1
|
Sheikhy M, Karbasizade V, Ghanadian M, Fazeli H. Evaluation of chlorogenic acid and carnosol for anti-efflux pump and anti-biofilm activities against extensively drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0393423. [PMID: 39046262 PMCID: PMC11370622 DOI: 10.1128/spectrum.03934-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/18/2024] [Indexed: 07/25/2024] Open
Abstract
Efflux pumps and biofilm play significant roles in bacterial antibiotic resistance. This study investigates the potential of chlorogenic acid (CGA) and carnosol (CL), as phenolic and diterpene compounds, respectively, for their inhibitory effects on efflux pumps. Among the 12 multidrug-resistant (MDR) strains of Staphylococcus aureus and Pseudomonas aeruginosa isolated from nosocomial skin infections, eight strains were identified as extensively drug resistant (XDR) using the disc diffusion method. The presence of efflux pumps in MDR strains of S. aureus and P. aeruginosa was screened using carbonyl cyanide-m-chlorophenylhydrazone. Between the 12 MDR strains of S. aureus and P. aeruginosa, 80% (4 out of 5) of the S. aureus strains and 85.7% (6 out of 7) of the P. aeruginosa strains exhibited active efflux pumps associated with gentamicin resistance. The checkerboard assay results, in combination with gentamicin, demonstrated that CGA exhibited a reduction in the minimum inhibitory concentration (MIC) for XDR S. aureus strain. Similarly, CL showed a synergistic effect and reduced the MIC for both XDR strains of S. aureus and P. aeruginosa. Flow cytometry was used to examine efflux pump activity at sub-MIC concentrations of 1/8, 1/4, and 1/2 MIC in comparison to the control. In XDR S. aureus, CGA demonstrated 39%, 70%, and 19% inhibition, while CL exhibited 74%, 73.5%, and 62% suppression. In XDR P. aeruginosa, CL exhibited inhibition rates of 25%, 10%, and 15%. The inhibition of biofilm formation was assessed using the microtiter plate method, resulting in successful inhibition of biofilm formation. Finally, the MTT assay was conducted, and it confirmed minimal cytotoxicity. Given the significant reduction in efflux pump activity and biofilm formation observed with CGA and CL in this study, these compounds can be considered as potential inhibitors of efflux pumps and biofilm formation, offering potential strategies to overcome antimicrobial resistance. IMPORTANCE In summary, CGA and CL demonstrated promising potentiating antimicrobial effects against XDR strains of Staphylococcus aureus and Pseudomonas aeruginosa, suggesting their probably potential as candidates for addressing nosocomial pathogens. They exhibited significant suppression of efflux pump activity, indicating a possible successful inhibition of this mechanism. Moreover, all substances effectively inhibited biofilm formation, while showing minimal cytotoxicity. However, further advancement to clinical trials is needed to evaluate the feasibility of utilizing CGA and CL for reversing bacterial XDR efflux and determining their efficacy against biofilms. These trials will provide valuable insights into the practical applications of these compounds in combating drug-resistant infections.
Collapse
Affiliation(s)
- Mohaddeseh Sheikhy
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Karbasizade
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601229. [PMID: 38979200 PMCID: PMC11230364 DOI: 10.1101/2024.06.28.601229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display vast metabolic and transcriptional diversity along with high recalcitrance to antibiotics and host immune defenses. Investigating the complex heterogeneity within biofilm has been hindered by the lack of a sensitive and high-throughput method to assess stochastic transcriptional activity and regulation between bacterial subpopulations, which requires single-cell resolution. We have developed an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. We validated the ability of BaSSSh-seq to capture extensive transcriptional heterogeneity during biofilm compared to planktonic growth. Application of new computational tools revealed transcriptional regulatory networks across the heterogeneous biofilm subpopulations and identification of gene sets that were associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detected alterations in biofilm metabolism, stress response, and virulence that were tailored to distinct immune cell populations. This work provides an innovative platform to explore biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
|
3
|
Shaghayegh G, Cooksley C, Bouras G, Panchatcharam BS, Feizi S, Javadian S, Ramezanpour M, Fenix KA, Wormald PJ, Psaltis AJ, Vreugde S. S. aureus biofilm properties correlate with immune B cell subset frequencies and severity of chronic rhinosinusitis. Clin Immunol 2024; 263:110221. [PMID: 38636891 DOI: 10.1016/j.clim.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Staphylococcus aureus mucosal biofilms are associated with recalcitrant chronic rhinosinusitis (CRS). However, S. aureus colonisation of sinus mucosa is frequent in the absence of mucosal inflammation. This questions the relevance of S. aureus biofilms in CRS etiopathogenesis. This study aimed to investigate whether strain-level variation in in vitro-grown S. aureus biofilm properties relates to CRS disease severity, in vitro toxicity, and immune B cell responses in sinonasal tissue from CRS patients and non-CRS controls. S. aureus clinical isolates, tissue samples, and matched clinical datasets were collected from CRS patients with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. B cell responses in tissue samples were characterised by FACS. S. aureus biofilms were established in vitro, followed by measuring their properties of metabolic activity, biomass, colony-forming units, and exoprotein production. S. aureus virulence was evaluated using whole-genome sequencing, mass spectrometry and application of S. aureus biofilm exoproteins to air-liquid interface cultures of primary human nasal epithelial cells (HNEC-ALI). In vitro S. aureus biofilm properties were correlated with increased CRS severity scores, infiltration of antibody-secreting cells and loss of regulatory B cells in tissue samples. Biofilm exoproteins from S. aureus with high biofilm metabolic activity had enriched virulence genes and proteins, and negatively affected the barrier function of HNEC-ALI cultures. These findings support the notion of strain-level variation in S. aureus biofilms to be critical in the pathophysiology of CRS.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Beula Subashini Panchatcharam
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Sholeh Feizi
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Shari Javadian
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Mahnaz Ramezanpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Kevin Aaron Fenix
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia.
| |
Collapse
|
4
|
Liu X, Guo X, Su X, Ji B, Chang Y, Huang Q, Zhang Y, Wang X, Wang P. Extracellular Vehicles from Commensal Skin Malassezia restricta Inhibit Staphylococcus aureus Proliferation and Biofilm Formation. ACS Infect Dis 2024; 10:624-637. [PMID: 38295002 DOI: 10.1021/acsinfecdis.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The colonizing microbiota on the body surface play a crucial role in barrier function. Staphylococcus aureus (S. aureus) is a significant contributor to skin infection, and the utilization of colonization resistance of skin commensal microorganisms to counteract the invasion of pathogens is a viable approach. However, most studies on colonization resistance have focused on skin bacteria, with limited research on the resistance of skin fungal communities to pathogenic bacteria. Extracellular vehicles (EVs) play an important role in the colonization of microbial niches and the interaction between distinct strains. This paper explores the impact of Malassezia restricta (M. restricta), the fungus that dominates the normal healthy skin microbiota, on the proliferation of S. aureus by examining the distribution disparities between the two microorganisms. Based on the extraction of EVs, the bacterial growth curve, and biofilm formation, it was determined that the EVs of M. restricta effectively suppressed the growth and biofilm formation of S. aureus. The presence of diverse metabolites was identified as the primary factor responsible for the growth inhibition of S. aureus, specifically in relation to glycerol phospholipid metabolism, ABC transport, and arginine synthesis. These findings offer valuable experimental evidence for understanding microbial symbiosis and interactions within healthy skin.
