1
|
Resta SC, Guerra F, Talà A, Bucci C, Alifano P. Beyond Inflammation: Role of Pyroptosis Pathway Activation by Gram-Negative Bacteria and Their Outer Membrane Vesicles (OMVs) in the Interaction with the Host Cell. Cells 2024; 13:1758. [PMID: 39513865 PMCID: PMC11545737 DOI: 10.3390/cells13211758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pyroptosis is a gasdermin-mediated pro-inflammatory programmed cell death that, during microbial infections, aims to restrict the spreading of bacteria. Nevertheless, excessive pyroptosis activation leads to inflammation levels that are detrimental to the host. Pathogen-associated molecular patterns (PAMPs) present in bacteria and outer membrane vesicles (OMVs) can trigger pyroptosis pathways in different cell types with different outcomes. Moreover, some pathogens have evolved virulence factors that directly interfere with pyroptosis pathways, like Yersinia pestis YopM and Shigella flexneri IpaH7.8. Other virulence factors, such as those of Neisseria meningitidis, Neisseria gonorrhoeae, Salmonella enterica, and Helicobacter pylori affect pyroptosis pathways indirectly with important differences between pathogenic and commensal species of the same family. These pathogens deserve special attention because of the increasing antimicrobial resistance of S. flexneri and N. gonorrhoeae, the high prevalence of S. enterica and H. pylori, and the life-threatening diseases caused by N. meningitidis and Y. pestis. While inflammation due to macrophage pyroptosis has been extensively addressed, the effects of activation of pyroptosis pathways on modulation of cell cytoskeleton and cell-cell junctions in epithelia and endothelia and on the bacterial crossing of epithelial and endothelial barriers have only been partly investigated. Another important point is the diverse consequences of pyroptosis pathways on calcium influx, like activation of calcium-dependent enzymes and mitochondria dysregulation. This review will discuss the pyroptotic pathways activated by Gram-negative bacteria and their OMVs, analyzing the differences between pathogens and commensal bacteria. Particular attention will also be paid to the experimental models adopted and the main results obtained in the different models. Finally, strategies adopted by pathogens to modulate these pathways will be discussed with a perspective on the use of pyroptosis inhibitors as adjuvants in the treatment of infections.
Collapse
Affiliation(s)
- Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Cecilia Bucci
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| |
Collapse
|
2
|
John CM, Otala SA, Jarvis GA. Cyclization increases bactericidal activity of arginine-rich cationic cell-penetrating peptide for Neisseria gonorrhoeae. Microbiol Spectr 2024; 12:e0099724. [PMID: 39105587 PMCID: PMC11370255 DOI: 10.1128/spectrum.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
We previously reported that a linear cationic 12-amino acid cell-penetrating peptide (CPP) was bactericidal for Neisseria gonorrhoeae. In this study, our objectives were to determine the effect of cyclization of the linear CPP on its antibacterial activity for N. gonorrhoeae and cytotoxicity for human cells. We compared the bactericidal effect of 4-hour treatment with the linear CPP to that of CPPs cyclized by a thioether or a disulfide bond on human challenge and multi-drug resistant (MDR) strains of N. gonorrhoeae grown in cell culture media with 10% fetal bovine serum (FBS). The effect of lipooligosaccharide (LOS) sialylation on bactericidal activity was analyzed. We determined the ability of the CPPs to treat human cells infected in vitro with N. gonorrhoeae, to reduce the inflammatory response of human monocytic cells to gonococci, to kill strains of three commensal Neisseria species, and to inhibit gonococcal biofilms. The cyclized CPPs killed 100% of gonococci from all strains at 100 µM and >90% at 20 µM and were more potent than the linear form. The thioether-linked but not the disulfide-linked CPP was less cytotoxic for human cervical cells compared to the linear CPP. LOS sialylation had minimal effect on bactericidal activity. In treating infected human cells, the thioether-linked CPP at 20 µM killed >60% of extra- and intracellular bacteria and reduced TNF-α expression by THP-1 cells. The potency of the CPPs for the pathogenic and the commensal Neisseria was similar. The thioether-linked CPP partially eradicated gonococcal biofilms. Future studies will focus on determining efficacy in the female mouse model of gonorrhea.IMPORTANCENeisseria gonorrhoeae remains a major cause of sexually transmitted infections with 82 million cases worldwide in 2020, and 710,151 confirmed cases in the US in 2021, up 25% from 2017. N. gonorrhoeae can infect multiple tissues including the urethra, cervix, rectum, pharynx, and conjunctiva. The most serious sequelae are suffered by infected women as gonococci ascend to the upper reproductive tract and cause pelvic inflammatory disease, chronic pelvic pain, and infertility in 10%-20% of women. Control of gonococcal infection is widely recognized as increasingly challenging due to the lack of any vaccine. N. gonorrhoeae has quickly developed resistance to all but one class of antibiotics and the emergence of multidrug-resistant strains could result in untreatable infections. As such, gonorrhea is classified by the Center for Disease Control (CDC) as an urgent public health threat. The research presented herein on new therapeutics for gonorrhea has identified a cyclic cell-penetrating peptide (CPP) as a potent molecule targeting N. gonorrhoeae.
Collapse
Affiliation(s)
- Constance M. John
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| | | | - Gary A. Jarvis
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
3
|
Harris-Jones TN, Chan JM, Hackett KT, Weyand NJ, Schaub RE, Dillard JP. Peptidoglycan fragment release and NOD activation by commensal Neisseria species from humans and other animals. Infect Immun 2024; 92:e0000424. [PMID: 38563734 PMCID: PMC11075463 DOI: 10.1128/iai.00004-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Neisseria gonorrhoeae, a human restricted pathogen, releases inflammatory peptidoglycan (PG) fragments that contribute to the pathophysiology of pelvic inflammatory disease. The genus Neisseria is also home to multiple species of human- or animal-associated Neisseria that form part of the normal microbiota. Here we characterized PG release from the human-associated nonpathogenic species Neisseria lactamica and Neisseria mucosa and animal-associated Neisseria from macaques and wild mice. An N. mucosa strain and an N. lactamica strain were found to release limited amounts of the proinflammatory monomeric PG fragments. However, a single amino acid difference in the PG fragment permease AmpG resulted in increased PG fragment release in a second N. lactamica strain examined. Neisseria isolated from macaques also showed substantial release of PG monomers. The mouse colonizer Neisseria musculi exhibited PG fragment release similar to that seen in N. gonorrhoeae with PG monomers being the predominant fragments released. All the human-associated species were able to stimulate NOD1 and NOD2 responses. N. musculi was a poor inducer of mouse NOD1, but ldcA mutation increased this response. The ability to genetically manipulate N. musculi and examine effects of different PG fragments or differing amounts of PG fragments during mouse colonization will lead to a better understanding of the roles of PG in Neisseria infections. Overall, we found that only some nonpathogenic Neisseria have diminished release of proinflammatory PG fragments, and there are differences even within a species as to types and amounts of PG fragments released.
Collapse
Affiliation(s)
- Tiffany N. Harris-Jones
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jia Mun Chan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan J. Weyand
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Fang L, Tuohuti A, Cai W, Chen X. Changes in the nasopharyngeal and oropharyngeal microbiota in pediatric obstructive sleep apnea before and after surgery: a prospective study. BMC Microbiol 2024; 24:79. [PMID: 38459431 PMCID: PMC10921815 DOI: 10.1186/s12866-024-03230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE To explore the changes and potential mechanisms of microbiome in different parts of the upper airway in the development of pediatric OSA and observe the impact of surgical intervention on oral microbiome for pediatric OSA. METHODS Before adeno-tonsillectomy, we collected throat swab samples from different parts of the oropharynx and nasopharynx of 30 OSA patients and 10 non-OSA patients and collected throat swab samples from the oropharynx of the above patients one month after the adeno-tonsillectomy. The 16 S rRNA V3-V4 region was sequenced to identify the microbial communities. The correlation analysis was conducted based on clinical characteristics. RESULTS There was a significant difference of alpha diversity in different parts of the upper airway of pediatric OSA, but this difference was not found in children with non-OSA. Beta diversity was significantly different between non-OSA and pediatric OSA. At the genus level, the composition of flora in different parts is different between non-OSA and pediatric OSA. The correlation analysis revealed that the relative abundance of Neisseria was significantly correlated with obstructive apnea hypopnea index. Furthermore, the functional prediction revealed that pathways related to cell proliferation and material metabolism were significantly different between non-OSA and pediatric OSA. Besides, the adeno-tonsillectomy has minimal impact on oral microbiota composition in short term. CONCLUSION The changes in upper airway microbiome are highly associated with pediatric OSA. The relative abundance of some bacteria was significantly different between OSA and non-OSA. These bacteria have the potential to become new diagnostic and early warning biomarkers.
