1
|
Davis NK, Chionh YH, McBee ME, Hia F, Ma D, Cui L, Sharaf ML, Cai WM, Jumpathong W, Levine SS, Alonso S, Dedon PC. Facile metabolic reprogramming distinguishes mycobacterial adaptation to hypoxia and starvation: ketosis drives starvation-induced persistence in M. bovis BCG. Commun Biol 2024; 7:866. [PMID: 39009734 PMCID: PMC11250799 DOI: 10.1038/s42003-024-06562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
Mycobacteria adapt to infection stresses by entering a reversible non-replicating persistence (NRP) with slow or no cell growth and broad antimicrobial tolerance. Hypoxia and nutrient deprivation are two well-studied stresses commonly used to model the NRP, yet little is known about the molecular differences in mycobacterial adaptation to these distinct stresses that lead to a comparable NRP phenotype. Here we performed a multisystem interrogation of the Mycobacterium bovis BCG (BCG) starvation response, which revealed a coordinated metabolic shift away from the glycolysis of nutrient-replete growth to depletion of lipid stores, lipolysis, and fatty acid ß-oxidation in NRP. This contrasts with BCG's NRP hypoxia response involving a shift to cholesterol metabolism and triglyceride storage. Our analysis reveals cryptic metabolic vulnerabilities of the starvation-induced NRP state, such as their newfound hypersensitivity to H2O2. These observations pave the way for developing precision therapeutics against these otherwise drug refractory pathogens.
Collapse
Affiliation(s)
- Nick K Davis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yok Hian Chionh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- GenScript Biotech (Singapore) Pte. Ltd, Singapore, Singapore
| | - Megan E McBee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Fabian Hia
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Duanduan Ma
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Mariam Lucila Sharaf
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- BioNTech SE An der Goldgrube, Mainz, Germany
| | - Weiling Maggie Cai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- British High Commission, Singapore, Singapore
| | - Watthanachai Jumpathong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Chemical Biology Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Stuart S Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
2
|
Fang WW, Kong XL, Yang JY, Tao NN, Li YM, Wang TT, Li YY, Han QL, Zhang YZ, Hu JJ, Li HC, Liu Y. PE/PPE mutations in the transmission of Mycobacterium tuberculosis in China revealed by whole genome sequencing. BMC Microbiol 2024; 24:206. [PMID: 38858614 PMCID: PMC11163795 DOI: 10.1186/s12866-024-03352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/26/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.
Collapse
Affiliation(s)
- Wei-Wei Fang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xiang-Long Kong
- Shandong Artificial Intelligence Institute, Qilu University of Technology & Shandong Academy of Sciences, Jinan, Shandong, PR China
| | - Jie-Yu Yang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Ning-Ning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ya-Meng Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Ting-Ting Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ying-Ying Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Qi-Lin Han
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yu-Zhen Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Jin-Jiang Hu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Huai-Chen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
3
|
Lin H, Xing J, Wang H, Wang S, Fang R, Li X, Li Z, Song N. Roles of Lipolytic enzymes in Mycobacterium tuberculosis pathogenesis. Front Microbiol 2024; 15:1329715. [PMID: 38357346 PMCID: PMC10865251 DOI: 10.3389/fmicb.2024.1329715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that can endure for long periods in an infected patient, without causing disease. There are a number of virulence factors that increase its ability to invade the host. One of these factors is lipolytic enzymes, which play an important role in the pathogenic mechanism of Mtb. Bacterial lipolytic enzymes hydrolyze lipids in host cells, thereby releasing free fatty acids that are used as energy sources and building blocks for the synthesis of cell envelopes, in addition to regulating host immune responses. This review summarizes the relevant recent studies that used in vitro and in vivo models of infection, with particular emphasis on the virulence profile of lipolytic enzymes in Mtb. A better understanding of these enzymes will aid the development of new treatment strategies for TB. The recent work done that explored mycobacterial lipolytic enzymes and their involvement in virulence and pathogenicity was highlighted in this study. Lipolytic enzymes are expected to control Mtb and other intracellular pathogenic bacteria by targeting lipid metabolism. They are also potential candidates for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Hong Lin
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
4
|
Medha, Joshi H, Sharma S, Sharma M. Elucidating the function of hypothetical PE_PGRS45 protein of Mycobacterium tuberculosis as an oxido-reductase: a potential target for drug repurposing for the treatment of tuberculosis. J Biomol Struct Dyn 2023; 41:10009-10025. [PMID: 36448553 DOI: 10.1080/07391102.2022.2151514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Mycobacterium tuberculosis (Mtb) encodes a total of 67 PE_PGRS proteins and definite functions of many of them are still unknown. This study reports PE_PGRS45 (Rv2615c) protein from Mtb as NADPH dependent oxido-reductase having substrate specificity for fatty acyl Coenzyme A. Computational studies predicted PE_PGRS45 to be an integral membrane protein of Mtb. Expression of PE_PGRS45 in non-pathogenic Mycobacterium smegmatis, which does not possess PE_PGRS genes, confirmed its membrane localization. This protein was observed to have NADPH binding motif. Experimental validation confirmed its NADPH dependent oxido-reductase activity (Km value = 34.85 ± 9.478 μM, Vmax = 96.77 ± 7.184 nmol/min/mg of protein). Therefore, its potential to be targeted by first line anti-tubercular drug Isoniazid (INH) was investigated. INH was predicted to bind within the active site of PE_PGRS45 protein and experiments validated its inhibitory effect on the oxido-reductase activity of PE_PGRS45 with IC50/Ki values of 5.66 μM. Mtb is resistant to first line drugs including INH. Therefore, to address the problem of drug resistant TB, docking and Molecular Dynamics (MD) simulation studies between PE_PGRS45 and three drugs (Entacapone, Tolcapone and Verapamil) which are being used in Parkinson's and hypertension treatment were performed. PE_PGRS45 bound the three drugs with similar or better affinity in comparison to INH. Additionally, INH and these drugs bound within the same active site of PE_PGRS45. This study discovered Mtb's PE_PGRS45 protein to have an oxido-reductase activity and could be targeted by drugs that can be repurposed for TB treatment. Furthermore, in-vitro and in-vivo validation will aid in drug-resistant TB treatment. HIGHLIGHTSIn-silico and in-vitro studies of hypothetical protein PE_PGRS45 (Rv2615c) of Mycobacterium tuberculosis (Mtb) reveals it to be an integral membrane proteinPE_PGRS45 protein has substrate specificity for fatty acyl Coenzyme A (fatty acyl CoA) and possess NADPH dependent oxido-reductase activityDocking and simulation studies revealed that first line anti-tubercular drug Isoniazid (INH) and other drugs with anti-TB property have strong affinity for PE_PGRS45 proteinOxido-reductase activity of PE_PGRS45 protein is inhibited by INHPE_PGRS45 protein could be targeted by drugs that can be repurposed for TB treatmentCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Medha
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sadhna Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Monika Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Anand PK, Kaur G, Saini V, Kaur J, Kaur J. N-terminal PPE domain plays an integral role in extracellular transportation and stability of the immunomodulatory Rv3539 protein of the Mycobacterium tuberculosis. Biochimie 2023; 213:30-40. [PMID: 37156406 DOI: 10.1016/j.biochi.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Multigene PE/PPE family is exclusively present in mycobacterium species. Only few selected genes of this family have been characterized till date. Rv3539 was annotated as PPE63 with conserved PPE domain at N-terminal and PE-PPE at C-terminal. An α/β hydrolase structural fold, characteristic of lipase/esterase, was present in the PE-PPE domain. To assign the biochemical function to Rv3539, the corresponding gene was cloned in pET-32a (+) as full-length, PPE, and PE-PPE domains individually, followed by expression in E. Coli C41 (DE3). All three proteins demonstrated esterase activity. However, the enzyme activity in the N-terminal PPE domain was very low. The enzyme activity of Rv3539 and PE-PPE proteins was approximately same with the pNP-C4 as optimum substrate at 40 °C and pH 8.0. The loss of enzyme activity after mutating the predicted catalytic triad (Ser296Ala, Asp369Ala, and His395Ala) found only in the PE-PPE domain, confirmed the candidature of the bioinformatically predicted active site residue. The optimal activity and thermostability of the Rv3539 protein was altered by removing the PPE domain. CD-spectroscopy analysis confirmed the role of PPE domain to the thermostability of Rv3539 by maintaining the structural integrity at higher temperatures. The presence of the N-terminal PPE domain directed the Rv3539 protein to the cell membrane/wall and the extracellular compartment. The Rv3539 protein could generate humoral response in TB patients. Therefore, results demonstrated that Rv3539 demonstrated esterase activity. PE-PPE domain of Rv3539 is functionally automated, however, N-terminus domain played a role in protein stabilization and its transportation. Both domains participated in immunomodulation.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Gagandeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India.
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India.