Collapse
Affiliation(s)
- Xin Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaomin Su
- Shaanxi Province Blood Center, Xi'an, Shaanxi 710061, China
| | - Bingru Ji
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Shaanxi Province Blood Center, Xi'an, Shaanxi 710061, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
5
|
Liu X, Wang Z, You Z, Wang W, Wang Y, Wu W, Peng Y, Zhang S, Yun Y, Zhang J. Transcriptomic analysis of cell envelope inhibition by prodigiosin in methicillin-resistant Staphylococcus aureus. Front Microbiol 2024; 15:1333526. [PMID: 38318338 PMCID: PMC10839101 DOI: 10.3389/fmicb.2024.1333526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading threat to public health as it is resistant to most currently available antibiotics. Prodigiosin is a secondary metabolite of microorganisms with broad-spectrum antibacterial activity. This study identified a significant antibacterial effect of prodigiosin against MRSA with a minimum inhibitory concentration as low as 2.5 mg/L. The results of scanning electron microscopy, crystal violet staining, and confocal laser scanning microscopy indicated that prodigiosin inhibited biofilm formation in S. aureus USA300, while also destroying the structure of the cell wall and cell membrane, which was confirmed by transmission electron microscopy. At a prodigiosin concentration of 1.25 mg/L, biofilm formation was inhibited by 76.24%, while 2.5 mg/L prodigiosin significantly reduced the vitality of MRSA cells in the biofilm. Furthermore, the transcriptomic results obtained at 1/8 MIC of prodigiosin indicated that 235and 387 genes of S. aureus USA300 were significantly up- and downregulated, respectively. The downregulated genes were related to two-component systems, including the transcriptional regulator LytS, quorum sensing histidine kinases SrrB, NreA and NreB, peptidoglycan biosynthesis enzymes (MurQ and GlmU), iron-sulfur cluster repair protein ScdA, microbial surface components recognizing adaptive matrix molecules, as well as the key arginine synthesis enzymes ArcC and ArgF. The upregulated genes were mainly related to cell wall biosynthesis, as well as two-component systems including vancomycin resistance-associated regulator, lipoteichoic acid biosynthesis related proteins DltD and DltB, as well as the 9 capsular polysaccharide biosynthesis proteins. This study elucidated the molecular mechanisms through which prodigiosin affects the cell envelope of MRSA from the perspectives of cell wall synthesis, cell membrane and biofilm formation, providing new potential targets for the development of antimicrobials for the treatment of MRSA.
Collapse
Affiliation(s)
- Xiaoxia Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Zonglin Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhongyu You
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wei Wang
- Clinical Laboratory of First Hospital of Jiaxing, Jiaxing, China
| | - Yujie Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Suping Zhang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, China
| | - Yinan Yun
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
6
|
Malviya J, Alameri AA, Al-Janabi SS, Fawzi OF, Azzawi AL, Obaid RF, Alsudani AA, Alkhayyat AS, Gupta J, Mustafa YF, Karampoor S, Mirzaei R. Metabolomic profiling of bacterial biofilm: trends, challenges, and an emerging antibiofilm target. World J Microbiol Biotechnol 2023; 39:212. [PMID: 37256458 DOI: 10.1007/s11274-023-03651-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Biofilm-related infections substantially contribute to bacterial illnesses, with estimates indicating that at least 80% of such diseases are linked to biofilms. Biofilms exhibit unique metabolic patterns that set them apart from their planktonic counterparts, resulting in significant metabolic reprogramming during biofilm formation. Differential glycolytic enzymes suggest that central metabolic processes are markedly different in biofilms and planktonic cells. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is highly expressed in Staphylococcus aureus biofilm progenitors, indicating that changes in glycolysis activity play a role in biofilm development. Notably, an important consideration is a correlation between elevated cyclic di-guanylate monophosphate (c-di-GMP) activity and biofilm formation in various bacteria. C-di-GMP plays a critical role in maintaining the persistence of Pseudomonas aeruginosa biofilms by regulating alginate production, a significant biofilm matrix component. Furthermore, it has been demonstrated that S. aureus biofilm development is initiated by several tricarboxylic acid (TCA) intermediates in a FnbA-dependent manner. Finally, Glucose 6-phosphatase (G6P) boosts the phosphorylation of histidine-containing protein (HPr) by increasing the activity of HPr kinase, enhancing its interaction with CcpA, and resulting in biofilm development through polysaccharide intercellular adhesion (PIA) accumulation and icaADBC transcription. Therefore, studying the metabolic changes associated with biofilm development is crucial for understanding the complex mechanisms involved in biofilm formation and identifying potential targets for intervention. Accordingly, this review aims to provide a comprehensive overview of recent advances in metabolomic profiling of biofilms, including emerging trends, prevailing challenges, and the identification of potential targets for anti-biofilm strategies.