Collapse
Affiliation(s)
- Lucheng Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Aikebaier Tuohuti
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanyue Cai
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Sleep medicine centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
6
|
Xu ZJ, Chen L, Tang QL, Li D, He CJ, Xu CL, Chen FT, Shao Y. Differential oral and gut microbial structure related to systemic metabolism in kidney stone patients. World J Urol 2024; 42:6. [PMID: 38172428 DOI: 10.1007/s00345-023-04712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVES To investigate the role of the oral and gut microbiome related to systemic metabolism and clinical parameters in various types of kidney stone disease. PATIENTS AND METHODS We conducted a case-control study by analyzing 16S rRNA and untargeted metabolomics profiling of 76 fecal, 68 saliva, 73 urine, and 43 serum samples from 76 participants aged 18-75 years old. The participants included 15 patients with uric acid stones, 41 patients with calcium oxalate stones, and 20 healthy controls. Correlations among microbiome, metabolism, and clinical parameters were identified through Spearman's correlation analysis. (Clinical trial No. ChiCTR2200055316). RESULTS Patients with uric acid stones exhibited reduced richness and diversity in their microbiome, as well as altered composition in both oral and gut microbiome. Furthermore, their fecal samples showed lower relative abundances of Bacteroides and Lachnospiraceae, while their saliva samples showed higher relative abundances of Porphyromonas and Neisseria. Predicted KEGG metabolism pathways, including amino acid and fatty acid metabolisms, were significantly altered in subjects with uric acid stones. Oral, gut microbiota, and metabolism were also associated with low water intake and urine pH. The area under the curve (AUC) of the specific microbiota and metabolite prediction models was over 0.85. CONCLUSION The structure and composition of the oral and gut microbiome in different types of kidney stone disease, the correlations between oral and gut microbiome, and the associations among oral and gut microbiota, systemic metabolism and clinical parameters imply an important role that the oral and gut microbiome may play in kidney stone disease.
Collapse
Affiliation(s)
- Zi-Jie Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Qi-Lin Tang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Chu-Jiang He
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Chao-Liang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Fei-Teng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yi Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100, Haining Road, Hongkou District, Shanghai, 200080, China.
- Shanghai Municipal Hospital Urology Specialist Alliance, Shanghai, China.
| |
Collapse
|
7
|
John CM, Phillips NJ, Cardenas AJ, Criss AK, Jarvis GA. Comparison of lipooligosaccharides from human challenge strains of Neisseria gonorrhoeae. Front Microbiol 2023; 14:1215946. [PMID: 37779694 PMCID: PMC10540682 DOI: 10.3389/fmicb.2023.1215946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
The alarming rise of antibiotic resistance and the emergence of new vaccine technologies have increased the focus on vaccination to control gonorrhea. Neisseria gonorrhoeae strains FA1090 and MS11 have been used in challenge studies in human males. We used negative-ion MALDI-TOF MS to profile intact lipooligosaccharide (LOS) from strains MS11mkA, MS11mkC, FA1090 A23a, and FA1090 1-81-S2. The MS11mkC and 1-81-S2 variants were isolated from male volunteers infected with MS11mkA and A23a, respectively. LOS profiles were obtained after purification using the classical phenol water extraction method and by microwave-enhanced enzymatic digestion, which is more amenable for small-scale work. Despite detecting some differences in the LOS profiles, the same major species were observed, indicating that microwave-enhanced enzymatic digestion is appropriate for MS studies. The compositions determined for MS11mkA and mkC LOS were consistent with previous reports. FA1090 is strongly recognized by mAb 2C7, an antibody-binding LOS with both α- and β-chains if the latter is a lactosyl group. The spectra of the A23a and 1-81-S2 FA1090 LOS were similar to each other and consistent with the expression of α-chain lacto-N-neotetraose and β-chain lactosyl moieties that can both be acceptor sites for sialic acid substitution. 1-81-S2 LOS was analyzed after culture with and without media supplemented with cytidine-5'-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac), which N. gonorrhoeae needs to sialylate its LOS. LOS sialylation reduces the infectivity of gonococci in men, although it induces serum resistance in serum-sensitive strains and reduces killing by neutrophils and antimicrobial peptides. The infectivity of FA1090 in men is much lower than that of MS11mkC, but the reason for this difference is unclear. Interestingly, some peaks in the spectra of 1-81-S2 LOS after bacterial culture with CMP-Neu5Ac were consistent with disialylation of the LOS, which could be relevant to the reduced infectivity of FA1090 in men and could have implications regarding the phase variation of the LOS and the natural history of infection.
Collapse
Affiliation(s)
- Constance M. John
- Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nancy J. Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Amaris J. Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Gary A. Jarvis
- Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Phosphoethanolamine Transferases as Drug Discovery Targets for Therapeutic Treatment of Multi-Drug Resistant Pathogenic Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1382. [PMID: 37760679 PMCID: PMC10525099 DOI: 10.3390/antibiotics12091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance caused by multidrug-resistant (MDR) bacteria is a major challenge to global public health. Polymyxins are increasingly being used as last-in-line antibiotics to treat MDR Gram-negative bacterial infections, but resistance development renders them ineffective for empirical therapy. The main mechanism that bacteria use to defend against polymyxins is to modify the lipid A headgroups of the outer membrane by adding phosphoethanolamine (PEA) moieties. In addition to lipid A modifying PEA transferases, Gram-negative bacteria possess PEA transferases that decorate proteins and glycans. This review provides a comprehensive overview of the function, structure, and mechanism of action of PEA transferases identified in pathogenic Gram-negative bacteria. It also summarizes the current drug development progress targeting this enzyme family, which could reverse antibiotic resistance to polymyxins to restore their utility in empiric therapy.
Collapse
Affiliation(s)
- Van C. Thai
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| |
Collapse
|
9
|
Mullally C, Stubbs KA, Thai VC, Anandan A, Bartley S, Scanlon MJ, Jarvis GA, John CM, Lim KYL, Sullivan CM, Sarkar-Tyson M, Vrielink A, Kahler CM. Novel small molecules that increase the susceptibility of Neisseria gonorrhoeae to cationic antimicrobial peptides by inhibiting lipid A phosphoethanolamine transferase. J Antimicrob Chemother 2022; 77:2441-2447. [PMID: 35770844 PMCID: PMC9410672 DOI: 10.1093/jac/dkac204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives Neisseria gonorrhoeae is an exclusively human pathogen that commonly infects the urogenital tract resulting in gonorrhoea. Empirical treatment of gonorrhoea with antibiotics has led to multidrug resistance and the need for new therapeutics. Inactivation of lipooligosaccharide phosphoethanolamine transferase A (EptA), which attaches phosphoethanolamine to lipid A, results in attenuation of the pathogen in infection models. Small molecules that inhibit EptA are predicted to enhance natural clearance of gonococci via the human innate immune response. Methods A library of small-fragment compounds was tested for the ability to enhance susceptibility of the reference strain N. gonorrhoeae FA1090 to polymyxin B. The effect of these compounds on lipid A synthesis and viability in models of infection were tested. Results Three compounds, 135, 136 and 137, enhanced susceptibility of strain FA1090 to polymyxin B by 4-fold. Pre-treatment of bacterial cells with all three compounds resulted in enhanced killing by macrophages. Only lipid A from bacterial cells exposed to compound 137 showed a 17% reduction in the level of decoration of lipid A with phosphoethanolamine by MALDI-TOF MS analysis and reduced stimulation of cytokine responses in THP-1 cells. Binding of 137 occurred with higher affinity to purified EptA than the starting material, as determined by 1D saturation transfer difference NMR. Treatment of eight MDR strains with 137 increased susceptibility to polymyxin B in all cases. Conclusions Small molecules have been designed that bind to EptA, inhibit addition of phosphoethanolamine to lipid A and can sensitize N. gonorrhoeae to killing by macrophages.
Collapse
Affiliation(s)
- Christopher Mullally
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Van C Thai
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Anandhi Anandan
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Stephanie Bartley
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, USA.,Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, USA.,Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Katherine Y L Lim
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Courtney M Sullivan
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Mitali Sarkar-Tyson
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Charlene M Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia.,Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
| |
Collapse
|
10
|
Anandan A, Dunstan NW, Ryan TM, Mertens HDT, Lim KYL, Evans GL, Kahler CM, Vrielink A. Conformational flexibility of EptA driven by an interdomain helix provides insights for enzyme-substrate recognition. IUCRJ 2021; 8:732-746. [PMID: 34584735 PMCID: PMC8420757 DOI: 10.1107/s2052252521005613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Many pathogenic gram-negative bacteria have developed mechanisms to increase resistance to cationic antimicrobial peptides by modifying the lipid A moiety. One modification is the addition of phospho-ethano-lamine to lipid A by the enzyme phospho-ethano-lamine transferase (EptA). Previously we reported the structure of EptA from Neisseria, revealing a two-domain architecture consisting of a periplasmic facing soluble domain and a transmembrane domain, linked together by a bridging helix. Here, the conformational flexibility of EptA in different detergent environments is probed by solution scattering and intrinsic fluorescence-quenching studies. The solution scattering studies reveal the enzyme in a more compact state with the two domains positioned close together in an n-do-decyl-β-d-maltoside micelle environment and an open extended structure in an n-do-decyl-phospho-choline micelle environment. Intrinsic fluorescence quenching studies localize the domain movements to the bridging helix. These results provide important insights into substrate binding and the molecular mechanism of endotoxin modification by EptA.