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
ppe51 Variants Enable Growth of Mycobacterium tuberculosis at Acidic pH by Selectively Promoting Glycerol Uptake. J Bacteriol 2022; 204:e0021222. [PMID: 36226966 PMCID: PMC9664963 DOI: 10.1128/jb.00212-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In defined media supplemented with single carbon sources, Mycobacterium tuberculosis (Mtb) exhibits carbon source specific growth restriction. When supplied with glycerol as the sole carbon source at pH 5.7, Mtb establishes a metabolically active state of nonreplicating persistence known as acid growth arrest. We hypothesized that acid growth arrest on glycerol is not a metabolic restriction, but rather an adaptive response. To test this hypothesis, we selected for and identified several Mtb mutants that could grow under these restrictive conditions. All mutations were mapped to the ppe51 gene and resulted in variants with 3 different amino acid substitutions- S211R, E215K, and A228D. Expression of the ppe51 variants in Mtb promoted growth at acidic pH showing that the mutant alleles are sufficient to cause the dominant gain-of-function, Enhanced Acid Growth (EAG) phenotype. Testing growth on other single carbon sources showed the PPE51 variants specifically enhanced growth on glycerol, suggesting PPE51 plays a role in glycerol uptake. Using radiolabeled glycerol, enhanced glycerol uptake was observed in Mtb expressing the PPE51 (S211R) variant, with glycerol overaccumulation in triacylglycerol. Notably, the EAG phenotype is deleterious for growth in macrophages, where the mutants have selectively faster replication and reduced survival in activated macrophages compared to resting macrophages. Recombinant PPE51 protein exhibited differential thermostability in the wild type (WT) or S211R variants in the presence of glycerol, supporting the model that EAG substitutions alter PPE51-glycerol interactions. Together, these findings support that PPE51 variants selectively promote glycerol uptake and that slowed growth at acidic pH is an important adaptive mechanism required for macrophage pathogenesis. IMPORTANCE It is puzzling why Mycobacterium tuberculosis (Mtb) cannot grow on glycerol at acidic pH, as it has a carbon source and oxygen, everything it needs to grow. In this study, we found that Mtb limits uptake of glycerol at acidic pH to restrict its growth and that mutations in ppe51 promote uptake of glycerol at acidic pH and enable growth. That is, Mtb can grow well at acidic pH on glycerol, but has adapted instead to stop growth. Notably, ppe51 variants exhibit enhanced replication and reduced survival in activated macrophages, supporting a role for pH-dependent slowed growth during macrophage pathogenesis.
Collapse
|
7
|
Mycobacterium tuberculosis whiB3 and Lipid Metabolism Genes Are Regulated by Host Induced Oxidative Stress. Microorganisms 2022; 10:microorganisms10091821. [PMID: 36144423 PMCID: PMC9506551 DOI: 10.3390/microorganisms10091821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
The physiological state of the human macrophage may impact the metabolism and the persistence of Mycobacterium tuberculosis. This pathogen senses and counters the levels of O2, CO, reactive oxygen species (ROS), and pH in macrophages. M. tuberculosis responds to oxidative stress through WhiB3. The goal was to determine the effect of NADPH oxidase (NOX) modulation and oxidative agents on the expression of whiB3 and genes involved in lipid metabolism (lip-Y, Icl-1, and tgs-1) in intracellular mycobacteria. Human macrophages were first treated with NOX modulators such as DPI (ROS inhibitor) and PMA (ROS activator), or with oxidative agents (H2O2 and generator system O2•-), and then infected with mycobacteria. We determined ROS production, cell viability, and expression of whiB3, as well as genes involved in lipid metabolism. PMA, H2O2, and O2•- increased ROS production in human macrophages, generating oxidative stress in bacteria and augmented the gene expression of whiB3, lip-Y, Icl-1, and tgs-1. Our results suggest that ROS production in macrophages induces oxidative stress in intracellular bacteria inducing whiB3 expression. This factor may activate the synthesis of reserve lipids produced to survive in the latency state, which allows its persistence for long periods within the host.
Collapse
|
8
|
Environment dependent expression of mycobacterium hormone sensitive lipases: expression pattern under ex-vivo and individual in-vitro stress conditions in M. tuberculosis H37Ra. Mol Biol Rep 2022; 49:4583-4593. [PMID: 35301657 DOI: 10.1007/s11033-022-07305-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hormone-sensitive lipase (HSL) is a neutral lipase capable of hydrolysing various kinds of lipids. In comparison to single human Hormone Sensitive Lipase (hHSL), that is induced under nutritional stress, twelve serine hydrolases are annotated as HSL in Mycobacterium tuberculosis (mHSL). Mycobacterium is exposed to multiple stresses inside the host. Therefore, the present study was carried out to investigate if mHSL are also expressed under stress condition and if there is any correlation between various stress conditions and expression pattern of mHSL. METHODS AND RESULTS The expression pattern of mHSL under different environmental conditions (in-vitro and ex-vivo) were studied using qRT-PCR in M. tuberculosis H37Ra strain with 16 S rRNA as internal control. Out of 12, only two genes (lipU and lipY) were expressed at very low level in mid log phase culture under aerobic conditions, while 9 genes were expressed at stationary phase of growth. Ten mHSLs were expressed post-infection under ex-vivo conditions in time dependent manner. LipH and lipQ did not express at any time point under ex-vivo condition. The relative expression of most of the genes under individual stress was much higher than observed in ex-vivo conditions. The expression pattern of genes varied with change in stress condition. CONCLUSIONS Different sets of mHSL genes were expressed under different individual stress conditions pointing towards the requirement of different mHSL to combat different stress conditions. Overall, most of the mHSLs have demonstrated stress dependent expression pointing towards their role in intracellular survival of mycobacteria.
Collapse
|
9
|
Sharma S, Sharma M. Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) proteins of Mycobacterium tuberculosis: The multifaceted immune-modulators. Acta Trop 2021; 222:106035. [PMID: 34224720 DOI: 10.1016/j.actatropica.2021.106035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022]
Abstract
The PE/PPE proteins encoded by seven percent (7%) of Mycobacterium tuberculosis (Mtb) genome are the chief constituents to pathogen's virulence reservoir. The fact that these genes have evolved along ESX secretory system in pathogenic Mtb strains make their investigation very intriguing. There is lot of speculation about the prominent role of these proteins at host pathogen interface and in disease pathogenesis. Nevertheless, the exact function of PE/PPE proteins still remains a mystery which calls for further research targeting these proteins. This article is an effort to document all the facts known so far with regard to these unique proteins which involves their origin, evolution, transcriptional control, and most important their role as host immune-modulators. Our understanding strongly points towards the versatile nature of these PE/PPE proteins as Mtb's host immune sensors and as decisive factors in shaping the outcome of infection. Further investigation on these proteins will surely pave way for newer and effective vaccines and therapeutics to control Tuberculosis (TB).
Collapse
Affiliation(s)
- Sadhna Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Monika Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
10
|
Mallick I, Santucci P, Poncin I, Point V, Kremer L, Cavalier JF, Canaan S. Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis? FEMS Microbiol Rev 2021; 45:6283747. [PMID: 34036305 DOI: 10.1093/femsre/fuab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterial species, including Mycobacterium tuberculosis, rely on lipids to survive and chronically persist within their hosts. Upon infection, opportunistic and strict pathogenic mycobacteria exploit metabolic pathways to import and process host-derived free fatty acids, subsequently stored as triacylglycerols under the form of intrabacterial lipid inclusions (ILI). Under nutrient-limiting conditions, ILI constitute a critical source of energy that fuels the carbon requirements and maintain redox homeostasis, promoting bacterial survival for extensive periods of time. In addition to their basic metabolic functions, these organelles display multiple other biological properties, emphasizing their central role in the mycobacterial lifecycle. However, despite of their importance, the dynamics of ILI metabolism and their contribution to mycobacterial adaptation/survival in the context of infection has not been thoroughly documented. Herein, we provide an overview of the historical ILI discoveries, their characterization, and current knowledge regarding the micro-environmental stimuli conveying ILI formation, storage and degradation. We also review new biological systems to monitor the dynamics of ILI metabolism in extra- and intracellular mycobacteria and describe major molecular actors in triacylglycerol biosynthesis, maintenance and breakdown. Finally, emerging concepts regarding to the role of ILI in mycobacterial survival, persistence, reactivation, antibiotic susceptibility and inter-individual transmission are also discuss.
Collapse
Affiliation(s)
- Ivy Mallick
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.,IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| |
Collapse
|
11
|
Xie Y, Zhou Y, Liu S, Zhang XL. PE_PGRS: Vital proteins in promoting mycobacterial survival and modulating host immunity and metabolism. Cell Microbiol 2020; 23:e13290. [PMID: 33217152 DOI: 10.1111/cmi.13290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is the leading infectious cause of mortality worldwide. One of the key reasons for M. tb pathogenesis is the capability of M. tb to evade immune elimination and survive in macrophage, eventually causing chronic infection. However the pathogenicity mechanism of M. tb is not unclear yet, and thus diagnosis and therapy for TB remains a challenge. The genome of M. tb, encodes a unique protein family known as the PGRS family, with largely unexplored functions. Recently, an increasing number of reports have shown that the PE_PGRS proteins play critical roles in bacterial pathogenesis and immune evasion. The PE_PGRS protein family, characterized by a special N-terminal PE (Pro (P)-Glu (E) motif) domain and a C-terminal PGRS (Polymorphic GC-rich Repetitive Sequences) domain, is restricted mainly to pathogenic mycobacteria. Here we summarize current literature on the PE_PGRS as vital proteins in promoting bacterial survival and modulating host immunity, cell death and metabolism. We also highlight the potential of PE_PGRS as novel targets of anti-mycobacterial interventions for TB control.