Collapse
Affiliation(s)
- Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | - Saif S Al-Janabi
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Iraq
| | | | | | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Ali A Alsudani
- College of Science, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Ameer S Alkhayyat
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U. P., India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Seebach E, Elschner T, Kraus FV, Souto-Carneiro M, Kubatzky KF. Bacterial and Metabolic Factors of Staphylococcal Planktonic and Biofilm Environments Differentially Regulate Macrophage Immune Activation. Inflammation 2023:10.1007/s10753-023-01824-3. [PMID: 37212952 PMCID: PMC10359233 DOI: 10.1007/s10753-023-01824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023]
Abstract
Biofilm formation is a leading cause for chronic implant-related bone infections as biofilms shield bacteria against the immune system and antibiotics. Additionally, biofilms generate a metabolic microenvironment that shifts the immune response towards tolerance. Here, we compared the impact of the metabolite profile of bacterial environments on macrophage immune activation using Staphylococcus aureus (SA) and epidermidis (SE) conditioned media (CM) of planktonic and biofilm cultures. The biofilm environment had reduced glucose and increased lactate concentrations. Moreover, the expression of typical immune activation markers on macrophages was reduced in the biofilm environment compared to the respective planktonic CM. However, all CM caused a predominantly pro-inflammatory macrophage cytokine response with a comparable induction of Tnfa expression. In biofilm CM, this was accompanied by higher levels of anti-inflammatory Il10. Planktonic CM, on the other hand, induced an IRF7 mediated Ifnb gene expression which was absent in the biofilm environments. For SA but not for SE planktonic CM, this was accompanied by IRF3 activation. Stimulation of macrophages with TLR-2/-9 ligands under varying metabolic conditions revealed that, like in the biofilm setting, low glucose concentration reduced the Tnfa to Il10 mRNA ratio. However, the addition of extracellular L-lactate but not D-lactate increased the Tnfa to Il10 mRNA ratio upon TLR-2/-9 stimulation. In summary, our data indicate that the mechanisms behind the activation of macrophages differ between planktonic and biofilm environments. These differences are independent of the metabolite profiles, suggesting that the production of different bacterial factors is ultimately more important than the concentrations of glucose and lactate in the environment.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Tabea Elschner
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Current address: Institute for Cardiovascular Sciences & Institute of Neurovascular Cell Biology (INVZ), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Franziska V Kraus
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Margarida Souto-Carneiro
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Beaumont M, Roura E, Lambert W, Turni C, Michiels J, Chalvon-Demersay T. Selective nourishing of gut microbiota with amino acids: A novel prebiotic approach? Front Nutr 2022; 9:1066898. [PMID: 36601082 PMCID: PMC9806265 DOI: 10.3389/fnut.2022.1066898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Prebiotics are dietary substrates which promote host health when utilized by desirable intestinal bacteria. The most commonly used prebiotics are non-digestible oligosaccharides but the prebiotic properties of other types of nutrients such as polyphenols are emerging. Here, we review recent evidence showing that amino acids (AA) could function as a novel class of prebiotics based on: (i) the modulation of gut microbiota composition, (ii) the use by selective intestinal bacteria and the transformation into bioactive metabolites and (iii) the positive impact on host health. The capacity of intestinal bacteria to metabolize individual AA is species or strain specific and this property is an opportunity to favor the growth of beneficial bacteria while constraining the development of pathogens. In addition, the chemical diversity of AA leads to the production of multiple bacterial metabolites with broad biological activities that could mediate their prebiotic properties. In this context, we introduce the concept of "Aminobiotics," which refers to the functional role of some AA as prebiotics. We also present studies that revealed synergistic effects of the co-administration of AA with probiotic bacteria, indicating that AA can be used to design novel symbiotics. Finally, we discuss the difficulty to bring free AA to the distal gut microbiota and we propose potential solutions such as the use of delivery systems including encapsulation to bypass absorption in the small intestine. Future studies will need to further identify individual AA, dose and mode of administration to optimize prebiotic effects for the benefit of human and animal health.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Eugeni Roura
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | | | - Conny Turni
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | |
Collapse
|
9
|
Salvatore MM, Maione A, La Pietra A, Carraturo F, Staropoli A, Vinale F, Andolfi A, Salvatore F, Guida M, Galdiero E. A model for microbial interactions and metabolomic alterations in Candida glabrata-Staphylococcus epidermidis dual-species biofilms. PLoS One 2022; 17:e0279069. [PMID: 36512606 PMCID: PMC9746963 DOI: 10.1371/journal.pone.0279069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The fungus Candida glabrata and the bacterium Staphylococcus epidermidis are important biofilm-forming microorganisms responsible of nosocomial infections in patients. In addition to causing single-species disease, these microorganisms are also involved in polymicrobial infections leading to an increased antimicrobial resistance. To expand knowledge about polymicrobial biofilms, in this study we investigate the formation of single- and dual-species biofilms of these two opportunistic pathogens employing several complementary approaches. First, biofilm biomass, biofilm metabolic activity and the microbial composition in single- and dual-species biofilms were assessed and compared. Then, the expression of three genes of C. glabrata and three genes of S. epidermidis positively related to the process of biofilm formation was evaluated. Although S. epidermidis is a stronger biofilm producer than C. glabrata, both biological and genetic data indicate that S. epidermidis growth is inhibited by C. glabrata which dominates the dual-species biofilms. To better understand the mechanisms of the interactions between the two microorganisms, a broad GC-MS metabolomic dataset of extracellular metabolites for planktonic, single- and dual-species biofilm cultures of C. glabrata and S. epidermidis was collected. As demonstrated by Partial Least Squares Discriminant Analysis (PLS-DA) of GC-MS metabolomic data, planktonic cultures, single- and dual-species biofilms can be sharply differentiated from each other by the nature and levels of an assortment of primary and secondary metabolites secreted in the culture medium. However, according to our data, 2-phenylethanol (secreted by C. glabrata) and the synergistically combined antifungal activity of 3-phenyllactic acid and of the cyclic dipeptide cyclo-(l-Pro-l-Trp) (secreted by S. epidermidis) play a major role in the race of the two microorganisms for predominance and survival.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Angela Maione
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
| | | | - Marco Guida
- Department of Biology, University of Naples Federico II, Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, Italy
- * E-mail: (MG); (EG)
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Naples, Italy
- * E-mail: (MG); (EG)
| |
Collapse
|
10
|
Synergy between pH- and hypoxia-responsiveness in antibiotic-loaded micelles for eradicating mature, infectious biofilms. Acta Biomater 2022; 154:559-571. [PMID: 36243368 DOI: 10.1016/j.actbio.2022.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic-loaded PEG/PAE-based micelles are frequently considered for eradicating infectious biofilms. At physiological pH, PEG facilitates transport through blood. Near an acidic infection-site, PAE becomes protonated causing micellar targeting to a biofilm. However, micellar penetration and accumulation is confined to the surface region of a biofilm. Especially matured biofilms also possess hypoxic regions. We here designed dual-responsive PEG/PAE-b-P(Lys-NBCF) micelles, responding to both acidity and low oxygen-saturation level in matured biofilms. Dual, pH- and hypoxia-responsive micelles targeted and accumulated evenly over the depth of 7- to 14-days old biofilms. Delineation demonstrated that pH-responsiveness was responsible for targeting of the infection-site and accumulation of micelles in the surface region of the biofilm. Hypoxia-responsiveness caused deep penetration in the biofilm. Dual, pH- and hypoxia-responsive micelles loaded with ciprofloxacin yielded more effective, synergistic eradication of 10-days old, matured Staphylococcus aureus biofilms underneath an abdominal imaging-window in living mice than achieved by ciprofloxacin in solution or single, pH- or hypoxia responsive micelles loaded with ciprofloxacin. Also, wound-healing after removal of window and its frame proceeded fastest after tail-vein injection of ciprofloxacin-loaded, dual, pH- and hypoxia-responsive micelles. Concluding, pH- and hypoxia-responsiveness are both required for eradicating mature biofilms and advancing responsive antibiotic nanocarriers to clinical application. STATEMENT OF SIGNIFICANCE: pH-responsive antibiotic nanocarriers have emerged as a possible new strategy to prevent antimicrobial-resistant bacterial infections from becoming the leading cause of death. In this paper, we show that commonly studied, pH-responsive micellar nanocarriers merely allow self-targeting to an infectious biofilm, but do not penetrate deeply into the biofilm. The dual-responsive (acidic pH- and hypoxia) antibiotic-loaded micelles designed here not only self-target to an infectious biofilm, but also penetrate deeply. The in vitro and in vivo advantages of dual-responsive nanocarriers are most obvious when studied in infectious biofilms grown for 10 viz a viz the 2 days, usually applied in the literature. Significantly, clinical treatment of bacterial infection usually starts more than 2 days after appearance of the first symptoms.