Collapse
Affiliation(s)
- Anandhi Anandan
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Nicholas W. Dunstan
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Timothy M. Ryan
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Haydyn D. T. Mertens
- European Molecular Biology Laboratory, Hamburg Unit, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Katherine Y. L. Lim
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Genevieve L. Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Charlene M. Kahler
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| |
Collapse
|
11
|
Clark SA, Gray S, Finn A, Borrow R. Colistin Sensitivity and Factor H-Binding Protein Expression among Commensal Neisseria Species. mSphere 2021; 6:e0017521. [PMID: 34133203 PMCID: PMC8265630 DOI: 10.1128/msphere.00175-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/28/2021] [Indexed: 11/20/2022] Open
Abstract
Many bacterial carriage studies utilize colistin-containing media to select for Neisseria meningitidis among the diverse human pharyngeal milieu. These studies commonly report the isolation of Neisseria commensal species, with carriage rates of around 1% or less typically observed. Here, we describe the isolation of N. cinerea and N. polysaccharea from pharyngeal swabs using nonselective agar and confirm they are unable to grow on colistin-containing media. We also demonstrated colistin sensitivity among archived Neisseria commensal strains, including N. cinerea, N. polysaccharea, N. mucosa, and N. subflava. The distribution of lptA among these strains indicated that, while the phosphoethanolamine (PEA) transferase encoded by this gene confers colistin resistance, other mechanisms may lead to reduced susceptibility in some lptA-deficient strains. The majority of the N. cinerea and N. polysaccharea isolates expressed medium to very high levels of factor H-binding protein (fHbp), an important meningococcal vaccine antigen. Sequence analysis showed that the commensal fHbp peptide variants were similar in sequence to fHbp variants typically observed among invasive meningococci. Altogether, these results not only suggest that Neisseria commensal strains could be carried at much higher rates than previously reported but also raise questions about the impact of protein-based meningococcal vaccines on these unencapsulated commensals. IMPORTANCE This study highlights the need for further work to accurately determine the pharyngeal carriage prevalence of Neisseria commensal bacteria (e.g., N. cinerea and N. polysaccharea) among the general population. Previous studies have clearly demonstrated the suppressive effect these commensal species can have on meningococcal colonization, and so the carriage prevalence of these species could be an important factor in the spread of meningococci through the population. Furthermore, the surface expression of the meningococcal vaccine antigen factor H-binding protein by many of these commensal strains could have important implications for the use of fHbp-containing vaccines. Carriage of these commensal species may influence the immune response to these vaccines, or conversely, the immune response elicited by vaccination may induce clearance of these potentially important members of the pharyngeal niche.
Collapse
Affiliation(s)
- Stephen A. Clark
- Meningococcal Reference Unit (MRU), Public Health England (PHE), Manchester, United Kingdom
| | - Steve Gray
- Meningococcal Reference Unit (MRU), Public Health England (PHE), Manchester, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit (MRU), Public Health England (PHE), Manchester, United Kingdom
| |
Collapse
|
12
|
Lim KYL, Mullally CA, Haese EC, Kibble EA, McCluskey NR, Mikucki EC, Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Anti-Virulence Therapeutic Approaches for Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10020103. [PMID: 33494538 PMCID: PMC7911339 DOI: 10.3390/antibiotics10020103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/15/2023] Open
Abstract
While antimicrobial resistance (AMR) is seen in both Neisseria gonorrhoeae and Neisseria meningitidis, the former has become resistant to commonly available over-the-counter antibiotic treatments. It is imperative then to develop new therapies that combat current AMR isolates whilst also circumventing the pathways leading to the development of AMR. This review highlights the growing research interest in developing anti-virulence therapies (AVTs) which are directed towards inhibiting virulence factors to prevent infection. By targeting virulence factors that are not essential for gonococcal survival, it is hypothesized that this will impart a smaller selective pressure for the emergence of resistance in the pathogen and in the microbiome, thus avoiding AMR development to the anti-infective. This review summates the current basis of numerous anti-virulence strategies being explored for N. gonorrhoeae.
Collapse
Affiliation(s)
- Katherine Y. L. Lim
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Christopher A. Mullally
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Ethan C. Haese
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Emily A. Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Edward C. Mikucki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Van C. Thai
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- Correspondence:
| |
Collapse
|
13
|
Sodium Tetraphenylborate Displays Selective Bactericidal Activity against Neisseria meningitidis and N. gonorrhoeae and Is Effective at Reducing Bacterial Infection Load. Antimicrob Agents Chemother 2021; 65:AAC.00254-20. [PMID: 33168608 PMCID: PMC7848997 DOI: 10.1128/aac.00254-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae, two highly related species that might have emerged from a common commensal ancestor, constitute major human threats. Vaccines are available to prevent N. meningitidis infection, whereas there are only a limited number of antibiotics available for N. gonorrhoeae Unfortunately, some strains of these species are rapidly evolving and capable of escaping human interventions. Thus, it is now urgent to develop new avenues to fight these bacteria. This study reports that a boron-based salt, sodium tetraphenylborate (NaBPh4), displays high bactericidal activity and remarkable specificity against N. meningitidis and N. gonorrhoeae Other closely related commensal species such as Neisseria lactamica, which is found in the normal flora of healthy individuals, were found to be less affected even at 5-fold higher doses of NaBPh4 This specificity was further observed when much lower sensitivity was found for more distant Neisseriaceae species (such as Neisseria elongata or Kingella oralis) and completely unrelated species. Significant boron uptake by N. meningitidis cells was observed after incubation with 5 μM NaBPh4, as measured by inductively coupled plasma mass spectrometry, suggesting that this drug candidate's target(s) could be located intracellularly or within the cell envelope. Furthermore, mutants with slightly decreased susceptibility displayed alterations in genes coding for cell envelope elements, which reduced their virulence in an animal model of infection. Finally, a single dose of NaBPh4 resulted in a significant reduction in bacterial burden in a mouse model of N. meningitidis bacteremia. Although numerous boron-containing species were previously reported for their complex biological activities, the observation of this narrow selectivity is unprecedented and of potential importance from a therapeutic standpoint.
Collapse
|
14
|
John CM, Phillips NJ, Jarvis GA. Predominant phosphorylation patterns in Neisseria meningitidis lipid A determined by top-down MS/MS. J Lipid Res 2020; 61:1437-1449. [PMID: 32839198 DOI: 10.1194/jlr.ra120001014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the virulence factors in Neisseria infections, a major inducer of inflammatory cytokines is the lipooligosaccharide (LOS). The activation of NF-κB via extracellular binding of LOS or lipopolysaccharide (LPS) to the toll-like receptor 4 and its coreceptor, MD-2, results in production of pro-inflammatory cytokines that initiate adaptive immune responses. LOS can also be absorbed by cells and activate intracellular inflammasomes, causing the release of inflammatory cytokines and pyroptosis. Studies of LOS and LPS have shown that their inflammatory potential is highly dependent on lipid A phosphorylation and acylation, but little is known on the location and pattern of these posttranslational modifications. Herein, we report on the localization of phosphoryl groups on phosphorylated meningococcal lipid A, which has two to three phosphate and zero to two phosphoethanolamine substituents. Intact LOS with symmetrical hexa-acylated and asymmetrical penta-acylated lipid A moieties was subjected to high-resolution ion mobility spectrometry MALDI-TOF MS. LOS molecular ions readily underwent in-source decay to give fragments of the oligosaccharide and lipid A formed by cleavage of the ketosidic linkage, which enabled performing MS/MS (pseudo-MS3). The resulting spectra revealed several patterns of phosphoryl substitution on lipid A, with certain species predominating. The extent of phosphoryl substitution, particularly phosphoethanolaminylation, on the 4'-hydroxyl was greater than that on the 1-hydroxyl. The heretofore unrecognized phosphorylation patterns of lipid A of meningococcal LOS that we detected are likely determinants of both pathogenicity and the ability of the bacteria to evade the innate immune system.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA, USA .,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Lipopolysaccharides From Non-Helicobacter pylori Gastric Bacteria Potently Stimulate Interleukin-8 Production in Gastric Epithelial Cells. Clin Transl Gastroenterol 2020; 10:e00024. [PMID: 30913125 PMCID: PMC6445647 DOI: 10.14309/ctg.0000000000000024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastric acid secretion is compromised in chronic Helicobacter pylori (H. pylori) infection allowing overgrowth of non-H. pylori gastric bacteria (NHGB) in the stomach.
Collapse
|
16
|
Samantha A, Vrielink A. Lipid A Phosphoethanolamine Transferase: Regulation, Structure and Immune Response. J Mol Biol 2020; 432:5184-5196. [PMID: 32353363 DOI: 10.1016/j.jmb.2020.04.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/23/2023]
Abstract
A wide variety of antibiotics are targeted to the bacterial membrane due to its unique arrangement and composition relative to the host mammalian membranes. By modification of their membranes, some gram-negative pathogens resist the action of antibiotics. Lipid A phosphoethanolamine transferase (EptA) is an intramembrane enzyme that modifies the lipid A portion of lipopolysaccharide/lipooligosaccharide by the addition of phosphoethanolamine. This modification reduces the overall net-negative charge of the outer membrane of some gram-negative bacteria, conferring resistance to polymyxin. This resistance mechanism has resulted in a global public health issue due to the increased use of polymyxin as last-resort antibiotic treatments against multi-drug-resistant pathogens. Studies show that, without EptA, pathogenic bacteria become more sensitive to polymyxin and to clearance by the host immune system, suggesting the importance of this target enzyme for the development of novel therapeutic agents. In this review, EptA will be discussed comprehensively. Specifically, this review will cover the regulation of eptA expression by the two component systems PmrA/PmrB and PhoP/PhoQ, the site of modification on lipid A, the structure and catalytic mechanism of EptA in comparison to MCR-1 and Escherichia coli alkaline phosphatase, and the host immune system's response to lipid A modification by EptA. The overarching aim of this review is to provide a comprehensive overview of polymyxin resistance mediated by EptA.
