1
|
Shuman JHB, Lin AS, Westland MD, Bryant KN, Piazuelo MB, Reyzer ML, Judd AM, McDonald WH, McClain MS, Schey KL, Algood HMS, Cover TL. Remodeling of the gastric environment in Helicobacter pylori-induced atrophic gastritis. mSystems 2024; 9:e0109823. [PMID: 38059647 PMCID: PMC10805037 DOI: 10.1128/msystems.01098-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 12/08/2023] Open
Abstract
Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry. We detected striking differences in the protein content of corpus and antrum tissues. Four hundred ninety-two proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared with infected corpus tissues exhibiting non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. The corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.IMPORTANCEA normal stomach is organized into distinct regions known as the corpus and antrum, which have different functions, cell types, and gland architectures. Previous studies have primarily used histologic methods to differentiate these regions and detect H. pylori-induced alterations leading to stomach cancer. In this study, we investigated H. pylori-induced gastric molecular alterations in a Mongolian gerbil model of carcinogenesis. We report the detection of numerous proteins that are preferentially localized to the gastric corpus but not the antrum in a normal stomach. We show that stomachs with H. pylori-induced atrophic gastritis (a precancerous condition characterized by the loss of specialized cell types) exhibit marked changes in the abundance and localization of proteins normally localized to the gastric corpus. These results provide new insights into H. pylori-induced gastric molecular alterations that are associated with the development of stomach cancer.
Collapse
Affiliation(s)
- Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mandy D. Westland
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. S. Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Stair MI, Winn CB, Burns MA, Holcombe H, Artim SC, Ge Z, Shen Z, Wang TC, Muthupalani S, Franco-Mahecho O, Ennis K, Georgieff MK, Fox JG. Effects of chronic Helicobacter pylori strain PMSS1 infection on whole brain and gastric iron homeostasis in male INS-GAS mice. Microbes Infect 2023; 25:105045. [PMID: 36162750 DOI: 10.1016/j.micinf.2022.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 02/03/2023]
Abstract
Iron deficiency, the most common micronutrient deficiency in humans, is associated with long-term deficits in cognition and memory if left untreated. Infection with the gastric pathogen Helicobacter pylori has been linked to iron deficiency anemia (IDA). The H. pylori virulence factor cytotoxin-associated gene A (cagA) is proposed to be especially pertinent in iron deficiency. Male INS-GAS/FVB mice were infected with the CagA+ strain pre-murine Sydney strain 1 (PMSS1) for 12-13 or 27-29 weeks to investigate the role of chronic H. pylori infection in iron deficiency and neurological sequelae. Mice at both timepoints demonstrated significantly elevated gastric histopathology scores and inflammatory cytokines compared to sham-dosed controls. However, only mice at 27-29 weeks post infection had changes in hematological parameters, with significantly decreased erythrocyte count, hematocrit, serum hemoglobin, and increased serum total iron binding capacity. Gastric transcription of iron-regulatory genes Hamp and Bmp4 were significantly downregulated at both timepoints. In the brain, iron-dependent myelingergic and synaptic markers were significantly downregulated at 27-29 weeks. These results indicated that long-term infection of the CagA + PMSS1 strain of H. pylori in this study caused anemia, altered gastric iron homeostasis, and neurological changes similar to those reported in other rodent H. pylori CagA- strain infection models.