Collapse
Affiliation(s)
- Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital, Department of Immunology Wuhan University School of Basic Medical Sciences, Wuhan, China.,State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, China
| | - Yidan Zhou
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Sheng Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital, Department of Immunology Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Allergy Zhongnan Hospital, Department of Immunology Wuhan University School of Basic Medical Sciences, Wuhan, China.,State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
12
|
Cavalier JF, Spilling CD, Durand T, Camoin L, Canaan S. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. Eur J Med Chem 2020; 209:112908. [PMID: 33071055 DOI: 10.1016/j.ejmech.2020.112908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains the deadliest infectious disease worldwide with 1.5 million deaths in 2018, of which about 15% are attributed to resistant strains. Another significant example is Mycobacterium abscessus (M. abscessus), a nontuberculous mycobacteria (NTM) responsible for cutaneous and pulmonary infections, representing up to 95% of NTM infections in cystic fibrosis (CF) patients. M. abscessus is a new clinically relevant pathogen and is considered one of the most drug-resistant mycobacteria for which standardized chemotherapeutic regimens are still lacking. Together the emergence of M. tb and M. abscessus multi-drug resistant strains with ineffective and expensive therapeutics, have paved the way to the development of new classes of anti-mycobacterial agents offering additional therapeutic options. In this context, specific inhibitors of mycobacterial lipolytic enzymes represent novel and promising antibacterial molecules to address this challenging issue. The results highlighted here include a complete overview of the antibacterial activities, either in broth medium or inside infected macrophages, of two families of promising and potent anti-mycobacterial multi-target agents, i.e. oxadiazolone-core compounds (OX) and Cyclophostin & Cyclipostins analogs (CyC); the identification and biochemical validation of their effective targets (e.g., the antigen 85 complex and TesA playing key roles in mycolic acid metabolism) together with their respective crystal structures. To our knowledge, these are the first families of compounds able to target and impair replicating as well as intracellular bacteria. We are still impelled in deciphering their mode of action and finding new potential therapeutic targets against mycobacterial-related diseases.
Collapse
Affiliation(s)
- Jean-François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| | - Christopher D Spilling
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, United States
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luc Camoin
- Aix-Marseille Univ., INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| |
Collapse
|
13
|
Madani A, Mallick I, Guy A, Crauste C, Durand T, Fourquet P, Audebert S, Camoin L, Canaan S, Cavalier JF. Dissecting the antibacterial activity of oxadiazolone-core derivatives against Mycobacterium abscessus. PLoS One 2020; 15:e0238178. [PMID: 32946441 PMCID: PMC7500638 DOI: 10.1371/journal.pone.0238178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/12/2020] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium abscessus (M. abscessus), a rapidly growing mycobacterium, is an emergent opportunistic pathogen responsible for chronic bronchopulmonary infections in individuals with respiratory diseases such as cystic fibrosis. Most treatments of M. abscessus pulmonary infections are poorly effective due to the intrinsic resistance of this bacteria against a broad range of antibiotics including anti-tuberculosis agents. Consequently, the number of drugs that are efficient against M. abscessus remains limited. In this context, 19 oxadiazolone (OX) derivatives have been investigated for their antibacterial activity against both the rough (R) and smooth (S) variants of M. abscessus. Several OXs impair extracellular M. abscessus growth with moderated minimal inhibitory concentrations (MIC), or act intracellularly by inhibiting M. abscessus growth inside infected macrophages with MIC values similar to those of imipenem. Such promising results prompted us to identify the potential target enzymes of the sole extra and intracellular inhibitor of M. abscessus growth, i.e., compound iBpPPOX, via activity-based protein profiling combined with mass spectrometry. This approach led to the identification of 21 potential protein candidates being mostly involved in M. abscessus lipid metabolism and/or in cell wall biosynthesis. Among them, the Ag85C protein has been confirmed as a vulnerable target of iBpPPOX. This study clearly emphasizes the potential of the OX derivatives to inhibit the extracellular and/or intracellular growth of M. abscessus by targeting various enzymes potentially involved in many physiological processes of this most drug-resistant mycobacterial species.
Collapse
Affiliation(s)
- Abdeldjalil Madani
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
| | - Ivy Mallick
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
- IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Alexandre Guy
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Céline Crauste
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Patrick Fourquet
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
| | - Jean François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
- * E-mail:
| |
Collapse
|
14
|
Bunduc CM, Ummels R, Bitter W, Houben ENG. Species-specific secretion of ESX-5 type VII substrates is determined by the linker 2 of EccC 5. Mol Microbiol 2020; 114:66-76. [PMID: 32096294 PMCID: PMC7384006 DOI: 10.1111/mmi.14496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Indexed: 12/20/2022]
Abstract
Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5 , possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5 . This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5 , showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5 .
Collapse
Affiliation(s)
- Catalin M Bunduc
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Shen L, Viljoen A, Villaume S, Joe M, Halloum I, Chêne L, Méry A, Fabre E, Takegawa K, Lowary TL, Vincent SP, Kremer L, Guérardel Y, Mariller C. The endogenous galactofuranosidase GlfH1 hydrolyzes mycobacterial arabinogalactan. J Biol Chem 2020; 295:5110-5123. [PMID: 32107309 DOI: 10.1074/jbc.ra119.011817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Despite impressive progress made over the past 20 years in our understanding of mycolylarabinogalactan-peptidoglycan (mAGP) biogenesis, the mechanisms by which the tubercle bacillus Mycobacterium tuberculosis adapts its cell wall structure and composition to various environmental conditions, especially during infection, remain poorly understood. Being the central portion of the mAGP complex, arabinogalactan (AG) is believed to be the constituent of the mycobacterial cell envelope that undergoes the least structural changes, but no reports exist supporting this assumption. Herein, using recombinantly expressed mycobacterial protein, bioinformatics analyses, and kinetic and biochemical assays, we demonstrate that the AG can be remodeled by a mycobacterial endogenous enzyme. In particular, we found that the mycobacterial GlfH1 (Rv3096) protein exhibits exo-β-d-galactofuranose hydrolase activity and is capable of hydrolyzing the galactan chain of AG by recurrent cleavage of the terminal β-(1,5) and β-(1,6)-Galf linkages. The characterization of this galactosidase represents a first step toward understanding the remodeling of mycobacterial AG.
Collapse
Affiliation(s)
- Lin Shen
- Univ. Lille, CNRS, UMR8576 - UGSF - Unit[c33c]zpi;● de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR9004 - CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Sydney Villaume
- Laboratoire de Chimie Bio-Organic (CBO), Université de Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton AB T6G 2G2, Canada
| | - Iman Halloum
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR9004 - CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Loïc Chêne
- Laboratoire de Chimie Bio-Organic (CBO), Université de Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Alexandre Méry
- Univ. Lille, CNRS, UMR8576 - UGSF - Unit[c33c]zpi;● de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Emeline Fabre
- Univ. Lille, CNRS, UMR8576 - UGSF - Unit[c33c]zpi;● de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton AB T6G 2G2, Canada
| | - Stéphane P Vincent
- Laboratoire de Chimie Bio-Organic (CBO), Université de Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR9004 - CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France.,INSERM, Institut de Recherche en Infectiologie de Montpellier, 34293 Montpellier, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR8576 - UGSF - Unit[c33c]zpi;● de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Christophe Mariller
- Univ. Lille, CNRS, UMR8576 - UGSF - Unit[c33c]zpi;● de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
16
|
Mycobacterium tuberculosis LipE Has a Lipase/Esterase Activity and Is Important for Intracellular Growth and In Vivo Infection. Infect Immun 2019; 88:IAI.00750-19. [PMID: 31636137 PMCID: PMC6921666 DOI: 10.1128/iai.00750-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis Rv3775 (LipE) was annotated as a putative lipase. However, its lipase activity has never been characterized, and its precise role in tuberculosis (TB) pathogenesis has not been thoroughly studied to date. We overexpressed and purified the recombinant LipE (rLipE) protein and demonstrated that LipE has a lipase/esterase activity. rLipE prefers medium-chain ester substrates, with the maximal activity on hexanoate. Its activity is the highest at 40°C and pH 9. We determined that rLipE hydrolyzes trioctanoate. Using site-directed mutagenesis, we confirmed that the predicted putative activity triad residues Ser97, Gly342, and His363 are essential for the lipase activity of rLipE. The expression of the lipE gene was induced under stressed conditions mimicking M. tuberculosis' intracellular niche. The gene-disrupting mutation of lipE led to significantly reduced bacterial growth inside THP-1 cells and human peripheral blood mononuclear cell-derived macrophages and attenuated M. tuberculosis infection in mice (with ∼8-fold bacterial load reduction in mouse lungs). Our data suggest that LipE functions as a lipase and is important for M. tuberculosis intracellular growth and in vivo infection.