Collapse
Affiliation(s)
- Ariela Samantha
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| |
Collapse
|
17
|
Komazin G, Maybin M, Woodard RW, Scior T, Schwudke D, Schombel U, Gisch N, Mamat U, Meredith TC. Substrate structure-activity relationship reveals a limited lipopolysaccharide chemotype range for intestinal alkaline phosphatase. J Biol Chem 2019; 294:19405-19423. [PMID: 31704704 DOI: 10.1074/jbc.ra119.010836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Lipopolysaccharide (LPS) from the Gram-negative bacterial outer membrane potently activates the human innate immune system. LPS is recognized by the Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD2) complex, leading to the release of pro-inflammatory cytokines. Alkaline phosphatase (AP) is currently being investigated as an anti-inflammatory agent for detoxifying LPS through dephosphorylating lipid A, thus providing a potential treatment for managing both acute (sepsis) and chronic (metabolic endotoxemia) pathologies wherein aberrant TLR4/MD2 activation has been implicated. Endogenous LPS preparations are chemically heterogeneous, and little is known regarding the LPS chemotype substrate range of AP. Here, we investigated the activity of AP on a panel of structurally defined LPS chemotypes isolated from Escherichia coli and demonstrate that calf intestinal AP (cIAP) has only minimal activity against unmodified enteric LPS chemotypes. Pi was only released from a subset of LPS chemotypes harboring spontaneously labile phosphoethanolamine (PEtN) modifications connected through phosphoanhydride bonds. We demonstrate that the spontaneously hydrolyzed O-phosphorylethanolamine is the actual substrate for AP. We found that the 1- and 4'-lipid A phosphate groups critical in TLR4/MD2 signaling become susceptible to hydrolysis only after de-O-acylation of ester linked primary acyl chains on lipid A. Furthermore, PEtN modifications on lipid A specifically enhanced hTLR4 agonist activity of underacylated LPS preparations. Computational binding models are proposed to explain the limitation of AP substrate specificity imposed by the acylation state of lipid A, and the mechanism of PEtN in enhancing hTLR4/MD2 signaling.
Collapse
Affiliation(s)
- Gloria Komazin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael Maybin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ronald W Woodard
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Thomas Scior
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Ursula Schombel
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Nicolas Gisch
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
18
|
John CM, Feng D, Jarvis GA. Treatment of human challenge and MDR strains of Neisseria gonorrhoeae with LpxC inhibitors. J Antimicrob Chemother 2019; 73:2064-2071. [PMID: 29726994 DOI: 10.1093/jac/dky151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 11/15/2022] Open
Abstract
Objectives Inhibitors of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC), which catalyses the second step in the biosynthesis of lipid A, have been developed as potential antibiotics for Gram-negative infections. Our objectives were to determine the effect of LpxC inhibition on the in vitro survival and inflammatory potential of Neisseria gonorrhoeae. Methods Survival of four human challenge strains was determined after treatment with two LpxC inhibitors for 2 and 4 h. To confirm results from treatment and assess their anti-inflammatory effect, the expression of TNF-α by human THP-1 monocytic cells infected with bacteria in the presence of the LpxC inhibitors was quantified. Cytotoxicity of inhibitors for THP-1 cells was evaluated by release of lactate dehydrogenase. Survival of five MDR strains was determined after 2 h of treatment with an LpxC inhibitor and the effect of co-treatment on MICs of ceftriaxone and azithromycin was examined. Results The inhibitors had bactericidal activity against the four human challenge and five MDR strains with one compound exhibiting complete killing at ≥5 mg/L after either 2 or 4 h of treatment. Treatment of gonococci infecting THP-1 monocytic cells reduced the levels of TNF-α probably owing to reduced numbers of bacteria and a lower level of expression of lipooligosaccharide. Neither inhibitor exhibited cytotoxicity for THP-1 cells. The MIC of azithromycin was slightly lowered by sublethal treatment of two MDR strains with an LpxC inhibitor. Conclusions Our in vitro results demonstrated promising efficacy of LpxC inhibition of N. gonorrhoeae that warrants further investigation particularly owing to the rise in MDR gonorrhoea.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Dongxiao Feng
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
19
|
Klein DR, Powers MJ, Trent MS, Brodbelt JS. Top-Down Characterization of Lipooligosaccharides from Antibiotic-Resistant Bacteria. Anal Chem 2019; 91:9608-9615. [PMID: 31305072 PMCID: PMC6702669 DOI: 10.1021/acs.analchem.9b00940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Modification of structures of lipooligosaccharides (LOS) represents one prevalent mechanism by which Gram-negative bacteria can become resistant to key antibiotics. Owing to the significant complexity of LOS, the structural characterization of these amphipathic lipids has largely focused on elucidation of the lipid A substructures. Analysis of intact LOS enables detection of core oligosaccharide modifications and gives insight into the heterogeneity that results from combinations of lipid A and oligosaccharide substructures. Top-down analysis of intact LOS also provides the opportunity to determine unknown oligosaccharide structures, which is particularly advantageous in the context of glycoconjugate vaccine development. Advances in mass spectrometry technologies, including the development of MSn capabilities and alternative ion activation techniques, have made top-down analysis an indispensable tool for structural characterization of complex biomolecules. Here we combine online chromatographic separations with MS3 utilizing ultraviolet photodissociation (UVPD) and higher-energy collisional dissociation (HCD). HCD generally provides information about the presence of labile modifications via neutral loss fragments in addition to the saccharide linkage arrangement, whereas UVPD gives more detailed insight about saccharide branching and the positions of nonstoichiometric modifications. This integrated approach was used to characterize LOS from Acinetobacter baumannii 1205 and 5075. Notably, MS3 analysis of A. baumannii 1205, an antibiotic-resistant strain, confirmed phosphoethanolamine and hexosamine modification of the lipid A substructure and further enabled derivation of a core oligosaccharide structure.
Collapse
Affiliation(s)
- Dustin R. Klein
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Matthew J. Powers
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, GA 30602
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, GA 30602
| | - M. Stephen Trent
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, GA 30602
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, GA 30602
| | | |
Collapse
|
20
|
Kahler CM, Nawrocki KL, Anandan A, Vrielink A, Shafer WM. Structure-Function Relationships of the Neisserial EptA Enzyme Responsible for Phosphoethanolamine Decoration of Lipid A: Rationale for Drug Targeting. Front Microbiol 2018; 9:1922. [PMID: 30186254 PMCID: PMC6111236 DOI: 10.3389/fmicb.2018.01922] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Bacteria cause disease by two general mechanisms: the action of their toxins on host cells and induction of a pro-inflammatory response that can lead to a deleterious cytokine/chemokine response (e.g., the so-called cytokine storm) often seen in bacteremia/septicemia. These major mechanisms may overlap due to the action of surface structures that can have direct and indirect actions on phagocytic or non-phagocytic cells. In this respect, the lipid A (endotoxin) component of lipopolysaccharide (LPS) possessed by Gram-negative bacteria has been the subject of literally thousands of studies over the past century that clearly identified it as a key virulence factor in endotoxic shock. In addition to its capacity to modulate inflammatory responses, endotoxin can also modulate bacterial susceptibility to host antimicrobials, such as the host defense peptides termed cationic antimicrobial peptides. This review concentrates on the phosphoethanolamine (PEA) decoration of lipid A in the pathogenic species of the genus Neisseria [N. gonorrhoeae and N. meningitidis]. PEA decoration of lipid A is mediated by the enzyme EptA (formerly termed LptA) and promotes resistance to innate defense systems, induces the pro-inflammatory response and can influence the in vivo fitness of bacteria during infection. These important biological properties have driven efforts dealing with the biochemistry and structural biology of EptA that will facilitate the development of potential inhibitors that block PEA addition to lipid A.
Collapse
Affiliation(s)
- Charlene M Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.,Perth Children's Hospital, Telethon Kids Institute, Subiaco, WA, Australia
| | - K L Nawrocki
- Department of Microbiology and Immunology, The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Bacterial Pathogenesis, VA Medical Center, Decatur, GA, United States
| | - A Anandan
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Alice Vrielink
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.,School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - William M Shafer
- Department of Microbiology and Immunology, The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Bacterial Pathogenesis, VA Medical Center, Decatur, GA, United States
| |
Collapse
|
21
|
Palmer A, Criss AK. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol 2018; 26:1022-1034. [PMID: 30115561 DOI: 10.1016/j.tim.2018.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Neisseria gonorrhoeae initiates a strong local immune response that is characterized by copious recruitment of neutrophils to the site of infection. Neutrophils neutralize microbes by mechanisms that include phagocytosis, extracellular trap formation, production of reactive oxygen species, and the delivery of antimicrobial granular contents. However, neutrophils do not clear infection with N. gonorrhoeae. N. gonorrhoeae not only expresses factors that defend against neutrophil bactericidal components, but it also manipulates neutrophil production and release of these components. In this review, we highlight the numerous approaches used by N. gonorrhoeae to survive exposure to neutrophils both intracellularly and extracellularly. These approaches reflect the exquisite adaptation of N. gonorrhoeae to its obligate human host.