Collapse
|
11
|
Metabolomic approaches for the detection of Listeria monocytogenes and Staphylococcus aureus in culture media. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Shibamura-Fujiogi M, Wang X, Maisat W, Koutsogiannaki S, Li Y, Chen Y, Lee JC, Yuki K. GltS regulates biofilm formation in methicillin-resistant Staphylococcus aureus. Commun Biol 2022; 5:1284. [PMID: 36418899 PMCID: PMC9684512 DOI: 10.1038/s42003-022-04239-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Biofilm-based infection is a major healthcare burden. Methicillin-resistant Staphylococcus aureus (MRSA) is one of major organisms responsible for biofilm infection. Although biofilm is induced by a number of environmental signals, the molecule responsible for environmental sensing is not well delineated. Here we examined the role of ion transporters in biofilm formation and found that the sodium-glutamate transporter gltS played an important role in biofilm formation in MRSA. This was shown by gltS transposon mutant as well as its complementation. The lack of exogenous glutamate also enhanced biofilm formation in JE2 strain. The deficiency of exogenous glutamate intake accelerated endogenous glutamate/glutamine production, which led to the activation of the urea cycle. We also showed that urea cycle activation was critical for biofilm formation. In conclusion, we showed that gltS was a critical regulator of biofilm formation by controlling the intake of exogenous glutamate. An intervention to target glutamate intake may be a potential useful approach against biofilm.
Collapse
Affiliation(s)
- Miho Shibamura-Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Xiaogang Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jean C Lee
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022; 13:1028560. [PMID: 36386694 PMCID: PMC9659913 DOI: 10.3389/fmicb.2022.1028560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
The advent of implanted medical devices has greatly improved the quality of life and increased longevity. However, infection remains a significant risk because bacteria can colonize device surfaces and form biofilms that are resistant to antibiotics and the host's immune system. Several factors contribute to this resistance, including heterogeneous biochemical and pH microenvironments that can affect bacterial growth and interfere with antibiotic biochemistry; dormant regions in the biofilm with low oxygen, pH, and metabolites; slow bacterial growth and division; and poor antibody penetration through the biofilm, which may also be regions with poor acid product clearance. Measuring pH in biofilms is thus key to understanding their biochemistry and offers potential routes to detect and treat latent infections. This review covers the causes of biofilm pH changes and simulations, general findings of metabolite-dependent pH gradients, methods for measuring pH in biofilms, effects of pH on biofilms, and pH-targeted antimicrobial-based approaches.
Collapse
Affiliation(s)
| | | | | | - Cedric Taylor
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | |
Collapse
|
14
|
Gonçalves LG, Santos S, Gomes LP, Armengaud J, Miragaia M, Coelho AV. Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis. Front Microbiol 2022; 13:1000737. [PMID: 36246270 PMCID: PMC9554481 DOI: 10.3389/fmicb.2022.1000737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus epidermidis is one of the most common bacteria of the human skin microbiota. Despite its role as a commensal, S. epidermidis has emerged as an opportunistic pathogen, associated with 80% of medical devices related infections. Moreover, these bacteria are extremely difficult to treat due to their ability to form biofilms and accumulate resistance to almost all classes of antimicrobials. Thus new preventive and therapeutic strategies are urgently needed. However, the molecular mechanisms associated with S. epidermidis colonisation and disease are still poorly understood. A deeper understanding of the metabolic and cellular processes associated with response to environmental factors characteristic of SE ecological niches in health and disease might provide new clues on colonisation and disease processes. Here we studied the impact of pH conditions, mimicking the skin pH (5.5) and blood pH (7.4), in a S. epidermidis commensal strain by means of next-generation proteomics and 1H NMR-based metabolomics. Moreover, we evaluated the metabolic changes occurring during a sudden pH change, simulating the skin barrier break produced by a catheter. We found that exposure of S. epidermidis to skin pH induced oxidative phosphorylation and biosynthesis of peptidoglycan, lipoteichoic acids and betaine. In contrast, at blood pH, the bacterial assimilation of monosaccharides and its oxidation by glycolysis and fermentation was promoted. Additionally, several proteins related to virulence and immune evasion, namely extracellular proteases and membrane iron transporters were more abundant at blood pH. In the situation of an abrupt skin-to-blood pH shift we observed the decrease in the osmolyte betaine and changes in the levels of several metabolites and proteins involved in cellular redoxl homeostasis. Our results suggest that at the skin pH S. epidermidis cells are metabolically more active and adhesion is promoted, while at blood pH, metabolism is tuned down and cells have a more virulent profile. pH increase during commensal-to-pathogen conversion appears to be a critical environmental signal to the remodelling of the S. epidermidis metabolism toward a more pathogenic state. Targeting S. epidermidis proteins induced by pH 7.4 and promoting the acidification of the medical device surface or surrounding environment might be new strategies to treat and prevent S. epidermidis infections.