Collapse
|
17
|
Srivastava BS, Singh VK, Kashyap VK, Srivastava R, Khan A, Jagannath C. Commentary: Bettering BCG: a tough task for a TB vaccine? Front Immunol 2019; 10:2195. [PMID: 31572397 PMCID: PMC6752056 DOI: 10.3389/fimmu.2019.02195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/30/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Vipul K Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, University of Texas Rio Grande Valley, McAllen, TX, United States
| | | | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
18
|
Rastogi R, Kaur G, Maan P, Bhatnagar A, Narang T, Dogra S, Kaur J. Molecular characterization and immunogenic function of ML1899 (LipG) of Mycobacterium leprae. J Med Microbiol 2019; 68:1629-1640. [PMID: 31553301 DOI: 10.1099/jmm.0.001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. ML1899 is conserved in all mycobacterium sp. and is a middle member of mle-ML1898 operon involved in mycolic acid modification.Aim. In the present study attempts were made to characterize ML1899 in detail.Methodology. Bioinformatics tools were used for prediction of active-site residues, antigenic epitopes and a three-dimensional model of protein. The gene was cloned, expressed and purified as His-tagged protein in Escherichia coli for biophysical/biochemical characterization. Recombinant protein was used to treat THP-1 cells to study change in production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and chemokines using flowcytometry/ELISA.Results. In silico analysis predicted ML1899 as a member of α/β hydrolase family with GXSXG-motif and Ser126, His282, Asp254 as active-site residues that were confirmed by site-directed mutagensis. ML1899 exhibited esterase activity. It hydrolysed pNP-butyrate as optimum substrate at pH 8.0 and 50 °C with 5.56 µM-1 min-1 catalytic efficiency. The enzyme exhibited stability up to 60 °C temperature and between pH 6.0 to 9.0. K m, V max and specific activity of ML1899 were calculated to be 400 µM, 40 µmoles min-1 ml-1 and 27 U mg- 1, respectively. ML1899 also exhibited phospholipase activity. The protein affected the survival of macrophages when treated at higher concentration. ML1899 enhanced ROS/NO production and up-regulated pro-inflammatory cytokines and chemokine including TNF-α, IFN-γ, IL-6 and IL-8 in macrophages. ML1899 was also observed to elicit humoral response in 69 % of leprosy patients.Conclusion. These results suggested that ML1899, an esterase could up-regulate the immune responses in favour of macrophages at a low concentration but kills the THP-1 macrophages cells at a higher concentration.
Collapse
Affiliation(s)
- Ruchi Rastogi
- Department of Biochemistry, BMS Block 2, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Gurkamaljit Kaur
- Department of Biotechnology, BMS Block 1, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Pratibha Maan
- Present address: Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India.,Department of Biotechnology, BMS Block 1, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Archana Bhatnagar
- Department of Biochemistry, BMS Block 2, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Tarun Narang
- Department of Dermatology, Veberology and Leprology, PGIMER, Chandigarh, 160012, India
| | - Sunil Dogra
- Department of Dermatology, Veberology and Leprology, PGIMER, Chandigarh, 160012, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block 1, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| |
Collapse
|
19
|
Santucci P, Johansen MD, Point V, Poncin I, Viljoen A, Cavalier JF, Kremer L, Canaan S. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Sci Rep 2019; 9:8667. [PMID: 31209261 PMCID: PMC6572852 DOI: 10.1038/s41598-019-45164-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/29/2019] [Indexed: 11/09/2022] Open
Abstract
Mycobacteria share with other actinomycetes the ability to produce large quantities of triacylglycerol (TAG), which accumulate as intracytoplasmic lipid inclusions (ILI) also known as lipid droplets (LD). Mycobacterium tuberculosis (M. tb), the etiologic agent of tuberculosis, acquires fatty acids from the human host which are utilized to synthesize TAG, subsequently stored in the form of ILI to meet the carbon and nutrient requirements of the bacterium during long periods of persistence. However, environmental factors governing mycobacterial ILI formation and degradation remain poorly understood. Herein, we demonstrated that in the absence of host cells, carbon excess and nitrogen starvation promote TAG accumulation in the form of ILI in M. smegmatis and M. abscessus, used as surrogate species of M. tb. Based on these findings, we developed a simple and reversible in vitro model to regulate ILI biosynthesis and hydrolysis in mycobacteria. We also showed that TAG formation is tgs1 dependent and that lipolytic enzymes mediate TAG breakdown. Moreover, we confirmed that the nitrogen-deprived and ILI-rich phenotype was associated with an increased tolerance towards several drugs used for treating mycobacterial infections. Importantly, we showed that the presence of ILI substantially enhanced the bacterial burden and granuloma abundance in zebrafish embryos infected with lipid-rich M. abscessus as compared to embryos infected with lipid-poor M. abscessus, suggesting that ILI are actively contributing to mycobacterial virulence and pathogenesis.
Collapse
Affiliation(s)
- Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France
| | | | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France.,INSERM, IRIM, 34293, Montpellier, France
| | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.
| |
Collapse
|
20
|
Santucci P, Smichi N, Diomandé S, Poncin I, Point V, Gaussier H, Cavalier J, Kremer L, Canaan S. Dissecting the membrane lipid binding properties and lipase activity ofMycobacterium tuberculosisLipY domains. FEBS J 2019; 286:3164-3181. [DOI: 10.1111/febs.14864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS UMR9004 Université de Montpellier France
- INSERM IRIM Montpellier France
| | | |
Collapse
|
21
|
Yang D, He X, Li S, Liu J, Stabenow J, Zalduondo L, White S, Kong Y. Rv1075c of Mycobacterium tuberculosis is a GDSL-Like Esterase and Is Important for Intracellular Survival. J Infect Dis 2019; 220:677-686. [DOI: 10.1093/infdis/jiz169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/09/2019] [Indexed: 01/03/2023] Open
Abstract
AbstractMycobacterium tuberculosis lipid metabolism pathways facilitate access to carbon and energy sources during infection. M. tuberculosis gene Rv1075c was annotated as a conserved hypothetical protein. We identified that Rv1075c amino acid sequence shares similarities with other bacterial lipase/esterases and we demonstrated that it has esterase activity, with preference for short-chain fatty acids, particularly acetate, with highest activity at 45°C, pH 9. Site-direct mutagenesis revealed its activity triad as Ser80, Asp244, and His247. We further determined that rRv1075c hydrolyzed triacetin and tributyrin, and it was mainly distributed in cell wall and membrane. Its expression was induced at pH 4.5, mimicking the acidic phagosome of macrophages. Mutation of Rv1075c led to reduced bacterial growth in THP-1 cells and human peripheral blood mononuclear cell-derived macrophages, and attenuated M. tuberculosis infection in mice. Our data suggest that Rv1075c is involved in ester and fatty acid metabolism inside host cells.
Collapse
Affiliation(s)
- Dong Yang
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis
| | - Xiaoping He
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Shaoji Li
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis
| | - Jiawang Liu
- Medicinal Chemistry Core, University of Tennessee Health Science Center, Memphis
| | - Jennifer Stabenow
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis
| | - Lillian Zalduondo
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis
| | - Stephen White
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ying Kong
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
22
|
Burggraaf MJ, Ates LS, Speer A, van der Kuij K, Kuijl C, Bitter W. Optimization of secretion and surface localization of heterologous OVA protein in mycobacteria by using LipY as a carrier. Microb Cell Fact 2019; 18:44. [PMID: 30841891 PMCID: PMC6402100 DOI: 10.1186/s12934-019-1093-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium bovis Bacille Calmette-Guérin (BCG) is not only used as a vaccine against tuberculosis but also protects against leprosy and is used as part of bladder cancer treatment to induce a protective immune response. However, protection by BCG vaccination is not optimal. To improve vaccine efficacy, recombinant BCG expressing heterologous antigens has been put forward to elicit antigen-specific cellular and humoral responses. Cell surface localized or secreted antigens induce better immune responses than their cytosolic counterparts. Optimizing secretion of heterologous proteins or protein fragments holds therefore unexplored potential for improving the efficacy of recombinant BCG vaccine candidates. Secretion of heterologous antigens requires crossing the mycobacterial inner and outer membrane. Mycobacteria have specialized ESX or type VII secretion systems that enable translocation of proteins across both membranes. Probing this secretion system could therefore be a valid approach to surface localize heterologous antigens. RESULTS We show that ESX-5 substrate LipY, a lipase, can be used as a carrier for heterologous secretion of an ovalbumin fragment (OVA). LipY contains a PE domain and a lipase domain, separated by a linker region. This linker domain is processed upon secretion. Fusion of the PE and linker domains of LipY to OVA enabled ESX-5-dependent secretion of the fusion construct LipY-OVA in M. marinum, albeit with low efficiency. Subsequent random mutagenesis of LipY-OVA and screening for increased secretion resulted in mutants with improved heterologous secretion. Detailed analysis identified two mutations in OVA that improved secretion, i.e. an L280P mutation and a protein-extending frameshift mutation. Finally, deletion of the linker domain of LipY enhanced secretion of LipY-OVA, although this mutation also reduced surface association. Further analysis in wild type LipY showed that the linker domain is required for surface association. CONCLUSION We show that the ESX-5 system can be used for heterologous secretion. Furthermore, minor mutations in the substrate can enhance secretion. Especially the C-terminal region seems to be important for this. The linker domain of LipY is involved in surface association. These findings show that non-biased screening approaches aid in optimization of heterologous secretion, which can contribute to heterologous vaccine development.