Collapse
Affiliation(s)
- Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
22
|
Brunner K, John CM, Phillips NJ, Alber DG, Gemmell MR, Hansen R, Nielsen HL, Hold GL, Bajaj-Elliott M, Jarvis GA. Novel Campylobacter concisus lipooligosaccharide is a determinant of inflammatory potential and virulence. J Lipid Res 2018; 59:1893-1905. [PMID: 30049709 DOI: 10.1194/jlr.m085860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/29/2018] [Indexed: 12/15/2022] Open
Abstract
The pathogenicity of Campylobacter concisus, increasingly found in the human gastrointestinal (GI) tract, is unclear. Some studies indicate that its role in GI conditions has been underestimated, whereas others suggest that the organism has a commensal-like phenotype. For the enteropathogen C. jejuni, the lipooligosaccharide (LOS) is a main driver of virulence. We investigated the LOS structure of four C. concisus clinical isolates and correlated the inflammatory potential of each isolate with bacterial virulence. Mass spectrometric analyses of lipid A revealed a novel hexa-acylated diglucosamine moiety with two or three phosphoryl substituents. Molecular and fragment ion analysis indicated that the oligosaccharide portion of the LOS had only a single phosphate and lacked phosphoethanolamine and sialic acid substitution, which are hallmarks of the C. jejuni LOS. Consistent with our structural findings, C. concisus LOS and live bacteria induced less TNF-α secretion in human monocytes than did C. jejuni Furthermore, the C. concisus bacteria were less virulent than C. jejuni in a Galleria mellonella infection model. The correlation of the novel lipid A structure, decreased phosphorylation, and lack of sialylation along with reduced inflammatory potential and virulence support the significance of the LOS as a determinant in the relative pathogenicity of C. concisus.
Collapse
Affiliation(s)
- Katja Brunner
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA.,Department of Laboratory Medicine University of California, San Francisco, CA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA
| | - Dagmar G Alber
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Matthew R Gemmell
- Center for Genome-Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Richard Hansen
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Hans L Nielsen
- Department of Infectious Diseases Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Georgina L Hold
- St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Mona Bajaj-Elliott
- Infection, Immunity and Inflammation Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, CA .,Department of Laboratory Medicine University of California, San Francisco, CA
| |
Collapse
|
23
|
Latousakis D, Juge N. How Sweet Are Our Gut Beneficial Bacteria? A Focus on Protein Glycosylation in Lactobacillus. Int J Mol Sci 2018; 19:ijms19010136. [PMID: 29301365 PMCID: PMC5796085 DOI: 10.3390/ijms19010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Protein glycosylation is emerging as an important feature in bacteria. Protein glycosylation systems have been reported and studied in many pathogenic bacteria, revealing an important diversity of glycan structures and pathways within and between bacterial species. These systems play key roles in virulence and pathogenicity. More recently, a large number of bacterial proteins have been found to be glycosylated in gut commensal bacteria. We present an overview of bacterial protein glycosylation systems (O- and N-glycosylation) in bacteria, with a focus on glycoproteins from gut commensal bacteria, particularly Lactobacilli. These emerging studies underscore the importance of bacterial protein glycosylation in the interaction of the gut microbiota with the host.
Collapse
Affiliation(s)
- Dimitrios Latousakis
- Quadram Institute Bioscience, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Nathalie Juge
- Quadram Institute Bioscience, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, UK.
| |
Collapse
|
24
|
Hu J, Iragavarapu S, Nadkarni GN, Huang R, Erazo M, Bao X, Verghese D, Coca S, Ahmed MK, Peter I. Location-Specific Oral Microbiome Possesses Features Associated With CKD. Kidney Int Rep 2018; 3:193-204. [PMID: 29340331 PMCID: PMC5762954 DOI: 10.1016/j.ekir.2017.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD), a progressive loss of renal function, can lead to serious complications if underdiagnosed. Many studies suggest that the oral microbiota plays important role in the health of the host; however, little is known about the association between the oral microbiota and CKD pathogenesis. METHODS In this study, we surveyed the oral microbiota in saliva, the left and right molars, and the anterior mandibular lingual area from 77 participants (18 with and 59 without CKD), and tested their association with CKD to identify microbial features that may be predictive of CKD status. RESULTS The overall oral microbiota composition significantly differed by oral locations and was associated with CKD status in saliva and anterior mandibular lingual samples. In CKD patients, we observed a significant enrichment of Neisseria and depletion of Veillonella in both sample types and a lower prevalence of Streptococcus in saliva after adjustment for other comorbidities. Furthermore, we detected a negative association of Neisseria and Streptococcus genera with the kidney function as measured by estimated glomerular filtration rate. Neisseria abundance also correlated with plasma interleukin-18 levels. CONCLUSION We demonstrate the association of the oral microbiome with CKD and inflammatory kidney biomarkers, highlighting a potential role of the commensal bacteria in CKD pathogenesis. A better understanding of the interplay between the oral microbiota and CKD may help in the development of new strategies to identify at-risk individuals or to serve as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Girish N. Nadkarni
- Department of Medicine, Division of Nephrology and the Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruiqi Huang
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Monica Erazo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xiuliang Bao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Divya Verghese
- Department of Medicine, Division of Nephrology and the Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven Coca
- Department of Medicine, Division of Nephrology and the Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mairaj K. Ahmed
- Departments of Dentistry/Oral Maxillofacial Surgery, Otolaryngology and Plastic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
25
|
John CM, Phillips NJ, Stein DC, Jarvis GA. Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections. Pathog Dis 2017; 75:3569603. [PMID: 28423169 DOI: 10.1093/femspd/ftx030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/11/2017] [Indexed: 01/05/2023] Open
Abstract
Infections due to Neisseria meningitidis afflict more than one million people worldwide annually and cause death or disability in many survivors. The clinical course of invasive infections has been well studied, but our understanding of the cause of differences in patient outcomes has been limited because these are dependent on multiple factors including the response of the host, characteristics of the bacteria and interactions between the host and the bacteria. The meningococcus is a highly inflammatory organism, and the lipooligosaccharide (LOS) on the outer membrane is the most potent inflammatory molecule it expresses due to the interactions of the lipid A moiety of LOS with receptors of the innate immune system. We previously reported that increased phosphorylation of hexaacylated neisserial lipid A is correlated with greater inflammatory potential. Here we postulate that variability in lipid A phosphorylation can tip the balance of innate immune responses towards homeostatic tolerance or proinflammatory signaling that affects adaptive immune responses, causing disease with meningitis only, or septicemia with or without meningitis, respectively. Furthermore, we propose that studies of the relationship between bacterial virulence and gene expression should consider whether genetic variation could affect properties of biosynthetic enzymes resulting in LOS structural differences that alter disease pathobiology.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Daniel C Stein
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742 USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
26
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
27
|
van 't Hag L, Anandan A, Seabrook SA, Gras SL, Drummond CJ, Vrielink A, Conn CE. Direct demonstration of lipid phosphorylation in the lipid bilayer of the biomimetic bicontinuous cubic phase using the confined enzyme lipid A phosphoethanolamine transferase. SOFT MATTER 2017; 13:1493-1504. [PMID: 28125111 DOI: 10.1039/c6sm02487d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Retention of amphiphilic protein activity within the lipid bilayer membrane of the nanostructured biomimetic bicontinuous cubic phase is crucial for applications utilizing these hybrid protein-lipid self-assembly materials, such as in meso membrane protein crystallization and drug delivery. Previous work, mainly on soluble and membrane-associated enzymes, has shown that enzyme activity may be modified when immobilized, including membrane bound enzymes. The effect on activity may be even greater for amphiphilic enzymes with a large hydrophilic domain, such as the Neisserial enzyme lipid A phosphoethanolamine transferase (EptA). Encapsulation within the biomimetic but non-endogenous lipid bilayer membrane environment may modify the enzyme conformation, while confinement of the large hydrophilic domain with the nanoscale water channels of a continuous lipid bilayer structure may prevent full function of this enzyme. Herein we show that NmEptA remains active despite encapsulation within a nanostructured bicontinuous cubic phase. Full transfer of the phosphoethanolamine (PEA) group from a 1,2-dioleoyl-glycero-phosphoethanolamine (DOPE) doped lipid to monoolein (MO), which makes up the bicontinuous cubic phase, is shown. The reaction was found to be non-specific to the alkyl chain identity. The observed rate of enzyme activity is similar to other membrane bound enzymes, with complete transfer of the PEA group occurring in vitro, under the conditions studied, over a 24 hour timescale.
Collapse
Affiliation(s)
- Leonie van 't Hag
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia and CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Anandhi Anandan
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | | - Sally L Gras
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia and The ARC Dairy Innovation Hub, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Calum J Drummond
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia and School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia.
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
28
|
Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med Res Rev 2017; 38:101-146. [PMID: 28094448 PMCID: PMC7168463 DOI: 10.1002/med.21435] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune defense mechanism of many organisms. Due to the alarming increase of resistance to antimicrobial therapeutics, a growing interest in alternative antimicrobial agents has led to the exploitation of AMPs, both synthetic and isolated from natural sources. Thus, many peptide-based drugs have been the focus of increasing attention by many researchers not only in identifying novel AMPs, but in defining mechanisms of antimicrobial peptide activity as well. Herein, we review the available strategies for the identification of AMPs in human body fluids and their mechanism(s) of action. In addition, an overview of the distribution of AMPs across different human body fluids is provided, as well as its relation with microorganisms and infectious conditions.