Collapse
Affiliation(s)
- Luis Gafeira Gonçalves
- Laboratory of Proteomics of Non-Model Organisms, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana Santos
- Laboratory of Proteomics of Non-Model Organisms, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Laidson Paes Gomes
- Laboratory of Proteomics of Non-Model Organisms, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé, SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Maria Miragaia,
| | - Ana Varela Coelho
- Laboratory of Proteomics of Non-Model Organisms, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
15
|
Manna AC, Leo S, Girel S, González-Ruiz V, Rudaz S, Francois P, Cheung AL. Teg58, a small regulatory RNA, is involved in regulating arginine biosynthesis and biofilm formation in Staphylococcus aureus. Sci Rep 2022; 12:14963. [PMID: 36056144 PMCID: PMC9440087 DOI: 10.1038/s41598-022-18815-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Staphylococcus aureus adapts to different environments by sensing and responding to diverse environmental cues. The responses are coordinately regulated by regulatory proteins, and small regulatory RNAs at the transcriptional and translational levels. Here, we characterized teg58, a SarA repressed sRNA, using ChIP-Seq and RNA-Seq analysis of a sarA mutant. Phenotypic and genetic analyses indicated that inactivation of teg58 led to reduced biofilm formation in a process that is independent of SarA, agr, PIA, and PSMs. RNA-Seq analysis of teg58 mutant revealed up-regulation of arginine biosynthesis genes (i.e., argGH) as well as the ability of the mutant to grow in a chemical defined medium (CDM) lacking L-arginine. Exogenous L-arginine or endogenous induction of argGH led to decreased biofilm formation in parental strains. Further analysis in vitro and in vivo demonstrated that the specific interaction between teg58 and the argGH occurred at the post-transcriptional level to repress arginine synthesis. Biochemical and genetic analyses of various arginine catabolic pathway genes demonstrated that the catabolic pathway did not play a significant role in reduced biofilm formation in the teg58 mutant. Overall, results suggest that teg58 is a regulatory sRNA that plays an important role in modulating arginine biosynthesis and biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Adhar C Manna
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
| | - Stefano Leo
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Sergey Girel
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Patrice Francois
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Ambrose L Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| |
Collapse
|
16
|
Vlaeminck J, Lin Q, Xavier BB, De Backer S, Berkell M, De Greve H, Hernalsteens JP, Kumar-Singh S, Goossens H, Malhotra-Kumar S. The dynamic transcriptome during maturation of biofilms formed by methicillin-resistant Staphylococcus aureus. Front Microbiol 2022; 13:882346. [PMID: 35966712 PMCID: PMC9366926 DOI: 10.3389/fmicb.2022.882346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023] Open
Abstract
BackgroundMethicillin-resistant Staphylococcus aureus (MRSA), a leading cause of chronic infections, forms prolific biofilms which afford an escape route from antibiotic treatment and host immunity. However, MRSA clones are genetically diverse, and mechanisms underlying biofilm formation remain under-studied. Such studies form the basis for developing targeted therapeutics. Here, we studied the temporal changes in the biofilm transcriptome of three pandemic MRSA clones: USA300, HEMRSA-15, and ST239.MethodsBiofilm formation was assessed using a static model with one representative strain per clone. Total RNA was extracted from biofilm and planktonic cultures after 24, 48, and 72 h of growth, followed by rRNA depletion and sequencing (Illumina Inc., San Diego, CA, United States, NextSeq500, v2, 1 × 75 bp). Differentially expressed gene (DEG) analysis between phenotypes and among early (24 h), intermediate (48 h), and late (72 h) stages of biofilms was performed together with in silico co-expression network construction and compared between clones. To understand the influence of SCCmec and ACME on biofilm formation, isogenic mutants containing deletions of the entire elements or of single genes therein were constructed in USA300.ResultsGenes involved in primarily core genome-encoded KEGG pathways (transporters and others) were upregulated in 24-h biofilm culture compared to 24-h planktonic culture. However, the number of affected pathways in the ST239 24 h biofilm (n = 11) was remarkably lower than that in USA300/EMRSA-15 biofilms (USA300: n = 27, HEMRSA-15: n = 58). The clfA gene, which encodes clumping factor A, was the single common DEG identified across the three clones in 24-h biofilm culture (2.2- to 2.66-fold). In intermediate (48 h) and late (72 h) stages of biofilms, decreased expression of central metabolic and fermentative pathways (glycolysis/gluconeogenesis, fatty acid biosynthesis), indicating a shift to anaerobic conditions, was already evident in USA300 and HEMRSA-15 in 48-h biofilm cultures; ST239 showed a similar profile at 72 h. Last, SCCmec+ACME deletion and opp3D disruption negatively affected USA300 biofilm formation.ConclusionOur data show striking differences in gene expression during biofilm formation by three of the most important pandemic MRSA clones, USA300, HEMRSA-15, and ST239. The clfA gene was the only significantly upregulated gene across all three strains in 24-h biofilm cultures and exemplifies an important target to disrupt early biofilms. Furthermore, our data indicate a critical role for arginine catabolism pathways in early biofilm formation.
Collapse
Affiliation(s)
- Jelle Vlaeminck
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Qiang Lin
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Sarah De Backer
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Matilda Berkell
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, University of Antwerp, Antwerp, Belgium
| | - Henri De Greve
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- *Correspondence: Surbhi Malhotra-Kumar,
| |
Collapse
|
17
|
Decoding Acinetobacter baumannii biofilm dynamics and associated protein markers: proteomic and bioinformatics approach. Arch Microbiol 2022; 204:200. [PMID: 35239017 DOI: 10.1007/s00203-022-02807-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Biofilm formation by Acinetobacter baumannii is one of the major cause of its persistence in hospital environment. Biofilm phenotypes are more resistant to physical as well as chemical stresses than their planktonic counterparts. The present study was carried in quest of biofilm-associated protein markers and their association with various biological pathways of A. baumannii. The study was designed with an aim to highlight the crucial common factor present in the majority of the A. baumannii strains irrespective of its resistance nature. A label-free proteome comparison of biofilm and planktonic phenotypes of A. baumannii was done using QExactive tandem mass spectrometry. Our investigation suggests key elevation of adhesion factors, acetate metabolism, nutrient transporters, and secretion system proteins are required for biofilm formation in A. baumannii. Elevation of biofilm-associated proteins revealed that biofilm is the unique phenotype with the potential to form robust matrix-embedded colonies and defeat stress condition. Further, core protein markers of biofilm phenotypes could be used as targets for new clinical interventions to combat biofilm-associated infections.