Collapse
Affiliation(s)
- Maroeska J Burggraaf
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Louis S Ates
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Alexander Speer
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Kim van der Kuij
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Coen Kuijl
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Wilbert Bitter
- Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands. .,Molecular Microbiology, Vrije Universiteit Amsterdam, de Boelelaan 1105, Amsterdam, Netherlands.
| |
Collapse
|
23
|
Larsen EM, Johnson RJ. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev Res 2018; 80:33-47. [PMID: 30302779 DOI: 10.1002/ddr.21468] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The rise of antibiotic resistance necessitates the search for new platforms for drug development. Prodrugs are common tools for overcoming drawbacks typically associated with drug formulation and delivery, with ester prodrugs providing a classic strategy for masking polar alcohol and carboxylic acid functionalities and improving cell permeability. Ester prodrugs are normally designed to have simple ester groups, as they are expected to be cleaved and reactivated by a wide spectrum of cellular esterases. However, a number of pathogenic and commensal microbial esterases have been found to possess significant substrate specificity and can play an unexpected role in drug metabolism. Ester protection can also introduce antimicrobial properties into previously nontoxic drugs through alterations in cell permeability or solubility. Finally, mutation to microbial esterases is a novel mechanism for the development of antibiotic resistance. In this review, we highlight the important pathogenic and xenobiotic functions of microbial esterases and discuss the development and application of ester prodrugs for targeting microbial infections and combating antibiotic resistance. Esterases are often overlooked as therapeutic targets. Yet, with the growing need to develop new antibiotics, a thorough understanding of the specificity and function of microbial esterases and their combined action with ester prodrug antibiotics will support the design of future therapeutics.
Collapse
Affiliation(s)
- Erik M Larsen
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana.,Department of Chemistry and Biochemistry, Bloomsburg University, Bloomsburg, Pennsylvania
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana
| |
Collapse
|
24
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
25
|
Delineating the Physiological Roles of the PE and Catalytic Domains of LipY in Lipid Consumption in Mycobacterium-Infected Foamy Macrophages. Infect Immun 2018; 86:IAI.00394-18. [PMID: 29986895 DOI: 10.1128/iai.00394-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/03/2018] [Indexed: 12/29/2022] Open
Abstract
Within tuberculous granulomas, a subpopulation of Mycobacterium tuberculosis resides inside foamy macrophages (FM) that contain abundant cytoplasmic lipid bodies (LB) filled with triacylglycerol (TAG). Upon fusion of LB with M. tuberculosis-containing phagosomes, TAG is hydrolyzed and reprocessed by the bacteria into their own lipids, which accumulate as intracytosolic lipid inclusions (ILI). This phenomenon is driven by many mycobacterial lipases, among which LipY participates in the hydrolysis of host and bacterial TAG. However, the functional contribution of LipY's PE domain to TAG hydrolysis remains unclear. Here, enzymatic studies were performed to compare the lipolytic activities of recombinant LipY and its truncated variant lacking the N-terminal PE domain, LipY(ΔPE). Complementarily, an FM model was used where bone marrow-derived mouse macrophages were infected with M. bovis BCG strains either overexpressing LipY or LipY(ΔPE) or carrying a lipY deletion mutation prior to being exposed to TAG-rich very-low-density lipoprotein (VLDL). Results indicate that truncation of the PE domain correlates with increased TAG hydrolase activity. Quantitative electron microscopy analyses showed that (i) in the presence of lipase inhibitors, large ILI (ILI+3) were not formed because of an absence of LB due to inhibition of VLDL-TAG hydrolysis or inhibition of LB-neutral lipid hydrolysis by mycobacterial lipases, (ii) ILI+3 profiles in the strain overexpressing LipY(ΔPE) were reduced, and (iii) the number of ILI+3 profiles in the ΔlipY mutant was reduced by 50%. Overall, these results delineate the role of LipY and its PE domain in host and mycobacterial lipid consumption and show that additional mycobacterial lipases take part in these processes.
Collapse
|
26
|
Rénier W, Bourdin A, Rubbo PA, Peries M, Dedieu L, Bendriss S, Kremer L, Canaan S, Terru D, Godreuil S, Nagot N, Van de Perre P, Tuaillon E. B cells response directed against Cut4 and CFP21 lipolytic enzymes in active and latent tuberculosis infections. PLoS One 2018; 13:e0196470. [PMID: 29709002 PMCID: PMC5927435 DOI: 10.1371/journal.pone.0196470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/13/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Better understanding of the immune response directed against Mycobacterium tuberculosis (Mtb) is critical for development of vaccine strategies and diagnosis tests. Previous studies suggested that Mtb enzymes involved in lipid metabolism, are associated with persistence and/or reactivation of dormant bacilli. METHODS Circulating antibodies secreting cells (ASCs), memory B cells, and antibodies directed against Cut4 (Rv3452) and CFP21 (Rv1984c) antigens were explored in subjects with either active- or latent-tuberculosis (LTB), and in Mtb-uninfected individuals. RESULTS Circulating anti-Cut4 ASCs were detected in 11/14 (78.6%) subjects from the active TB group vs. 4/17 (23.5%) from the LTB group (p = 0.001). Anti-CFP21 ASCs were found in 11/14 (78.6%) active TB vs. in 5/17 (29.4%) LTB cases (p = 0.01). Circulating anti-Cut4 and anti-CFP21 ASCs were not detected in 38 Mtb uninfected controls. Memory B cells directed against either Cut4 or CFP21 were identified in 8/11 (72.7%) and in 9/11 (81.8%) subjects with LTB infection, respectively, and in 2/6 Mtb uninfected individuals (33.3%). High level of anti-Cut4 and anti-CFP21 IgG were observed in active TB cases. CONCLUSION Circulating IgG SCs directed against Cut4 or CFP21 were mostly detected in patients presenting an active form of the disease, suggesting that TB reactivation triggers an immune response against these two antigens.
Collapse
Affiliation(s)
- Wendy Rénier
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Arnaud Bourdin
- PhyMedExp, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Pierre-Alain Rubbo
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Marianne Peries
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Luc Dedieu
- Laboratory of Enzymology at Interfaces and Physiology of Lipolysis, CNRS, Université Aix-Marseille, France
| | - Sophie Bendriss
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Laurent Kremer
- Institute of Research on Infection of Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Stéphane Canaan
- Laboratory of Enzymology at Interfaces and Physiology of Lipolysis, CNRS, Université Aix-Marseille, France
| | - Dominique Terru
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Sylvain Godreuil
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections, INSERM, EFS, Université de Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
27
|
Mali PC, Meena LS. Triacylglycerol: nourishing molecule in endurance of Mycobacterium tuberculosis. J Biosci 2018; 43:149-154. [PMID: 29485123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability of Mycobacterium tuberculosis (M. tuberculosis) to accumulate lipid-rich molecules as an energy source obtained from host cell debris remains interesting. Additionally, the potential of M. tuberculosis to survive under different stress conditions leading to its dormant state in pathogenesis remains elusive. The exact mechanism by which these lipid bodies generated in M. tuberculosis infection and utilized by bacilli inside infected macrophage for its survival is still not understood. In this, during bacillary infection, many metabolic pathways are involved that influence the survival of M. tuberculosis for their own support. However, the exact energy source derived from infecting host cells remain elusive. Therefore, this study highlights several alternative energy sources in the form of triacylglycerol (TAG) and fatty acids, i.e. oleic acids accumulation, which are essential in dormancy-like state under M. tuberculosis infection. The prominent stage in tuberculosis (TB) infection is re-establishment of M. tuberculosis under stress conditions and deployment of a confined strategy to utilize these biomolecules for its persistence survival. So, growing in our understanding of these pathways will help us in accelerating therapies, which could reduce TB prevalence world widely.