Collapse
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João da Costa
- Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
29
|
Zariri A, Pupo E, van Riet E, van Putten JPM, van der Ley P. Modulating endotoxin activity by combinatorial bioengineering of meningococcal lipopolysaccharide. Sci Rep 2016; 6:36575. [PMID: 27841285 PMCID: PMC5107901 DOI: 10.1038/srep36575] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis contains a very potent hexa-acylated LPS that is too toxic for therapeutic applications. We used systematic molecular bioengineering of meningococcal LPS through deletion of biosynthetic enzymes in combination with induction of LPS modifying enzymes to yield a variety of novel LPS mutants with changes in both lipid A acylation and phosphorylation. Mass spectrometry was used for detailed compositional determination of the LPS molecular species, and stimulation of immune cells was done to correlate this with endotoxic activity. Removal of phosphethanolamine in lipid A by deletion of lptA slightly reduces activity of hexa-acylated LPS, but this reduction is even more evident in penta-acylated LPS. Surprisingly, expression of PagL deacylase in a penta-acylated lpxL1 mutant increased LPS activity, contradicting the general rule that tetra-acylated LPS is less active than penta-acylated LPS. Further modification included expression of lpxP, an enzyme known to add a secondary 9-hexadecenoic acid to the 2’ acyl chain. The LpxP enzyme is temperature-sensitive, enabling control over the ratio of expressed modified hexa- and penta-acylated LPS by simply changing the growth temperature. These LPS derivatives display a broad range of TLR4 activity and differential cytokine induction, which can be exploited for use as vaccine adjuvant or other TLR4-based therapeutics.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands.,Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Elder Pupo
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands
| | - Elly van Riet
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Peter van der Ley
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands
| |
Collapse
|
30
|
Chan JM, Dillard JP. Neisseria gonorrhoeae Crippled Its Peptidoglycan Fragment Permease To Facilitate Toxic Peptidoglycan Monomer Release. J Bacteriol 2016; 198:3029-3040. [PMID: 27551020 PMCID: PMC5055606 DOI: 10.1128/jb.00437-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/18/2016] [Indexed: 01/23/2023] Open
Abstract
Neisseria gonorrhoeae (gonococci) and Neisseria meningitidis (meningococci) are human pathogens that cause gonorrhea and meningococcal meningitis, respectively. Both N. gonorrhoeae and N. meningitidis release a number of small peptidoglycan (PG) fragments, including proinflammatory PG monomers, although N. meningitidis releases fewer PG monomers. The PG fragments released by N. gonorrhoeae and N. meningitidis are generated in the periplasm during cell wall remodeling, and a majority of these fragments are transported into the cytoplasm by an inner membrane permease, AmpG; however, a portion of the PG fragments are released into the extracellular environment through unknown mechanisms. We previously reported that the expression of meningococcal ampG in N. gonorrhoeae reduced PG monomer release by gonococci. This finding suggested that the efficiency of AmpG-mediated PG fragment recycling regulates the amount of PG fragments released into the extracellular milieu. We determined that three AmpG residues near the C-terminal end of the protein modulate AmpG's efficiency. We also investigated the association between PG fragment recycling and release in two species of human-associated nonpathogenic Neisseria: N. sicca and N. mucosa Both N. sicca and N. mucosa release lower levels of PG fragments and are more efficient at recycling PG fragments than N. gonorrhoeae Our results suggest that N. gonorrhoeae has evolved to increase the amounts of toxic PG fragments released by reducing its PG recycling efficiency. IMPORTANCE Neisseria gonorrhoeae and Neisseria meningitidis are human pathogens that cause highly inflammatory diseases, although N. meningitidis is also frequently found as a normal member of the nasopharyngeal microbiota. Nonpathogenic Neisseria, such as N. sicca and N. mucosa, also colonize the nasopharynx without causing disease. Although all four species release peptidoglycan fragments, N. gonorrhoeae is the least efficient at recycling and releases the largest amount of proinflammatory peptidoglycan monomers, partly due to differences in the recycling permease AmpG. Studying the interplay between bacterial physiology (peptidoglycan metabolism) and pathogenesis (release of toxic monomers) leads to an increased understanding of how different bacterial species maintain asymptomatic colonization or cause disease and may contribute to efforts to mitigate disease.
Collapse
Affiliation(s)
- Jia Mun Chan
- University of Wisconsin-Madison, Department of Medical Microbiology and Immunology, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joseph P Dillard
- University of Wisconsin-Madison, Department of Medical Microbiology and Immunology, School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Phillips NJ, John CM, Jarvis GA. Analysis of Bacterial Lipooligosaccharides by MALDI-TOF MS with Traveling Wave Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1263-1276. [PMID: 27056565 DOI: 10.1007/s13361-016-1383-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
Lipooligosaccharides (LOS) are major microbial virulence factors displayed on the outer membrane of rough-type Gram-negative bacteria. These amphipathic glycolipids are comprised of two domains, a core oligosaccharide linked to a lipid A moiety. Isolated LOS samples are generally heterogeneous mixtures of glycoforms, with structural variability in both domains. Traditionally, the oligosaccharide and lipid A components of LOS have been analyzed separately following mild acid hydrolysis, although important acid-labile moieties can be cleaved. Recently, an improved method was introduced for analysis of intact LOS by MALDI-TOF MS using a thin layer matrix composed of 2,4,6-trihydroxyacetophenone (THAP) and nitrocellulose. In addition to molecular ions, the spectra show in-source "prompt" fragments arising from regiospecific cleavage between the lipid A and oligosaccharide domains. Here, we demonstrate the use of traveling wave ion mobility spectrometry (TWIMS) for IMS-MS and IMS-MS/MS analyses of intact LOS from Neisseria spp. ionized by MALDI. Using IMS, the singly charged prompt fragments for the oligosaccharide and lipid A domains of LOS were readily separated into resolved ion plumes, permitting the extraction of specific subspectra, which led to increased confidence in assigning compositions and improved detection of less abundant ions. Moreover, IMS separation of precursor ions prior to collision-induced dissociation (CID) generated time-aligned, clean MS/MS spectra devoid of fragments from interfering species. Incorporating IMS into the profiling of intact LOS by MALDI-TOF MS exploits the unique domain structure of the molecule and offers a new means of extracting more detailed information from the analysis. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94143, USA
| | - Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA.
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
32
|
John CM, Phillips NJ, Din R, Liu M, Rosenqvist E, Høiby EA, Stein DC, Jarvis GA. Lipooligosaccharide Structures of Invasive and Carrier Isolates of Neisseria meningitidis Are Correlated with Pathogenicity and Carriage. J Biol Chem 2015; 291:3224-38. [PMID: 26655715 DOI: 10.1074/jbc.m115.666214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
The degree of phosphorylation and phosphoethanolaminylation of lipid A on neisserial lipooligosaccharide (LOS), a major cell-surface antigen, can be correlated with inflammatory potential and the ability to induce immune tolerance in vitro. On the oligosaccharide of the LOS, the presence of phosphoethanolamine and sialic acid substituents can be correlated with in vitro serum resistance. In this study, we analyzed the structure of the LOS from 40 invasive isolates and 25 isolates from carriers of Neisseria meningitidis without disease. Invasive strains were classified as groups 1-3 that caused meningitis, septicemia without meningitis, and septicemia with meningitis, respectively. Intact LOS was analyzed by high resolution matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Prominent peaks for lipid A fragment ions with three phosphates and one phosphoethanolamine were detected in all LOS analyzed. LOS from groups 2 and 3 had less abundant ions for highly phosphorylated lipid A forms and induced less TNF-α in THP-1 monocytic cells compared with LOS from group 1. Lipid A from all invasive strains was hexaacylated, whereas lipid A of 6/25 carrier strains was pentaacylated. There were fewer O-acetyl groups and more phosphoethanolamine and sialic acid substitutions on the oligosaccharide from invasive compared with carrier isolates. Bioinformatic and genomic analysis of LOS biosynthetic genes indicated significant skewing to specific alleles, dependent on the disease outcome. Our results suggest that variable LOS structures have multifaceted effects on homeostatic innate immune responses that have critical impact on the pathophysiology of meningococcal infections.