Collapse
Affiliation(s)
- Melissa I Stair
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Animal Resource Program, Atrium Health Wake Forest Baptist, Winston Salem, NC, United States
| | - Caroline Bodi Winn
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Comparative Medicine, Worldwide Research, Development, and Medical, Pfizer, Cambridge, MA, United States
| | - Monika A Burns
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | - Hilda Holcombe
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Stephen C Artim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Merck Research Laboratories, Merck, South San Francisco, CA, United States
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Timothy C Wang
- Department of Medicine, Columbia University, New York, NY, United States
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Olga Franco-Mahecho
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kathleen Ennis
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
3
|
Wroblewski LE, Peek RM. Clinical Pathogenesis, Molecular Mechanisms of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:25-52. [PMID: 38231214 PMCID: PMC10924282 DOI: 10.1007/978-3-031-47331-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human pathogen Helicobacter pylori is the strongest known risk factor for gastric disease and cancer, and gastric cancer remains a leading cause of cancer-related death across the globe. Carcinogenic mechanisms associated with H. pylori are multifactorial and are driven by bacterial virulence constituents, host immune responses, environmental factors such as iron and salt, and the microbiota. Infection with strains that harbor the cytotoxin-associated genes (cag) pathogenicity island, which encodes a type IV secretion system (T4SS) confer increased risk for developing more severe gastric diseases. Other important H. pylori virulence factors that augment disease progression include vacuolating cytotoxin A (VacA), specifically type s1m1 vacA alleles, serine protease HtrA, and the outer-membrane adhesins HopQ, BabA, SabA and OipA. Additional risk factors for gastric cancer include dietary factors such as diets that are high in salt or low in iron, H. pylori-induced perturbations of the gastric microbiome, host genetic polymorphisms, and infection with Epstein-Barr virus. This chapter discusses in detail host factors and how H. pylori virulence factors augment the risk of developing gastric cancer in human patients as well as how the Mongolian gerbil model has been used to define mechanisms of H. pylori-induced inflammation and cancer.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Abstract
Helicobacter pylori colonization of the stomach is a strong risk factor for the development of stomach cancer and peptic ulcer disease. In this study, we tested the hypothesis that H. pylori infection triggers alterations in gastric lipid composition. Mongolian gerbils were experimentally infected with H. pylori for 3 months. Conventional histologic staining revealed mucosal inflammation in stomachs from the H. pylori-infected animals but not in stomachs from uninfected control animals. Atrophic gastritis (a premalignant condition characterized by loss of corpus-specific parietal and chief cells), gastric mucosal hyperplasia, dysplasia, and/or gastric cancer were detected in stomachs from several infected animals. We then used imaging mass spectrometry to analyze the relative abundance and spatial distribution of gastric lipids. We detected ions corresponding to 36 distinct lipids that were differentially abundant when comparing gastric tissues from H. pylori-infected animals with tissues from uninfected animals. Liquid chromatography-tandem mass spectrometry analysis of lipid extracts from homogenized gastric tissues provided additional supportive evidence for the identification of several differentially abundant lipids. Sixteen of the differentially abundant lipids were localized mainly to the gastric corpus in stomachs from uninfected animals and were markedly reduced in abundance in stomachs from H. pylori-infected animals with severe disease (atrophic gastritis and dysplasia or gastric cancer). These findings indicate that H. pylori infection can lead to alterations in gastric lipid composition and constitute a new approach for identifying biomarkers of gastric atrophy and premalignant changes. IMPORTANCE H. pylori colonization of the stomach triggers a cascade of gastric alterations that can potentially culminate in stomach cancer. The molecular alterations that occur in gastric tissue prior to development of stomach cancer are not well understood. We demonstrate here that H. pylori-induced premalignant changes in the stomach are accompanied by extensive alterations in gastric lipid composition. These alterations are predicted to have important functional consequences relevant to H. pylori-host interactions and the pathogenesis of gastric cancer.