Collapse
Affiliation(s)
- Pratap C Mali
- Department of Zoology, University of Rajasthan, Jaipur 322 219, India
| | | |
Collapse
|
28
|
Rastogi R, Kumar A, Kaur J, Saini V, Kaur J, Bhatnagar A. Rv0646c, an esterase from M. tuberculosis, up-regulates the host immune response in THP-1 macrophages cells. Mol Cell Biochem 2018; 447:189-202. [DOI: 10.1007/s11010-018-3303-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
|
29
|
Mali PC, Meena LS. Triacylglycerol: nourishing molecule in endurance of Mycobacterium tuberculosis. J Biosci 2018. [DOI: 10.1007/s12038-018-9729-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Characterization of an extracellular protein, Rv1076 from M. tuberculosis with a potential role in humoral response. Int J Biol Macromol 2017; 101:621-629. [DOI: 10.1016/j.ijbiomac.2017.03.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
|
31
|
Chen F, Cui G, Wang S, Nair MKM, He L, Qi X, Han X, Zhang H, Zhang JR, Su J. Outer membrane vesicle-associated lipase FtlA enhances cellular invasion and virulence in Francisella tularensis LVS. Emerg Microbes Infect 2017; 6:e66. [PMID: 28745311 PMCID: PMC5567169 DOI: 10.1038/emi.2017.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023]
Abstract
Francisella tularensis is a highly infectious intracellular pathogen that infects a wide range of host species and causes fatal pneumonic tularemia in humans. ftlA was identified as a potential virulence determinant of the F. tularensis live vaccine strain (LVS) in our previous transposon screen, but its function remained undefined. Here, we show that an unmarked deletion mutant of ftlA was avirulent in a pneumonia mouse model with a severely impaired capacity to infect host cells. Consistent with its sequence homology with GDSL lipase/esterase family proteins, the FtlA protein displayed lipolytic activity in both E. coli and F. tularensis with a preference for relatively short carbon-chain substrates. FtlA thus represents the first F. tularensis lipase to promote bacterial infection of host cells and in vivo fitness. As a cytoplasmic protein, we found that FtlA was secreted into the extracellular environment as a component of outer membrane vesicles (OMVs). Further confocal microscopy analysis revealed that the FtlA-containing OMVs isolated from F. tularensis LVS attached to the host cell membrane. Finally, the OMV-associated FtlA protein complemented the genetic deficiency of the ΔftlA mutant in terms of host cell infection when OMVs purified from the parent strain were co-incubated with the mutant bacteria. These lines of evidence strongly suggest that the FtlA lipase promotes F. tularensis adhesion and internalization by modifying bacterial and/or host molecule(s) when it is secreted as a component of OMVs.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guolin Cui
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shuxia Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | - Lihong He
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinyi Qi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiangmin Han
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hanqi Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Jeffrey B, Rose SJ, Gilbert K, Lewis M, Bermudez LE. Comparative analysis of the genomes of clinical isolates of Mycobacterium avium subsp. hominissuis regarding virulence-related genes. J Med Microbiol 2017; 66:1063-1075. [PMID: 28671535 DOI: 10.1099/jmm.0.000507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Mycobacterium avium subsp. hominissuis is a member of the M. avium complex, a heterogeneous group of bacteria that cause lung infection in immunocompetent patients or disseminated infection in patients with immunosuppression. The bacteria belonging to this complex have variable virulence, depending on the strain considered, and therefore a representative of the most common clinical phenotype was analysed. METHODOLOGY The genomic sequences of four M. avium subsp. hominissuis isolates obtained from clinical specimens were completed. Mav101, Mav100 and MavA5 were isolated from the blood of patients with AIDS. MavA5 was disseminated from the lung, while Mav3388 was isolated from the lungs of a patient with chronic lung disease. The sequences were annotated using the published Mav104 genome as a blueprint. Functional and virulence analyses of the sequences were carried out. Mice studies comparing the virulence of the strains were performed. RESULTS Findings showed that while Mav101 was very similar to Mav104, there were numerous differences between Mav104 and the remaining strains at nucleotide and predicted protein levels. The presence of genes associated with biofilm formation and several known virulence-related genes were sometimes differentially present among the isolates, suggesting overlapping functions by different genetic determinants. CONCLUSIONS The sequences provided important information about M. avium heterogenicity and evolution as a pathogen. The limitation is the lack of understanding on possible overlapping functions of genes/proteins.
Collapse
Affiliation(s)
- Brendan Jeffrey
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, Oregon, USA
| | - Sasha J Rose
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, Oregon, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Kerrigan Gilbert
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, Oregon, USA
| | - Matthew Lewis
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, Oregon, USA.,Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Luiz E Bermudez
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, Oregon, USA
| |
Collapse
|
33
|
Kumar A, Saini V, Kumar A, Kaur J, Kaur J. Modulation of Trehalose Dimycolate and Immune System by Rv0774c Protein Enhanced the Intracellular Survival of Mycobacterium smegmatis in Human Macrophages Cell Line. Front Cell Infect Microbiol 2017; 7:289. [PMID: 28713776 PMCID: PMC5491638 DOI: 10.3389/fcimb.2017.00289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/14/2017] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium tuberculosis Rv0774c protein was reported previously to express under stress conditions. Therefore, Rv0774c gene was cloned and expressed in Mycobacterium smegmatis, a surrogate host, to determine its role in bacterial persistence and immune modulation in natural environment. The bacterial colonies expressing Rv0774c (Ms_rv0774c) were larger, smoother, more moist, and flatter than the control ones (Ms_ve). Enhanced survival of Ms_rv0774c after treatment with streptomycin was observed when compared with control. The cell envelope of Ms_rv0774c was demonstrated to have more trehalose di-mycolate (TDM) and lesser amount of mycolylmannosylphosphorylheptaprenol (Myc-PL) in comparison to control. Higher intracellular survival rate was observed for Ms_rv0774c as compared to Ms_ve in the THP-1 cells. This could be correlated to the reduction in the levels of reactive NO and iNOS expression. Infection of macrophages with Ms_rv0774c resulted in significantly increased expression of TLR2 receptor and IL-10 cytokines. However, it lowered the production of pro-inflammatory cytokines such as IL-12, TNF-α, IFN-γ, and MCP-1 in Ms_rv0774c infected macrophages in comparison to the control and could be associated with decreased phosphorylation of p38 MAPK. Though, predicted with high antigenicity index bioinformatically, extracellular in nature and accessible to host milieu, Rv0774c was not able to generate humoral response in patient samples. Overall, the present findings indicated that Rv0774c altered the morphology and streptomycin sensitivity by altering the lipid composition of M. smegmatis as well as modulated the immune response in favor of bacterial persistence.
Collapse
Affiliation(s)
- Arbind Kumar
- Department of Biotechnology, Panjab UniversityChandigarh, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and HospitalChandigarh, India
| | - Anjani Kumar
- Department of Biotechnology, Panjab UniversityChandigarh, India
| | - Jasbinder Kaur
- Department of Pulmonary Medicine, Government Medical College and HospitalChandigarh, India.,Department of Biochemistry, Government Medical College and HospitalChandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab UniversityChandigarh, India
| |
Collapse
|
34
|
Kumar A, Manisha, Sangha GK, Shrivastava A, Kaur J. The immunosuppressive effects of a novel recombinant LipQ (Rv2485c) protein of Mycobacterium tuberculosis on human macrophage cell lines. Microb Pathog 2017; 107:361-367. [DOI: 10.1016/j.micpath.2017.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/11/2017] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
|
35
|
Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU). Microbiol Res 2017; 196:7-16. [DOI: 10.1016/j.micres.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022]
|
36
|
Vilchèze C, Kremer L. Acid-Fast Positive and Acid-Fast Negative Mycobacterium tuberculosis: The Koch Paradox. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0003-2015. [PMID: 28337966 PMCID: PMC11687472 DOI: 10.1128/microbiolspec.tbtb2-0003-2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
Acid-fast (AF) staining, also known as Ziehl-Neelsen stain microscopic detection, developed over a century ago, is even today the most widely used diagnostic method for tuberculosis. Herein we present a short historical review of the evolution of AF staining methods and discuss Koch's paradox, in which non-AF tubercle bacilli can be detected in tuberculosis patients or in experimentally infected animals. The conversion of Mycobacterium tuberculosis from an actively growing, AF-positive form to a nonreplicating, AF-negative form during the course of infection is now well documented. The mechanisms of loss of acid-fastness are not fully understood but involve important metabolic processes, such as the accumulation of triacylglycerol-containing intracellular inclusions and changes in the composition and spatial architecture of the cell wall. Although the precise component(s) responsible for the AF staining method remains largely unknown, analysis of a series of genetically defined M. tuberculosis mutants, which are attenuated in mice, pointed to the primary role of mycolic acids and other cell wall-associated (glyco)lipids as molecular markers responsible for the AF property of mycobacteria. Further studies are now required to better describe the cell wall reorganization that occurs during dormancy and to develop new staining procedures that are not affected by such cell wall alterations and that are capable of detecting AF-negative cells.
Collapse
Affiliation(s)
- Catherine Vilchèze
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Laurent Kremer
- IRIM (ex-CPBS) UMR 9004, Infectious Disease Research Institute of Montpellier (IDRIM), Université de Montpellier, CNRS, 34293 Montpellier, France
| |
Collapse
|
37
|
Mycobacterium tuberculosis rv1400c encodes functional lipase/esterase. Protein Expr Purif 2017; 129:143-149. [DOI: 10.1016/j.pep.2016.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/01/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022]
|
38
|
Delogu G, Brennan MJ, Manganelli R. PE and PPE Genes: A Tale of Conservation and Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:191-207. [PMID: 29116636 DOI: 10.1007/978-3-319-64371-7_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PE and PPE are two large families of proteins typical of mycobacteria whose structural genes in the Mycobacterium tuberculosis complex (MTBC) occupy about 7% of the total genome. The most ancestral PE and PPE proteins are expressed by genes that belong to the same operon and in most cases are found inserted in the esx clusters, encoding a type VII secretion system. Duplication and expansion of pe and ppe genes, coupled with intragenomic and intergenomic recombination events, led to the emergence of the polymorphic pe_pgrs and ppe_mptr genes in the MTBC genome. The role and function of these proteins, and particularly of the polymorphic subfamilies, remains elusive, although it is widely accepted that PE and PPE proteins may represent a specialized collection used by MTBC to interact with the complex host immune system of mammals. In this chapter, we summarize what has been discovered since the identification of these genes in 1998, focusing on M. tuberculosis genetic variability, host-pathogen interaction and TB pathogenesis.
