular bacteria can respond to antimicrobial mechanisms of the host cell through transient activation of stress-responsive genes by alternative sigma (σ) factors of the RNA polymerase. We evaluated the contribution of the extracytoplasmic function sigma factor σE for Corynebacterium pseudotuberculosis resistance to stress conditions resembling those found intracellularly during infection. A sigE-null mutant strain (ΔsigE) of this bacterium was more susceptible in vitro to acidic pH, cell surface stressors, and biologically relevant concentrations of nitric oxide (NO). The same mutant strain was unable to persist in C57BL/6 mice but remained infective in mice lacking inducible nitric oxide synthase (iNOS), confirming the significance of σE for resistance to nitric oxide/peroxide stress in vivo. High-throughput proteomic analysis identified NO-responsive extracellular proteins of C. pseudotuberculosis and demonstrated the participation of σE in composition of this bacterium’s exoproteome.
Collapse
Affiliation(s)
- Luis G C Pacheco
- Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jain S, Graham C, Graham RLJ, McMullan G, Ternan NG. Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630. J Proteome Res 2011; 10:3880-90. [PMID: 21786815 DOI: 10.1021/pr200327t] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clostridium difficile is a serious nosocomial pathogen whose prevalence worldwide is increasing. Postgenomic technologies can now be deployed to develop understanding of the evolution and diversity of this important human pathogen, yet little is known about the adaptive ability of C. difficile. We used iTRAQ labeling and 2D-LC-MS/MS driven proteomics to investigate the response of C. difficile 630 to a mild, but clinically relevant, heat stress. A statistically validated list of 447 proteins to which functional roles were assigned was generated, allowing reconstruction of central metabolic pathways including glycolysis, γ-aminobutyrate metabolism, and peptidoglycan biosynthesis. Some 49 proteins were significantly modulated under heat stress: classical heat shock proteins including GroEL, GroES, DnaK, Clp proteases, and HtpG were up-regulated in addition to several stress inducible rubrerythrins and proteins associated with protein modification, such as prolyl isomerases and proline racemase. The flagellar filament protein, FliC, was down-regulated, possibly as an energy conservation measure, as was the SecA1 preprotein translocase. The up-regulation of hydrogenases and various oxidoreductases suggests that electron flux across these pools of enzymes changes under heat stress. This work represents the first comparative proteomic analysis of the heat stress response in C. difficile strain 630, complementing the existing proteomics data sets and the single microarray comparative analysis of stress response. Thus we have a benchmark proteome for this pathogen, leading to a deeper understanding of its physiology and metabolism informed by the unique functional and adaptive processes used during a temperature upshift mimicking host pyrexia.
Collapse
Affiliation(s)
- Shailesh Jain
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co Londonderry, North Ireland, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Skariyachan S, Mahajanakatti AB, Sharma N, Sevanan M. Selection of herbal therapeutics against deltatoxin mediated Clostridial infections. Bioinformation 2011; 6:375-9. [PMID: 21904424 PMCID: PMC3163915 DOI: 10.6026/97320630006375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 07/29/2011] [Indexed: 11/23/2022] Open
Abstract
Clostridium perfringens (a versatile pathogenic bacterium) secretes enterotoxins (the deltatoxin, virulent factor) and causes food borne gastroenteritis and gasgangrene. The organism was isolated and characterized from improperly cooked meat and poultry samples. The isolated organism showed multiple drug resistance indicating that the treatment is challenging. Hence, there is need for improved therapeutic agents. The rational design of improved therapeutics requires the crystal structure for the toxin. However, the structure for the toxin is not yet available in its native form. Thus, we modeled the toxin structure using α- hemolysin of Staphylococcus aureus (PDB: 3M4D chain A) as template. The docking of the toxin with the herbal extract curcumin (1,7-bis(4-hydroxy-3- methoxyphenyl)hepta-1,6-diene-3,5-dione) showed a binding energy of -8.6 Kcal/mol, in comparison to the known antibiotic Linezolid with binding energy of -6.1 Kcal/mol. This data finds application in the design and development of novel compounds against the deltatoxin from Clostridium perfringens.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- R & D Center, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore-560 078, Karnataka, India
| | | | - Narasimha Sharma
- R & D Center, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore-560 078, Karnataka, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya University, Coimbatore- 641 114, Tamilnadu, India
| |
Collapse
|
37
|
Malmström L, Malmström J, Aebersold R. Quantitative proteomics of microbes: Principles and applications to virulence. Proteomics 2011; 11:2947-56. [DOI: 10.1002/pmic.201100088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/29/2011] [Accepted: 04/05/2011] [Indexed: 12/28/2022]
|
38
|
In Vivo Studies of Clostridium perfringens in Mouse Gas Gangrene Model. Curr Microbiol 2010; 62:999-1008. [DOI: 10.1007/s00284-010-9821-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|