Collapse
|
5
|
Rueda-Robles A, Rubio-Tomás T, Plaza-Diaz J, Álvarez-Mercado AI. Impact of Dietary Patterns on H. pylori Infection and the Modulation of Microbiota to Counteract Its Effect. A Narrative Review. Pathogens 2021; 10:875. [PMID: 34358024 PMCID: PMC8308520 DOI: 10.3390/pathogens10070875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the stomach and can induce gastric disease and intra-gastric lesions, including chronic gastritis, peptic ulcers, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. This bacterium is responsible for long-term complications of gastric disease. The conjunction of host genetics, immune response, bacterial virulence expression, diet, micronutrient availability, and microbiome structure influence the disease outcomes related to chronic H. pylori infection. In this regard, the consumption of unhealthy and unbalanced diets can induce microbial dysbiosis, which infection with H. pylori may contribute to. However, to date, clinical trials have reported controversial results and current knowledge in this field is inconclusive. Here, we review preclinical studies concerning the changes produced in the microbiota that may be related to H. pylori infection, as well as the involvement of diet. We summarize and discuss the last approaches based on the modulation of the microbiota to improve the negative impact of H. pylori infection and their potential translation from bench to bedside.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- School of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Julio Plaza-Diaz
- Children’s Hospital Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
6
|
Soluri MF, Puccio S, Caredda G, Edomi P, D’Elios MM, Cianchi F, Troilo A, Santoro C, Sblattero D, Peano C. Defining the Helicobacter pylori Disease-Specific Antigenic Repertoire. Front Microbiol 2020; 11:1551. [PMID: 32849324 PMCID: PMC7396715 DOI: 10.3389/fmicb.2020.01551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The analysis of the interaction between Helicobacter pylori (HP) and the host in vivo is an extremely informative way to enlighten the molecular mechanisms behind the persistency/latency of the bacterium as well as in the progression of the infection. An important source of information is represented by circulating antibodies targeting the bacteria that define a specific "disease signature" with prospective diagnostic implications. The diagnosis of some of the HP induced diseases such as gastric cancer (GC), MALT lymphoma (MALT), and autoimmune gastritis (AIG) is not easy because patients do not show symptoms of illness in early-onset stages, at the same time they progress rapidly. The possibility of identifying markers able to provide an early diagnosis would be extremely beneficial since a late diagnosis results in a delay in undergoing active therapy and reduces the survival rate of patients. With the aim to identify the HP antigens recognized during the host immune-response to the infection and possibly disease progression, we applied a discovery-driven approach, that combines "phage display" and deep sequencing. The procedure is based on the selection of ORF phage libraries, specifically generated from the pathogen's genome, with sera antibodies from patients with different HP-related diseases. To this end two phage display libraries have been constructed starting from genomic DNA from the reference HP 26695 and the pathogenic HP B128 strains; libraries were filtered for ORFs by using an ORF selection vector developed by our group (Di Niro et al., 2005; Soluri et al., 2018), selected with antibodies from patients affected by GC, MALT, and AIG and putative HP antigens/epitopes were identified after Sequencing and ranking. The results show that individual selection significantly reduced the library diversity and comparison of individual ranks for each condition allowed us to highlight a pattern of putative antigens specific for the different pathological outcomes or common for all of them. Within the putative antigens enriched after selection, we have validated protein CagY/Cag7 by ELISA assay as a marker of HP infection and progression. Overall, we have defined HP antigenic repertoire and identified a panel of putative specific antigens/epitopes for three different HP infection pathological outcomes that could be validated in the next future.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giada Caredda
- Department of Excellence in Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Arianna Troilo
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Claudio Santoro
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | | | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
7
|
Karadaş C, Fisher A, Kara D. The effects of gastric juice acidity on bioaccessibility of some elements in selected foods. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Temporal Control of the Helicobacter pylori Cag Type IV Secretion System in a Mongolian Gerbil Model of Gastric Carcinogenesis. mBio 2020; 11:mBio.01296-20. [PMID: 32605987 PMCID: PMC7327173 DOI: 10.1128/mbio.01296-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Helicobacter pylori Cag type IV secretion system (T4SS) translocates the effector protein CagA and nonprotein bacterial constituents into host cells. In this study, we infected Mongolian gerbils with an H. pylori strain in which expression of the cagUT operon (required for Cag T4SS activity) is controlled by a TetR/tetO system. Transcript levels of cagU were significantly higher in gastric tissue from H. pylori-infected animals receiving doxycycline-containing chow (to derepress Cag T4SS activity) than in tissue from infected control animals receiving drug-free chow. At 3 months postinfection, infected