Collapse
|
18
|
The de novo Purine Biosynthesis Pathway Is the Only Commonly Regulated Cellular Pathway during Biofilm Formation in TSB-Based Medium in Staphylococcus aureus and Enterococcus faecalis. Microbiol Spectr 2021; 9:e0080421. [PMID: 34935415 PMCID: PMC8693917 DOI: 10.1128/spectrum.00804-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms are involved in chronic infections and confer 10 to 1,000 times more resistance to antibiotics compared with planktonic growth, leading to complications and treatment failure. When transitioning from a planktonic lifestyle to biofilms, some Gram-positive bacteria are likely to modulate several cellular pathways, including central carbon metabolism, biosynthesis pathways, and production of secondary metabolites. These metabolic adaptations might play a crucial role in biofilm formation by Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis. Here, we performed a transcriptomic approach to identify cellular pathways that might be similarly regulated during biofilm formation in these bacteria. Different strains and biofilm-inducing media were used to identify a set of regulated genes that are common and independent of the environment or accessory genomes analyzed. Our approach highlighted that the de novo purine biosynthesis pathway was upregulated in biofilms of both species when using a tryptone soy broth-based medium but not so when a brain heart infusion-based medium was used. We did not identify other pathways commonly regulated between both pathogens. Gene deletions and usage of a drug targeting a key enzyme showed the importance of this pathway in biofilm formation of S. aureus. The importance of the de novo purine biosynthesis pathway might reflect an important need for purine during biofilm establishment, and thus could constitute a promising drug target. IMPORTANCE Biofilms are often involved in nosocomial infections and can cause serious chronic infections if not treated properly. Current anti-biofilm strategies rely on antibiotic usage, but they have a limited impact because of the biofilm intrinsic tolerance to drugs. Metabolism remodeling likely plays a central role during biofilm formation. Using comparative transcriptomics of different strains of Staphylococcus aureus and Enterococcus faecalis, we determined that almost all cellular adaptations are not shared between strains and species. Interestingly, we observed that the de novo purine biosynthesis pathway was upregulated during biofilm formation by both species in a specific medium. The requirement for purine could constitute an interesting new anti-biofilm target with a wide spectrum that could also prevent resistance evolution. These results are also relevant to a better understanding of the physiology of biofilm formation.
Collapse
|
19
|
Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, Chuan Sean T, Norbert Michael E, Yeok Mun C, Xiao Qi N, Ling Mok P, Kumar SS. Mechanisms and Impact of Biofilms and Targeting of Biofilms Using Bioactive Compounds-A Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:839. [PMID: 34441045 PMCID: PMC8401077 DOI: 10.3390/medicina57080839] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Biofilms comprising aggregates of microorganisms or multicellular communities have been a major issue as they cause resistance against antimicrobial agents and biofouling. To date, numerous biofilm-forming microorganisms have been identified, which have been shown to result in major effects including biofouling and biofilm-related infections. Quorum sensing (which describes the cell communication within biofilms) plays a vital role in the regulation of biofilm formation and its virulence. As such, elucidating the various mechanisms responsible for biofilm resistance (including quorum sensing) will assist in developing strategies to inhibit and control the formation of biofilms in nature. Employing biological control measures (such as the use of bioactive compounds) in targeting biofilms is of great interest since they naturally possess antimicrobial activity among other favorable attributes and can also possibly act as potent antibiofilm agents. As an effort to re-establish the current notion and understanding of biofilms, the present review discuss the stages involved in biofilm formation, the factors contributing to its development, the effects of biofilms in various industries, and the use of various bioactive compounds and their strategies in biofilm inhibition.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Amira Abubakar Mohamed
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Etel Faradjeva
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Lee Si Jie
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Chin Hooi Sze
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Akasha Arif
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Emmanuel Norbert Michael
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Chua Yeok Mun
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Ng Xiao Qi
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Suresh S. Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Agharam Road Selaiyur, Chennai 600 073, Tamil Nadu, India
| |
Collapse
|
20
|
Czajkowska J, Junka A, Hoppe J, Toporkiewicz M, Pawlak A, Migdał P, Oleksy-Wawrzyniak M, Fijałkowski K, Śmiglak M, Markowska-Szczupak A. The Co-Culture of Staphylococcal Biofilm and Fibroblast Cell Line: The Correlation of Biological Phenomena with Metabolic NMR 1 Footprint. Int J Mol Sci 2021; 22:ijms22115826. [PMID: 34072418 PMCID: PMC8198359 DOI: 10.3390/ijms22115826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is one of the most prevalent pathogens associated with several types of biofilm-based infections, including infections of chronic wounds. Mature staphylococcal biofilm is extremely hard to eradicate from a wound and displays a high tendency to induce recurring infections. Therefore, in the present study, we aimed to investigate in vitro the interaction between S. aureus biofilm and fibroblast cells searching for metabolites that could be considered as potential biomarkers of critical colonization and infection. Utilizing advanced microscopy and microbiological methods to examine biofilm formation and the staphylococcal infection process, we were able to distinguish 4 phases of biofilm development. The analysis of staphylococcal biofilm influence on the viability of fibroblasts allowed us to pinpoint the moment of critical colonization-12 h post contamination. Based on the obtained model we performed a metabolomics analysis by 1H NMR spectroscopy to provide new insights into the pathophysiology of infection. We identified a set of metabolites related to the switch to anaerobic metabolism that was characteristic for staphylococcal biofilm co-cultured with fibroblast cells. The data presented in this study may be thus considered a noteworthy but preliminary step in the direction of developing a new, NMR-based tool for rapid diagnosing of infection in a chronic wound.
Collapse
Affiliation(s)
- Joanna Czajkowska
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| | - Adam Junka
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
- Correspondence: ; Tel.: +48-889-229-341
| | - Jakub Hoppe
- Poznan Science and Technology Park (PPNT), Rubiez 5, 61-612 Poznań, Poland; (J.H.); (M.Ś.)
| | - Monika Toporkiewicz
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
| | - Andrzej Pawlak
- Department of Nervous System Diseases, Kazimierza Bartla 5, 50-996 Wrocław, Poland;
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Monika Oleksy-Wawrzyniak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Marcin Śmiglak
- Poznan Science and Technology Park (PPNT), Rubiez 5, 61-612 Poznań, Poland; (J.H.); (M.Ś.)
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| |
Collapse
|
21
|
Cendra MDM, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv 2021; 49:107734. [PMID: 33785375 DOI: 10.1016/j.biotechadv.2021.107734] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.