Collapse
Affiliation(s)
- Constance M John
- From the Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California 94121, the Departments of Laboratory Medicine and
| | | | - Richard Din
- From the Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California 94121
| | - Mingfeng Liu
- From the Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California 94121, the Departments of Laboratory Medicine and
| | - Einar Rosenqvist
- the Norwegian Institute of Public Health, P. O. Box 4404, Nydalen, 0403 Oslo, Norway, and
| | - E Arne Høiby
- the Norwegian Institute of Public Health, P. O. Box 4404, Nydalen, 0403 Oslo, Norway, and
| | - Daniel C Stein
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Gary A Jarvis
- From the Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California 94121, the Departments of Laboratory Medicine and
| |
Collapse
|
33
|
Zariri A, van der Ley P. Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev Vaccines 2015; 14:861-76. [PMID: 25797360 DOI: 10.1586/14760584.2015.1026808] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipopolysaccharide (LPS), a dominant component of the Gram-negative bacterial outer membrane, is a strong activator of the innate immune system, and thereby an important determinant in the adaptive immune response following bacterial infection. This adjuvant activity can be harnessed following immunization with bacteria-derived vaccines that naturally contain LPS, and when LPS or molecules derived from it are added to purified vaccine antigens. However, the downside of the strong biological activity of LPS is its ability to contribute to vaccine reactogenicity. Modification of the LPS structure allows triggering of a proper immune response needed in a vaccine against a particular pathogen while at the same time lowering its toxicity. Extensive modifications to the basic structure are possible by using our current knowledge of bacterial genes involved in LPS biosynthesis and modification. This review focuses on biosynthetic engineering of the structure of LPS and implications of these modifications for generation of safe adjuvants.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | |
Collapse
|
34
|
Handing JW, Criss AK. The lipooligosaccharide-modifying enzyme LptA enhances gonococcal defence against human neutrophils. Cell Microbiol 2015; 17:910-21. [PMID: 25537831 DOI: 10.1111/cmi.12411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/20/2014] [Accepted: 12/17/2014] [Indexed: 01/27/2023]
Abstract
Infection with Neisseria gonorrhoeae (Gc) is marked by an influx of neutrophils to the site of infection. Despite a robust immune response, viable Gc can be recovered from neutrophil-rich gonorrhoeal secretions. Gc enzymatically modifies the lipid A portion of lipooligosaccharide by the addition of phosphoethanolamine to the phosphate group at the 4' position. Loss of lipooligosaccharide phosphoethanolamine transferase A (LptA), the enzyme catalysing this reaction, increases bacterial sensitivity to killing by human complement and cationic antimicrobial peptides. Here, we investigated the importance of LptA for interactions between Gc and human neutrophils. We found that lptA mutant Gc was significantly more sensitive to killing by human neutrophils. Three mechanisms underlie the increased sensitivity of lptA mutant Gc to neutrophils. (i) lptA mutant Gc is more likely to reside in mature phagolysosomes than LptA-expressing bacteria. (ii) lptA mutant Gc is more sensitive to killing by components found in neutrophil granules, including CAP37/azurocidin, human neutrophil peptide 1 and the serine protease cathepsin G. (iii) lptA mutant Gc is more susceptible to killing by antimicrobial components that are exocytosed from neutrophils, including those decorating neutrophil extracellular traps. By increasing the resistance of Gc to the bactericidal activity of neutrophils, LptA-catalysed modification of lipooligosaccharide enhances survival of Gc from the human inflammatory response during acute gonorrhoea.
Collapse
Affiliation(s)
- Jonathan W Handing
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
35
|
|
36
|
Delvillani F, Sciandrone B, Peano C, Petiti L, Berens C, Georgi C, Ferrara S, Bertoni G, Pasini ME, Dehò G, Briani F. Tet-Trap, a genetic approach to the identification of bacterial RNA thermometers: application to Pseudomonas aeruginosa. RNA (NEW YORK, N.Y.) 2014; 20:1963-1976. [PMID: 25336583 PMCID: PMC4238360 DOI: 10.1261/rna.044354.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Modulation of mRNA translatability either by trans-acting factors (proteins or sRNAs) or by in cis-acting riboregulators is widespread in bacteria and controls relevant phenotypic traits. Unfortunately, global identification of post-transcriptionally regulated genes is complicated by poor structural and functional conservation of regulatory elements and by the limitations of proteomic approaches in protein quantification. We devised a genetic system for the identification of post-transcriptionally regulated genes and we applied this system to search for Pseudomonas aeruginosa RNA thermometers, a class of regulatory RNA that modulates gene translation in response to temperature changes. As P. aeruginosa is able to thrive in a broad range of environmental conditions, genes differentially expressed at 37 °C versus lower temperatures may be involved in infection and survival in the human host. We prepared a plasmid vector library with translational fusions of P. aeruginosa DNA fragments (PaDNA) inserted upstream of TIP2, a short peptide able to inactivate the Tet repressor (TetR) upon expression. The library was assayed in a streptomycin-resistant merodiploid rpsL(+)/rpsL31 Escherichia coli strain in which the dominant rpsL(+) allele, which confers streptomycin sensitivity, was repressed by TetR. PaDNA fragments conferring thermosensitive streptomycin resistance (i.e., expressing PaDNA-TIP2 fusions at 37°C, but not at 28°C) were sequenced. We identified four new putative thermosensors. Two of them were validated with conventional reporter systems in E. coli and P. aeruginosa. Interestingly, one regulates the expression of ptxS, a gene implicated in P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Francesco Delvillani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Barbara Sciandrone
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Clelia Peano
- Istituto di Tecnologie Biomediche, CNR, 20090 Segrate, Italy
| | - Luca Petiti
- Istituto di Tecnologie Biomediche, CNR, 20090 Segrate, Italy Doctoral Program of Molecular and Translational Medicine, Università degli Studi di Milano, 20133 Milano, Italy
| | - Christian Berens
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christiane Georgi
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Silvia Ferrara
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Giovanni Bertoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maria Enrica Pasini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
37
|
Piek S, Wang Z, Ganguly J, Lakey AM, Bartley SN, Mowlaboccus S, Anandan A, Stubbs KA, Scanlon MJ, Vrielink A, Azadi P, Carlson RW, Kahler CM. The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin. PLoS One 2014; 9:e106513. [PMID: 25215579 PMCID: PMC4162559 DOI: 10.1371/journal.pone.0106513] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/31/2014] [Indexed: 01/04/2023] Open
Abstract
The decoration of the lipid A headgroups of the lipooligosaccharide (LOS) by the LOS phosphoethanolamine (PEA) transferase (LptA) in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that it is a potential substrate of the protein oxidation pathway in the bacterial periplasm. When neisserial LptA was expressed in Escherichia coli in the presence of the oxidoreductase, EcDsbA, polymyxin resistance increased 30-fold. LptA decorated one position of the E. coli lipid A headgroups with PEA. In the absence of the EcDsbA, LptA was degraded in E. coli. Neisseria spp. express three oxidoreductases, DsbA1, DsbA2 and DsbA3, each of which appear to donate disulphide bonds to different targets. Inactivation of each oxidoreductase in N. meningitidis enhanced sensitivity to polymyxin with combinatorial mutants displaying an additive increase in sensitivity to polymyxin, indicating that the oxidoreductases were required for multiple pathways leading to polymyxin resistance. Correlates were sought between polymyxin sensitivity, LptA stability or activity and the presence of each of the neisserial oxidoreductases. Only meningococcal mutants lacking DsbA3 had a measurable decrease in the amount of PEA decoration on lipid A headgroups implying that LptA stability was supported by the presence of DsbA3 but did not require DsbA1/2 even though these oxidoreductases could oxidise the protein. This is the first indication that DsbA3 acts as an oxidoreductase in vivo and that multiple oxidoreductases may be involved in oxidising the one target in N. meningitidis. In conclusion, LptA is stabilised by disulphide bonds within the protein. This effect was more pronounced when neisserial LptA was expressed in E. coli than in N. meningitidis and may reflect that other factors in the neisserial periplasm have a role in LptA stability.
Collapse
Affiliation(s)
- Susannah Piek
- School of Pathology and Laboratory Medicine, and The Marshall Center for Infectious Diseases, Research and Training, University of Western Australia, Perth, Western Australia, Australia
| | - Zhirui Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Jhuma Ganguly
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Adam M. Lakey
- School of Pathology and Laboratory Medicine, and The Marshall Center for Infectious Diseases, Research and Training, University of Western Australia, Perth, Western Australia, Australia
| | - Stephanie N. Bartley
- School of Pathology and Laboratory Medicine, and The Marshall Center for Infectious Diseases, Research and Training, University of Western Australia, Perth, Western Australia, Australia
| | - Shakeel Mowlaboccus
- School of Pathology and Laboratory Medicine, and The Marshall Center for Infectious Diseases, Research and Training, University of Western Australia, Perth, Western Australia, Australia
| | - Anandhi Anandan
- School of Chemistry and Biochemistry, University of Western Australia, Perth, Western Australia, Australia
| | - Keith A. Stubbs
- School of Chemistry and Biochemistry, University of Western Australia, Perth, Western Australia, Australia
| | - Martin J. Scanlon
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
- ARC Centre of Excellence for Coherent X-ray Science, Monash University, Melbourne, Victoria, Australia
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Perth, Western Australia, Australia
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Charlene M. Kahler
- School of Pathology and Laboratory Medicine, and The Marshall Center for Infectious Diseases, Research and Training, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
38
|
Phase-variable expression of lptA modulates the resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides. Antimicrob Agents Chemother 2014; 58:4230-3. [PMID: 24820072 DOI: 10.1128/aac.03108-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoethanolamine (PEA) decoration of lipid A produced by Neisseria gonorrhoeae has been linked to bacterial resistance to cationic antimicrobial peptides/proteins (CAMPs) and in vivo fitness during experimental infection. We now report that the lptA gene, which encodes the PEA transferase responsible for this decoration, is in an operon and that high-frequency mutation in a polynucleotide repeat within lptA can influence gonococcal resistance to CAMPs.