animals receiving doxycycline had significantly increased gastric inflammation compared to infected control animals. Dysplasia (a premalignant histologic lesion) and/or invasive gastric adenocarcinoma were detected only in infected gerbils receiving doxycycline, not in infected control animals. We then conducted experiments in which Cag T4SS activity was derepressed during defined stages of infection. Continuous Cag T4SS activity throughout a 3-month time period resulted in higher rates of dysplasia and/or gastric cancer than observed when Cag T4SS activity was limited to early or late stages of infection. Cag T4SS activity for the initial 6 weeks of infection was sufficient for the development of gastric inflammation at the 3-month time point, with gastric cancer detected in a small proportion of animals. These experimental results, together with previous studies of cag mutant strains, provide strong evidence that Cag T4SS activity contributes to gastric carcinogenesis and help to define the stages of H. pylori infection during which Cag T4SS activity causes gastric alterations relevant for cancer pathogenesis.IMPORTANCE The "hit-and-run model" of carcinogenesis proposes that an infectious agent triggers carcinogenesis during initial stages of infection and that the ongoing presence of the infectious agent is not required for development of cancer. H. pylori infection and actions of CagA (an effector protein designated a bacterial oncoprotein, secreted by the Cag T4SS) are proposed to constitute a paradigm for hit-and-run carcinogenesis. In this study, we report the development of methods for controlling H. pylori Cag T4SS activity in vivo and demonstrate that Cag T4SS activity contributes to gastric carcinogenesis. We also show that Cag T4SS activity during an early stage of infection is sufficient to initiate a cascade of cellular alterations leading to gastric inflammation and gastric cancer at later time points.
Collapse
|
9
|
Lee MJ, Lee D, Jung HS. Wound healing mechanism in Mongolian gerbil skin. Histochem Cell Biol 2018; 151:229-238. [DOI: 10.1007/s00418-018-1752-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
|
10
|
Cooperative Metabolic Adaptations in the Host Can Favor Asymptomatic Infection and Select for Attenuated Virulence in an Enteric Pathogen. Cell 2018; 175:146-158.e15. [PMID: 30100182 DOI: 10.1016/j.cell.2018.07.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/09/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022]
Abstract
Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.
Collapse
|
11
|
Abstract
Transition metals are required cofactors for many proteins that are critical for life, and their concentration within cells is carefully maintained to avoid both deficiency and toxicity. To defend against bacterial pathogens, vertebrate immune proteins sequester metals, in particular zinc, iron, and manganese, as a strategy to limit bacterial acquisition of these necessary nutrients in a process termed "nutritional immunity." In response, bacteria have evolved elegant strategies to access metals and counteract this host defense. In mammals, metal abundance can drastically shift due to changes in dietary intake or absorption from the intestinal tract, disrupting the balance between host and pathogen in the fight for metals and altering susceptibility to disease. This review describes the current understanding of how dietary metals modulate host-microbe interactions and the subsequent impact on the outcome of disease.
Collapse
Affiliation(s)
- Christopher A Lopez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Beckett AC, Loh JT, Chopra A, Leary S, Lin AS, McDonnell WJ, Dixon BREA, Noto JM, Israel DA, Peek RM, Mallal S, Algood HMS, Cover TL. Helicobacter pylori genetic diversification in the Mongolian gerbil model. PeerJ 2018; 6:e4803. [PMID: 29796347 PMCID: PMC5961626 DOI: 10.7717/peerj.4803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori requires genetic agility to infect new hosts and establish long-term colonization of changing gastric environments. In this study, we analyzed H. pylori genetic adaptation in the Mongolian gerbil model. This model is of particular interest because H. pylori-infected gerbils develop a high level of gastric inflammation and often develop gastric adenocarcinoma or gastric ulceration. We analyzed the whole genome sequences of H. pylori strains cultured from experimentally infected gerbils, in comparison to the genome sequence of the input strain. The mean annualized single nucleotide polymorphism (SNP) rate per site was 1.5e−5, which is similar to the rates detected previously in H. pylori-infected humans. Many of the mutations occurred within or upstream of genes associated with iron-related functions (fur, tonB1, fecA2, fecA3, and frpB3) or encoding outer membrane proteins (alpA, oipA, fecA2, fecA3, frpB3 and cagY). Most of the SNPs within coding regions (86%) were non-synonymous mutations. Several deletion or insertion mutations led to disruption of open reading frames, suggesting that the corresponding gene products are not required or are deleterious during chronic H. pylori colonization of the gerbil stomach. Five variants (three SNPs and two deletions) were detected in isolates from multiple animals, which suggests that these mutations conferred a selective advantage. One of the mutations (FurR88H) detected in isolates from multiple animals was previously shown to confer increased resistance to oxidative stress, and we now show that this SNP also confers a survival advantage when H. pylori is co-cultured with neutrophils. Collectively, these analyses allow the identification of mutations that are positively selected during H. pylori colonization of the gerbil model.