Collapse
Affiliation(s)
- Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
22
|
Awadh AA, Le Gresley A, Forster-Wilkins G, Kelly AF, Fielder MD. Determination of metabolic activity in planktonic and biofilm cells of Mycoplasma fermentans and Mycoplasma pneumoniae by nuclear magnetic resonance. Sci Rep 2021; 11:5650. [PMID: 33707544 PMCID: PMC7952918 DOI: 10.1038/s41598-021-84326-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasmas are fastidious microorganisms, typically characterised by their restricted metabolism and minimalist genome. Although there is reported evidence that some mycoplasmas can develop biofilms little is known about any differences in metabolism in these organisms between the growth states. A systematic metabolomics approach may help clarify differences associated between planktonic and biofilm associated mycoplasmas. In the current study, the metabolomics of two different mycoplasmas of clinical importance (Mycoplasma pneumoniae and Mycoplasma fermentans) were examined using a novel approach involving nuclear magnetic resonance spectroscopy and principle component analysis. Characterisation of metabolic changes was facilitated through the generation of high-density metabolite data and diffusion-ordered spectroscopy that provided the size and structural information of the molecules under examination. This enabled the discrimination between biofilms and planktonic states for the metabolomic profiles of both organisms. This work identified clear biofilm/planktonic differences in metabolite composition for both clinical mycoplasmas and the outcomes serve to establish a baseline understanding of the changes in metabolism observed in these pathogens in their different growth states. This may offer insight into how these organisms are capable of exploiting and persisting in different niches and so facilitate their survival in the clinical setting.
Collapse
Affiliation(s)
- Ammar A. Awadh
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Adam Le Gresley
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Gary Forster-Wilkins
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Alison F. Kelly
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Mark D. Fielder
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| |
Collapse
|
23
|
Nassar R, Hachim M, Nassar M, Kaklamanos EG, Jamal M, Williams D, Senok A. Microbial Metabolic Genes Crucial for S. aureus Biofilms: An Insight From Re-analysis of Publicly Available Microarray Datasets. Front Microbiol 2021; 11:607002. [PMID: 33584569 PMCID: PMC7876462 DOI: 10.3389/fmicb.2020.607002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/24/2020] [Indexed: 01/01/2023] Open
Abstract
Bacterial biofilms are microbial lifestyles found in all environments. Up to 80% of human infections and 60–70% of hospital-acquired infections have a biofilm origin, with Staphylococcus aureus one of the leading causes of these infections. Microorganisms in biofilms exhibit significant antimicrobial resistance which poses important treatment challenges, hence the urgent need to identify novel antibiofilm strategies. Microbes form biofilms in response to various factors, and once these 3-dimentional structures form they are highly recalcitrant to removal. The switch from planktonic lifestyle to the biofilm protected mode of growth results in a phenotypic shift in the behavior of the microorganisms in terms of growth rate and gene expression. Given these changes, investigation of microbial gene expression and their modulation at different stages of biofilm maturation is needed to provide vital insight into the behavior of biofilm cells. In this study, we analyzed publicly available transcriptomic dataset of S. aureus biofilms at different stages of maturation to identify consistently upregulated genes irrespective of the biofilm maturation stage. Our reanalysis identified a total of 6 differentially expressed genes upregulated in both 48 and 144-h old S. aureus biofilms. Functional analysis revealed that these genes encode for proteins which play a role in key microbial metabolic pathways. However, these genes, as yet, are unrelated or fully studied in the context of biofilm. Moreover, the findings of this in silico work, suggest that these genes may represent potential novel targets for the development of more effective antibiofilm strategies against S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mahmood Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Eleftherios G Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine & Health Sciences, Dubai, United Arab Emirates
| | - Mohamed Jamal
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine & Health Sciences, Dubai, United Arab Emirates
| | - David Williams
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
24
|
Exploring amino acid and peptide transporters as therapeutic targets to attenuate virulence and antibiotic resistance in Staphylococcus aureus. PLoS Pathog 2021; 17:e1009093. [PMID: 33444418 PMCID: PMC7808641 DOI: 10.1371/journal.ppat.1009093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
25
|
Martínez-García S, Peralta H, Betanzos-Cabrera G, Chavez-Galan L, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Proteomic comparison of biofilm vs. planktonic Staphylococcus epidermidis cells suggests key metabolic differences between these conditions. Res Microbiol 2021; 172:103796. [PMID: 33412274 DOI: 10.1016/j.resmic.2020.103796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that biofilm-forming bacteria are deficient in tricarboxylic acid (TCA) cycle metabolites, suggesting a relationship between these cellular processes. In this work, we compared the proteomes of planktonic vs biofilm cells from a clinical strain of Staphylococcus epidermidis using LC-MS/MS. A total of 168 proteins were identified from both growth conditions. The biofilm cells showed enrichment of proteins participating in glycolysis for the formation of pyruvate; however, the absence of TCA cycle proteins and the presence of lactate dehydrogenase, formate acetyltransferase, and acetoin reductase suggested that pyruvate was catabolized to their respective products: lactate, formate and acetoin. On the other hand, planktonic cells showed proteins participating in glycolysis and the TCA cycle, the pentose phosphate pathway, gluconeogenesis, ATP generation and the oxidative stress response. Functional networks with higher interconnection were predicted for planktonic proteins. We propose that in S. epidermidis, the relative absence of TCA cycle proteins is associated with the formation of biofilms and that lactate, formate and acetoin are the end products of partial glucose metabolism.
Collapse
Affiliation(s)
- Sergio Martínez-García
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Cd. México, Mexico
| | - Humberto Peralta
- Functional Genomics of Prokaryotes, Center for Genomic Sciences, National University of Mexico, Cuernavaca, Morelos, Mexico
| | | | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Cd. México, Mexico
| | - Sandra Rodríguez-Martínez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Cd. México, Mexico
| | - Mario E Cancino-Diaz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Cd. México, Mexico.
| | - Juan C Cancino-Diaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Cd. México, Mexico.
| |
Collapse
|
26
|
Integrated meta-analysis and machine learning approach identifies acyl-CoA thioesterase with other novel genes responsible for biofilm development in Staphylococcus aureus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 88:104702. [PMID: 33388440 DOI: 10.1016/j.meegid.2020.104702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Biofilm forming Staphylococcus aureus is a major threat to the health-care industry. It is important to understand the differences between planktonic and biofilm growth forms in the pathogen since conventional treatments targeting the planktonic forms are not effective against biofilms. The current study conducts a meta-analysis of three public transcriptomic profiles to examine the differences in gene expression between the planktonic and biofilm states of S. aureus using random-effects modeling. Mean effect sizes were calculated for 2847 genes among which 726 differentially expressed genes were taken for further analysis. Major genes that are discriminatory between the two conditions were mined using supervised learning techniques and validated by high-accuracy classifiers. Ten different feature selection algorithms were applied and used to rank the most important genes in S. aureus biofilms. Finally, an optimal set of 36 genes are presented as candidate genes in biofilm formation or development while throwing light on the novel roles of an acyl-CoA thioesterase enzyme and 10 hypothetical proteins in biofilms. The relevance of the identified gene set was further validated by building five different classification models using SVM, RF, kNN, NB and DT algorithms that were compared with models built from other relevant gene sets and by reviewing the functional role of 25 previously known genes in biofilm development. The study combines meta-analysis of differential expression with supervised machine learning strategies and feature selection for the first time to identify and validate a discriminatory set of genes important in biofilms of S. aureus. The functional roles of the identified genes predicted to be important in biofilms are further scrutinized and can be considered as a signature target list to develop anti-biofilm therapeutics in S. aureus.