Collapse
Affiliation(s)
- Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy.
| | | | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121, Padua, Italy
| |
Collapse
|
39
|
Abstract
Type VII secretion (T7S) systems of mycobacteria secrete substrates over the unusual diderm cell envelope. Furthermore, T7S gene clusters are present throughout the phylum Actinobacteria, and functional T7S-like systems have been identified in Firmicutes. Most of the T7S substrates can be divided into two families: the Esx proteins, which are found in both Firmicutes and Actinobacteria, and the PE and PPE proteins, which are more mycobacterium-specific. Members of both families have been shown to be secreted as folded heterodimers, suggesting that this is a conserved feature of T7S substrates. Most knowledge of the mechanism of T7S and the roles of T7S systems in virulence comes from studies of pathogenic mycobacteria. These bacteria can contain up to five T7S systems, called ESX-1 to ESX-5, each having its own role in bacterial physiology and virulence. In this article, we discuss the general composition of T7S systems and the role of the individual components in secretion. These conserved components include two membrane proteins with (predicted) enzymatic activities: a predicted ATPase (EccC), likely to be required for energy provision of T7S, and a subtilisin-like protease (MycP) involved in processing of specific substrates. Additionally, we describe the role of a conserved intracellular chaperone in T7S substrate recognition, based on recently published crystal structures and molecular analysis. Finally, we discuss system-specific features of the different T7S systems in mycobacteria and their role in pathogenesis and provide an overview of the role of T7S in virulence of other pathogenic bacteria.
Collapse
|
40
|
Jadeja D, Dogra N, Arya S, Singh G, Singh G, Kaur J. Characterization of LipN (Rv2970c) of Mycobacterium Tuberculosis H37Rv and its Probable Role in Xenobiotic Degradation. J Cell Biochem 2016. [PMID: 26212120 DOI: 10.1002/jcb.25285] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
LipN (Rv2970c) belongs to the Lip family of M. tuberculosis H37Rv and is homologous to the human Hormone Sensitive Lipase. The enzyme demonstrated preference for short carbon chain substrates with optimal activity at 45°C/pH 8.0 and stability between pH 6.0-9.0. The specific activity of the enzyme was 217 U/mg protein with pNP-butyrate as substrate. It hydrolyzed tributyrin to di- and monobutyrin. The active-site residues of the enzyme were confirmed to be Ser216, Asp316, and His346. Tetrahydrolipstatin, RHC-80267 and N-bromosuccinimide inhibited LipN enzyme activity completely. Interestingly, Trp145, a non active-site residue, demonstrated functional role to retain enzyme activity. The enzyme was localized in cytosolic fraction of M. tuberculosis H37Rv. The enzyme was able to synthesize ester of butyric acid, methyl butyrate, in presence of methanol. LipN was able to hydrolyze 4-hydroxyphenylacetate to hydroquinone. The gene was not expressed in in-vitro growth conditions while the expression of rv2970c gene was observed post 6h of macrophage infection by M. tuberculosis H37Ra. Under individual in-vitro stress conditions, the gene was expressed during acidic stress condition only. These findings suggested that LipN is a cytosolic, acid inducible carboxylesterase with no positional specificity in demonstrating activity with short carbon chain substrates. It requires Trp145, a non active site residue, for it's enzyme activity.
Collapse
Affiliation(s)
| | - Nandita Dogra
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Stuti Arya
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gurpreet Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gurdyal Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
41
|
Santucci P, Bouzid F, Smichi N, Poncin I, Kremer L, De Chastellier C, Drancourt M, Canaan S. Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis. Front Cell Infect Microbiol 2016; 6:122. [PMID: 27774438 PMCID: PMC5054039 DOI: 10.3389/fcimb.2016.00122] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022] Open
Abstract
Despite a slight decline since 2014, tuberculosis (TB) remains the major deadly infectious disease worldwide with about 1.5 million deaths each year and with about one-third of the population being latently infected with Mycobacterium tuberculosis, the etiologic agent of TB. During primo-infection, the recruitment of immune cells leads to the formation of highly organized granulomas. Among the different cells, one outstanding subpopulation is the foamy macrophage (FM), characterized by the abundance of triacylglycerol-rich lipid bodies (LB). M. tuberculosis can reside in FM, where it acquires, from host LB, the neutral lipids which are subsequently processed and stored by the bacilli in the form of intracytosolic lipid inclusions (ILI). Although host LB can be viewed as a reservoir of nutrients for the pathogen during latency, the molecular mechanisms whereby intraphagosomal mycobacteria interact with LB and assimilate the LB-derived lipids are only beginning to be understood. Past studies have emphasized that these physiological processes are critical to the M. tuberculosis infectious-life cycle, for propagation of the infection, establishment of the dormancy state and reactivation of the disease. In recent years, several animal and cellular models have been developed with the aim of dissecting these complex processes and of determining the nature and contribution of their key players. Herein, we review some of the in vitro and in vivo models which allowed to gain significant insight into lipid accumulation and consumption in M. tuberculosis, two important events that are directly linked to pathogenicity, granuloma formation/maintenance and survival of the tubercle bacillus under non-replicative conditions. We also discuss the advantages and limitations of each model, hoping that this will serve as a guide for future investigations dedicated to persistence and innovative therapeutic approaches against TB.
Collapse
Affiliation(s)
- Pierre Santucci
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Feriel Bouzid
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPLMarseille, France; Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, URMITEMarseille, France
| | - Nabil Smichi
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPLMarseille, France; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Centre National de la Recherche Scientifique FRE3689, Université de MontpellierMontpellier, France
| | - Isabelle Poncin
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Laurent Kremer
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Centre National de la Recherche Scientifique FRE3689, Université de MontpellierMontpellier, France; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Institut National de la Santé et de la Recherche MédicaleMontpellier, France
| | - Chantal De Chastellier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Michel Drancourt
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, URMITE Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| |
Collapse
|
42
|
Viljoen A, Blaise M, de Chastellier C, Kremer L. MAB_3551c encodes the primary triacylglycerol synthase involved in lipid accumulation in Mycobacterium abscessus. Mol Microbiol 2016; 102:611-627. [PMID: 27513974 DOI: 10.1111/mmi.13482] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2016] [Indexed: 01/16/2023]
Abstract
Slow growing pathogenic mycobacteria utilize host-derived lipids and accumulate large amounts of triacylglycerol (TAG) in the form of intracytoplasmic lipid inclusions (ILI), serving as a source of carbon and energy during prolonged infection. Mycobacterium abscessus is an emerging and rapidly growing species capable to induce severe and chronic pulmonary infections. However, whether M. abscessus, like Mycobacterium tuberculosis, possesses the machinery to acquire and store host lipids, remains unaddressed. Herein, we aimed at deciphering the contribution of the seven putative M. abscessus TAG synthases (Tgs) in TAG synthesis/accumulation thanks to a combination of genetic and biochemical techniques and a well-defined foamy macrophage (FM) model along with electron microscopy. Targeted gene deletion and functional complementation studies identified the MAB_3551c product, Tgs1, as the major Tgs involved in TAG production. Tgs1 exhibits a preference for long acyl-CoA substrates and site-directed mutagenesis demonstrated that His144 and Gln145 are essential for enzymatic activity. Importantly, in the lipid-rich intracellular context of FM, M. abscessus formed large ILI in a Tgs1-dependent manner. This supports the ability of M. abscessus to assimilate host lipids and the crucial role of Tgs1 in intramycobacterial TAG production, which may represent important mechanisms for long-term storage of a rich energy supply.
Collapse
Affiliation(s)
- Albertus Viljoen
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, 13288, France
| | - Mickael Blaise
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, 13288, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France.,INSERM, CPBS, Montpellier, 34293, France
| |
Collapse
|
43
|
Daniel J, Kapoor N, Sirakova T, Sinha R, Kolattukudy P. The perilipin-like PPE15 protein in Mycobacterium tuberculosis is required for triacylglycerol accumulation under dormancy-inducing conditions. Mol Microbiol 2016; 101:784-94. [PMID: 27325376 DOI: 10.1111/mmi.13422] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 01/15/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes latent tuberculosis infection in one-third of the world population and remains quiescent in the human body for decades. The dormant pathogen accumulates lipid droplets containing triacylglycerol (TAG). In mammals, perilipin regulates lipid droplet homeostasis but no such protein has been identified in Mtb. We identified an Mtb protein (PPE15) that showed weak amino acid sequence identities with mammalian perilipin-1 and was upregulated in Mtb dormancy. We generated a ppe15 gene-disrupted mutant of Mtb and examined its ability to metabolically incorporate radiolabeled oleic acid into TAG, accumulate lipid droplets containing TAG and develop phenotypic tolerance to rifampicin in two in vitro models of dormancy including a three-dimensional human granuloma model. The mutant showed a significant decrease in the biosynthesis and accumulation of lipid droplets containing TAG and in its tolerance of rifampicin. Complementation of the mutant with a wild-type copy of the ppe15 gene restored the lost phenotypes. We designate PPE15 as mycobacterial perilipin-1 (MPER1). Our findings suggest that the MPER1 protein plays a critical role in the homeostasis of TAG -containing lipid droplets in Mtb and influences the entry of the pathogen into a dormant state.