Collapse
Affiliation(s)
- Amber C Beckett
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - John T Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Beverly R E A Dixon
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Jennifer M Noto
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Dawn A Israel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Richard M Peek
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Simon Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Holly M Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, United States of America
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, United States of America
| |
Collapse
|
13
|
McClain MS, Beckett AC, Cover TL. Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins (Basel) 2017; 9:toxins9100316. [PMID: 29023421 PMCID: PMC5666363 DOI: 10.3390/toxins9100316] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori VacA is a channel-forming toxin unrelated to other known bacterial toxins. Most H. pylori strains contain a vacA gene, but there is marked variation among strains in VacA toxin activity. This variation is attributable to strain-specific variations in VacA amino acid sequences, as well as variations in the levels of VacA transcription and secretion. In this review, we discuss epidemiologic studies showing an association between specific vacA allelic types and gastric cancer, as well as studies that have used animal models to investigate VacA activities relevant to gastric cancer. We also discuss the mechanisms by which VacA-induced cellular alterations may contribute to the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Amber C Beckett
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
14
|
Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice. PLoS One 2017; 12:e0173108. [PMID: 28355210 PMCID: PMC5371292 DOI: 10.1371/journal.pone.0173108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (H.pylori), a bacterial pathogen, is a causative agent of gastritis and peptic ulcer disease and is a strong risk factor for development of gastric cancer. Environmental conditions, such as poor dietary iron resulting in iron deficiency anemia (IDA), enhance H.pylori virulence and increases risk for gastric cancer. IDA affects billions of people worldwide, and there is considerable overlap between regions of high IDA and high H.pylori prevalence. The primary aims of our study were to evaluate the effect of H.pylori infection on behavior, iron metabolism, red blood cell indices, and behavioral outcomes following comorbid H. pylori infection and dietary iron deficiency in a mouse model. C57BL/6 female mice (n = 40) were used; half were placed on a moderately iron deficient (ID) diet immediately post-weaning, and the other half were maintained on an iron replete (IR) diet. Half were dosed with H.pylori SS1 at 5 weeks of age, and the remaining mice were sham-dosed. There were 4 study groups: a control group (-Hp, IR diet) as well as 3 experimental groups (-Hp, ID diet; +Hp, IR diet; +Hp,ID diet). All mice were tested in an open field apparatus at 8 weeks postinfection. Independent of dietary iron status, H.pylori -infected mice performed fewer exploratory behaviors in the open field chamber than uninfected mice (p<0.001). Hippocampal gene expression of myelination markers and dopamine receptor 1 was significantly downregulated in mice on an ID diet (both p<0.05), independent of infection status. At 12 months postinfection, hematocrit (Hct) and hemoglobin (Hgb) concentration were significantly lower in +Hp, ID diet mice compared to all other study groups. H.pylori infection caused IDA in mice maintained on a marginal iron diet. The mouse model developed in this study is a useful model to study the neurologic, behavioral, and hematologic impact of the common human co-morbidity of H. pylori infection and IDA.
Collapse
|