Collapse
|
39
|
Abstract
The acyl chain length, number, and distribution have been considered the major factors contributing to this biological activity of lipid A. The charged head groups on the dihexosamine backbone have also been implicated in contributing to this biology. In Neisseria, it has now been shown that loss of the 4' phosphoethanolamine has an impact on virulence in an animal model and on the organism's susceptibility to cationic antimicrobial peptides. Such studies offer potential insight into targets for novel antimicrobial agents.
Collapse
|
40
|
Phosphoethanolamine decoration of Neisseria gonorrhoeae lipid A plays a dual immunostimulatory and protective role during experimental genital tract infection. Infect Immun 2014; 82:2170-9. [PMID: 24686069 DOI: 10.1128/iai.01504-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The induction of an intense inflammatory response by Neisseria gonorrhoeae and the persistence of this pathogen in the presence of innate effectors is a fascinating aspect of gonorrhea. Phosphoethanolamine (PEA) decoration of lipid A increases gonococcal resistance to complement-mediated bacteriolysis and cationic antimicrobial peptides (CAMPs), and recently we reported that wild-type N. gonorrhoeae strain FA1090 has a survival advantage relative to a PEA transferase A (lptA) mutant in the human urethral-challenge and murine lower genital tract infection models. Here we tested the immunostimulatory role of this lipid A modification. Purified lipooligosaccharide (LOS) containing lipid A devoid of the PEA modification and an lptA mutant of strain FA19 induced significantly lower levels of NF-κB in human embryonic kidney Toll-like receptor 4 (TLR4) cells and murine embryonic fibroblasts than wild-type LOS of the parent strain. Moreover, vaginal proinflammatory cytokines and chemokines were not elevated in female mice infected with the isogenic lptA mutant, in contrast to mice infected with the wild-type and complemented lptA mutant bacteria. We also demonstrated that lptA mutant bacteria were more susceptible to human and murine cathelicidins due to increased binding by these peptides and that the differential induction of NF-κB by wild-type and unmodified lipid A was more pronounced in the presence of CAMPs. This work demonstrates that PEA decoration of lipid A plays both protective and immunostimulatory roles and that host-derived CAMPs may further reduce the capacity of PEA-deficient lipid A to interact with TLR4 during infection.
Collapse
|
41
|
Lipid A's structure mediates Neisseria gonorrhoeae fitness during experimental infection of mice and men. mBio 2013; 4:e00892-13. [PMID: 24255126 PMCID: PMC3870242 DOI: 10.1128/mbio.00892-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphoethanolamine (PEA) on Neisseria gonorrhoeae lipid A influences gonococcal inflammatory signaling and susceptibility to innate host defenses in in vitro models. Here, we evaluated the role of PEA-decorated gonococcal lipid A in competitive infections in female mice and in male volunteers. We inoculated mice and men with mixtures of wild-type N. gonorrhoeae and an isogenic mutant that lacks the PEA transferase, LptA. LptA production conferred a marked survival advantage for wild-type gonococci in the murine female genital tract and in the human male urethra. Our studies translate results from test tube to animal model and into the human host and demonstrate the utility of the mouse model for studies of virulence factors of the human-specific pathogen N. gonorrhoeae that interact with non-host-restricted elements of innate immunity. These results validate the use of gonococcal LptA as a potential target for development of novel immunoprophylactic strategies or antimicrobial treatments. IMPORTANCE Gonorrhea is one of the most common bacterial sexually transmitted infections, and increasing antibiotic resistance threatens the use of currently available antimicrobial therapies. In this work, encompassing in vitro studies and in vivo studies of animal and human models of experimental genital tract infection, we document the importance of lipid A’s structure, mediated by a single bacterial enzyme, LptA, in enhancing the fitness of Neisseria gonorrhoeae. The results of these studies suggest that novel agents targeting LptA may offer urgently needed prevention or treatment strategies for gonorrhea. Gonorrhea is one of the most common bacterial sexually transmitted infections, and increasing antibiotic resistance threatens the use of currently available antimicrobial therapies. In this work, encompassing in vitro studies and in vivo studies of animal and human models of experimental genital tract infection, we document the importance of lipid A’s structure, mediated by a single bacterial enzyme, LptA, in enhancing the fitness of Neisseria gonorrhoeae. The results of these studies suggest that novel agents targeting LptA may offer urgently needed prevention or treatment strategies for gonorrhea.
Collapse
|
42
|
Hexa-acylated lipid A is required for host inflammatory response to Neisseria gonorrhoeae in experimental gonorrhea. Infect Immun 2013; 82:184-92. [PMID: 24126526 DOI: 10.1128/iai.00890-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae causes gonorrhea, a sexually transmitted infection characterized by inflammation of the cervix or urethra. However, a significant subset of patients with N. gonorrhoeae remain asymptomatic, without evidence of localized inflammation. Inflammatory responses to N. gonorrhoeae are generated by host innate immune recognition of N. gonorrhoeae by several innate immune signaling pathways, including lipooligosaccharide (LOS) and other pathogen-derived molecules through activation of innate immune signaling systems, including toll-like receptor 4 (TLR4) and the interleukin-1β (IL-1β) processing complex known as the inflammasome. The lipooligosaccharide of N. gonorrhoeae has a hexa-acylated lipid A. N. gonorrhoeae strains that carry an inactivated msbB (also known as lpxL1) gene produce a penta-acylated lipid A and exhibit reduced biofilm formation, survival in epithelial cells, and induction of epithelial cell inflammatory signaling. We now show that msbB-deficient N. gonorrhoeae induces less inflammatory signaling in human monocytic cell lines and murine macrophages than the parent organism. The penta-acylated LOS exhibits reduced toll-like receptor 4 signaling but does not affect N. gonorrhoeae-mediated activation of the inflammasome. We demonstrate that N. gonorrhoeae msbB is dispensable for initiating and maintaining infection in a murine model of gonorrhea. Interestingly, infection with msbB-deficient N. gonorrhoeae is associated with less localized inflammation. Combined, these data suggest that TLR4-mediated recognition of N. gonorrhoeae LOS plays an important role in the pathogenesis of symptomatic gonorrhea infection and that alterations in lipid A biosynthesis may play a role in determining symptomatic and asymptomatic infections.
Collapse
|
43
|
Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 2013; 57:4831-40. [PMID: 23877686 DOI: 10.1128/aac.00865-13] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial opportunistic pathogen that can cause severe infections, including hospital-acquired pneumonia, wound infections, and sepsis. Multidrug-resistant (MDR) strains are prevalent, further complicating patient treatment. Due to the increase in MDR strains, the cationic antimicrobial peptide colistin has been used to treat A. baumannii infections. Colistin-resistant strains of A. baumannii with alterations to the lipid A component of lipopolysaccharide (LPS) have been reported; specifically, the lipid A structure was shown to be hepta-acylated with a phosphoethanolamine (pEtN) modification present on one of the terminal phosphate residues. Using a tandem mass spectrometry platform, we provide definitive evidence that the lipid A isolated from colistin-resistant A. baumannii MAC204 LPS contains a novel structure corresponding to a diphosphoryl hepta-acylated lipid A structure with both pEtN and galactosamine (GalN) modifications. To correlate our structural studies with clinically relevant samples, we characterized colistin-susceptible and -resistant isolates obtained from patients. These results demonstrated that the clinical colistin-resistant isolate had the same pEtN and GalN modifications as those seen in the laboratory-adapted A. baumannii strain MAC204. In summary, this work has shown complete structure characterization including the accurate assignment of acylation, phosphorylation, and glycosylation of lipid A from A. baumannii, which are important for resistance to colistin.
Collapse
|
44
|
Stephenson HN, John CM, Naz N, Gundogdu O, Dorrell N, Wren BW, Jarvis GA, Bajaj-Elliott M. Campylobacter jejuni lipooligosaccharide sialylation, phosphorylation, and amide/ester linkage modifications fine-tune human Toll-like receptor 4 activation. J Biol Chem 2013; 288:19661-72. [PMID: 23629657 DOI: 10.1074/jbc.m113.468298] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Campylobacter jejuni is a leading cause of acute gastroenteritis. C. jejuni lipooligosaccharide (LOS) is a potent activator of Toll-like receptor (TLR) 4-mediated innate immunity. Structural variations of the LOS have been previously reported in the oligosaccharide (OS) moiety, the disaccharide lipid A (LA) backbone, and the phosphorylation of the LA. Here, we studied LOS structural variation between C. jejuni strains associated with different ecological sources and analyzed their ability to activate TLR4 function. MALDI-TOF MS was performed to characterize structural variation in both the OS and LA among 15 different C. jejuni isolates. Cytokine induction in THP-1 cells and primary monocytes was correlated with LOS structural variation in each strain. Additionally, structural variation was correlated with the source of each strain. OS sialylation, increasing abundance of LA d-glucosamine versus 2,3-diamino-2,3-dideoxy-d-glucose, and phosphorylation status all correlated with TLR4 activation as measured in THP-1 cells and monocytes. Importantly, LOS-induced inflammatory responses were similar to those elicited by live bacteria, highlighting the prominent contribution of the LOS component in driving host immunity. OS sialylation status but not LA structure showed significant association with strains clustering with livestock sources. Our study highlights how variations in three structural components of C. jejuni LOS alter TLR4 activation and consequent monocyte activation.
Collapse
Affiliation(s)
- Holly N Stephenson
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|