Collapse
Affiliation(s)
- Jaiyanth Daniel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA.,Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, IN 46805, USA
| | - Nidhi Kapoor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Tatiana Sirakova
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Rajesh Sinha
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Pappachan Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
44
|
Kumar A, Sharma A, Kaur G, Makkar P, Kaur J. Functional characterization of hypothetical proteins of Mycobacterium tuberculosis with possible esterase/lipase signature: a cumulative in silico and in vitro approach. J Biomol Struct Dyn 2016; 35:1226-1243. [DOI: 10.1080/07391102.2016.1174738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Arbind Kumar
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Aashish Sharma
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Gurkamaljit Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Pooja Makkar
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
45
|
Ülker S, Placidi C, Point V, Gadenne B, Serveau-Avesque C, Canaan S, Carrière F, Cavalier JF. New lipase assay using Pomegranate oil coating in microtiter plates. Biochimie 2016; 120:110-8. [DOI: 10.1016/j.biochi.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
46
|
Mycobacterium tuberculosis Resists Stress by Regulating PE19 Expression. Infect Immun 2015; 84:735-46. [PMID: 26712204 DOI: 10.1128/iai.00942-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis requires the phosphate-sensing signal transduction system Pst/SenX3-RegX3 to resist host immune responses. A ΔpstA1 mutant lacking a Pst phosphate uptake system component is hypersensitive to diverse stress conditions in vitro and is attenuated in vivo due to constitutive expression of the phosphate starvation-responsive RegX3 regulon. Transcriptional profiling of the ΔpstA1 mutant revealed aberrant expression of certain pe and ppe genes. PE and PPE proteins, defined by conserved N-terminal domains containing Pro-Glu (PE) or Pro-Pro-Glu (PPE) motifs, account for a substantial fraction of the M. tuberculosis genome coding capacity, but their functions are largely uncharacterized. Because some PE and PPE proteins localize to the cell wall, we hypothesized that overexpression of these proteins sensitizes M. tuberculosis to stress by altering cell wall integrity. To test this idea, we deleted pe and ppe genes that were overexpressed by ΔpstA1 bacteria. Deletion of a single pe gene, pe19, suppressed hypersensitivity of the ΔpstA1 mutant to both detergent and reactive oxygen species. Ethidium bromide uptake assays revealed increased envelope permeability of the ΔpstA1 mutant that was dependent on PE19. The replication defect of the ΔpstA1 mutant in NOS2(-/-) mice was partially reversed by deletion of pe19, suggesting that increased membrane permeability due to PE19 overexpression sensitizes M. tuberculosis to host immunity. Our data indicate that PE19, which comprises only a 99-amino-acid PE domain, has a unique role in the permeability of the M. tuberculosis envelope that is regulated to resist stresses encountered in the host.
Collapse
|
47
|
Cao J, Dang G, Li H, Li T, Yue Z, Li N, Liu Y, Liu S, Chen L. Identification and Characterization of Lipase Activity and Immunogenicity of LipL from Mycobacterium tuberculosis. PLoS One 2015; 10:e0138151. [PMID: 26398213 PMCID: PMC4580317 DOI: 10.1371/journal.pone.0138151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/25/2015] [Indexed: 01/06/2023] Open
Abstract
Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzymatic activity for the hydrolysis of long-chain lipids. The optimal temperature for the lipase activity of LipL was demonstrated to be 37°C, and the optimal pH was 8.0. The lipase active center was not the conserved motif G-x-S-x-G, but rather the S-x-x-K and GGG motifs, and the key catalytic amino acid residues were identified as G50, S88, and K91, as demonstrated through site-directed mutagenesis experiments. A three-dimensional modeling structure of LipL was constructed, which showed that the GGG motif was located in the surface of a pocket structure. Furthermore, the subcellular localization of LipL was demonstrated to be on the mycobacterial surface by Western blot analysis. Our results revealed that the LipL protein could induce a strong humoral immune response in humans and activate a CD8+ T cell-mediated response in mice. Overall, our study identified and characterized a novel lipase denoted LipL from M. tuberculosis, and demonstrated that LipL functions as an immunogen that activates both humoral and cell-mediated responses.
Collapse
Affiliation(s)
- Jun Cao
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guanghui Dang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Huafang Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Tiantian Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zhiguo Yue
- Heilongjiang Provincial Hospital for Prevention and Treatment of Tuberculosis, Harbin, PR China
| | - Na Li
- Heilongjiang Provincial Hospital for Prevention and Treatment of Tuberculosis, Harbin, PR China
| | - Yajun Liu
- Heilongjiang Provincial Hospital for Prevention and Treatment of Tuberculosis, Harbin, PR China
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
- * E-mail: (SL); (LC)
| | - Liping Chen
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
- * E-mail: (SL); (LC)
| |
Collapse
|
48
|
Alvarez HM. Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie 2015; 120:28-39. [PMID: 26343555 DOI: 10.1016/j.biochi.2015.08.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Gram negative bacteria as well as Gram positive actinobacteria possess the ability to accumulate variable amounts of wax esters (WE) and/or triacylglycerols (TAG) under nitrogen limiting conditions. In recent years many advances have been made to obtain insight into neutral lipid biosynthesis and accumulation in prokaryotes. The clinical and industrial relevance of bacterial WE/TAG significantly promoted basic and applied research in this field. The recent integrated omic studies as well as the functional characterization of diverse genes are contributing to unravel the composition of the WE/TAG-accumulating machinery in bacteria. This will be a valuable data for designing new drugs against bacteria with clinical importance, such as Mycobacterium tuberculosis, or for transferring and optimizing lipid accumulation in bacterial hosts naturally unable to produce such lipids, such as Escherichia coli. In this article, recent investigations addressing WE/TAG biosynthesis and storage in prokaryotes are presented. A comprehensive view of the current knowledge on the different genes/proteins involved in WE/TAG biosynthesis is included.
Collapse
Affiliation(s)
- Héctor M Alvarez
- Centro Regional de Investigación y Desarrollo Científico Tecnológico (CRIDECIT), Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, CIT-CHUBUT, CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| |
Collapse
|
49
|
Garrett CK, Broadwell LJ, Hayne CK, Neher SB. Modulation of the Activity of Mycobacterium tuberculosis LipY by Its PE Domain. PLoS One 2015; 10:e0135447. [PMID: 26270534 PMCID: PMC4536007 DOI: 10.1371/journal.pone.0135447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/22/2015] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium tuberculosis harbors over 160 genes encoding PE/PPE proteins, several of which have roles in the pathogen’s virulence. A number of PE/PPE proteins are secreted via Type VII secretion systems known as the ESX secretion systems. One PE protein, LipY, has a triglyceride lipase domain in addition to its PE domain. LipY can regulate intracellular triglyceride levels and is also exported to the cell wall by one of the ESX family members, ESX-5. Upon export, LipY’s PE domain is removed by proteolytic cleavage. Studies using cells and crude extracts suggest that LipY’s PE domain not only directs its secretion by ESX-5, but also functions to inhibit its enzymatic activity. Here, we attempt to further elucidate the role of LipY’s PE domain in the regulation of its enzymatic activity. First, we established an improved purification method for several LipY variants using detergent micelles. We then used enzymatic assays to confirm that the PE domain down-regulates LipY activity. The PE domain must be attached to LipY in order to effectively inhibit it. Finally, we determined that full length LipY and the mature lipase lacking the PE domain (LipYΔPE) have similar melting temperatures. Based on our improved purification strategy and activity-based approach, we concluded that LipY’s PE domain down-regulates its enzymatic activity but does not impact the thermal stability of the enzyme.
Collapse
Affiliation(s)
- Christopher K. Garrett
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Lindsey J. Broadwell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Cassandra K. Hayne
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Saskia B. Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
50
|
Deng W, Zeng J, Xiang X, Li P, Xie J. PE11 (Rv1169c) selectively alters fatty acid components of Mycobacterium smegmatis and host cell interleukin-6 level accompanied with cell death. Front Microbiol 2015; 6:613. [PMID: 26157429 PMCID: PMC4477156 DOI: 10.3389/fmicb.2015.00613] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/02/2015] [Indexed: 11/26/2022] Open
Abstract
PE/PPE family proteins, named after their conserved PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains of N-terminal, are most intriguing aspects of pathologic mycobacterial genome. The roles of most members of this family remain unknown, although selected genes of this family are related to the virulence of Mycobacterium tuberculosis. In order to decipher the role of Rv1169c, the Mycobacterium smegmatis strain heterologous expressed this ORF was constructed and identified that Rv1169c was a cell wall associated protein with a novel function in modifying the cell wall fatty acids. The growth of Rv1169c expressing strain was affected under surface stress, acidic condition and antibiotics treatment. M. smegmatis expressing Rv1169c induced necrotic cell death of macrophage after infection and significantly decreased interlukin-6 production compared to controls. In general, these results underscore a proposing role of Rv1169c in virulence of M. tuberculosis, as it's role in the susceptibility of anti-mycobacteria factors caused by modified cell wall fatty acid, and the induced necrotic cell death by Rv1169c is crucial for M. tuberculosis virulence during infection.
Collapse
Affiliation(s)
- Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Xiaohong Xiang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Ping Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| |
Collapse
|