Collapse
|
27
|
Liu YK, Kuo HC, Lai CH, Chou CC. Single amino acid utilization for bacterial categorization. Sci Rep 2020; 10:12686. [PMID: 32728059 PMCID: PMC7391690 DOI: 10.1038/s41598-020-69686-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
Despite great advancement in genetic typing, phenotyping is still an indispensable tool for categorization of bacteria. Certain amino acids may be essential for bacterial survival, growth, pathogenicity or toxin production, which prompts the idea that the intrinsic ability to utilize single amino acid under live-or-die situation could be a basis for differentiation of bacteria species. In this study, we determined the single amino acid consumption profiles of 7 bacterial species, and demonstrated that most bacteria have species-specific pattern of amino acid consumption. We also discovered that bacterial strains from different hosts, toxigenicity, and antibiotic-resistance presented distinct preference for certain amino acids. Taken altogether, the amino acid consumption profiles showed potential to be a novel tool complementary to study not only bacterial categorization but also biochemical characteristics of the bacteria such that its phenotyping can be used to uncover strategies for nutritional, pharmaceutical, taxonomic, and evolutionary aspects of bacterial researches.
Collapse
Affiliation(s)
- Yi-Kai Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hung-Chih Kuo
- Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
28
|
Alreshidi MM. Selected Metabolites Profiling of Staphylococcus aureus Following Exposure to Low Temperature and Elevated Sodium Chloride. Front Microbiol 2020; 11:834. [PMID: 32457719 PMCID: PMC7225588 DOI: 10.3389/fmicb.2020.00834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the main foodborne pathogens that can cause food poisoning. Due to this reason, one of the essential aspects of food safety focuses on bacterial adaptation and proliferation under preservative conditions. This study was aimed to determine the metabolic changes that can occur following the exposure of S. aureus to either low temperature conditions or elevated concentrations of sodium chloride (NaCl). The results revealed that most of the metabolites measured were reduced in cold-stressed cells, when compared to reference controls. The major reduction was observed in nucleotides and organic acids, whereas mannitol was significantly increased in response to low temperature. However, when S. aureus was exposed to elevated NaCl, a significant increase was observed in the metabolite levels, particularly purine and pyrimidine bases along with organic acids. The majority of carbohydrates remained constant in the cells grown under ideal conditions and those exposed to elevated NaCl concentrations. Partial least square discriminate analysis (PLS-DA) of the metabolomic data indicated that both, prolonged cold stress and osmotic stress conditions, generated cells with different metabolic profiles, in comparison to the reference controls. These results provide evidence that, when bacterial cells exposed to low temperatures or high concentrations of NaCl, experience in situ homeostatic alterations to adapt to new environmental conditions. These data supported the hypothesis that changes in metabolic homeostasis were critical to the adaptive processes required for survival under alterations in the environmental conditions.
Collapse
Affiliation(s)
- Mousa M Alreshidi
- Department of Biology, College of Science, University of Ha'il, Hail, Saudi Arabia
| |
Collapse
|
29
|
Alreshidi MM, Dunstan RH, Macdonald MM, Gottfries J, Roberts TK. The Uptake and Release of Amino Acids by Staphylococcus aureus at Mid-Exponential and Stationary Phases and Their Corresponding Responses to Changes in Temperature, pH and Osmolality. Front Microbiol 2020; 10:3059. [PMID: 32038532 PMCID: PMC6990410 DOI: 10.3389/fmicb.2019.03059] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that is associated with nosocomial infections, as well as food poisoning. This bacterium is resistant to antimicrobial agents and can survive in a wide range of environmental conditions. The aim of this study was to measure the uptake and release of amino acids by S. aureus at mid-exponential and stationary phases of growth following exposure to a combination of conditions including variations in temperature, pH and NaCl. Bacterial cells were grown up to mid-exponential and stationary phases in tryptic soy broth (TSB), where the supernatants were collected for analyses of amino acids to determine the uptake and release characteristics. The uptake/release of amino acids was estimated by subtracting the initial levels of the free amino acids in the media from those measured at mid-exponential and stationary phases of growth. When cells were grown at ideal conditions, the analyses revealed that significant uptake of amino acids had occurred by stationary phase compared with the mid-exponential phase. A substantial release of valine and tyrosine into the external media was observed by cells at stationary phase. At both phases, the uptake and release patterns were significantly different between cells grown under ideal control conditions, when compared with those grown under various combinations of sub-optimal environmental conditions. The analyses of the supernatants harvested from controls and treatment groups at exponential phase indicated that the total uptake of amino acids was reduced approximately five times by cells grown with addition of 2.5% NaCl or with pH6 at 35°C, and 2-fold by cells grown at pH8 at 35°C. However, the final quantities of amino acids taken up by cells grown to stationary phase did not significantly alter between control and treated samples. Valine was found to be the most abundant amino acid that was significantly released into the media at stationary phase by both control and treated samples. It was evident that diverse environmental conditions resulted in differential patterns of amino acid uptake and release during adaptation to designated conditions.
Collapse
Affiliation(s)
- Mousa M Alreshidi
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - R Hugh Dunstan
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Margaret M Macdonald
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Johan Gottfries
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Tim K Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| |
Collapse
|
30
|
Bai Y, Shang M, Xu M, Wu A, Sun L, Zheng L. Transcriptome, Phenotypic, and Virulence Analysis of Streptococcus sanguinis SK36 Wild Type and Its CcpA-Null Derivative (ΔCcpA). Front Cell Infect Microbiol 2019; 9:411. [PMID: 31867286 PMCID: PMC6904348 DOI: 10.3389/fcimb.2019.00411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Catabolic control protein (CcpA) is linked to complex carbohydrate utilization and virulence factor in many bacteria species, influences the transcription of target genes by many mechanisms. To characterize the activity and regulatory mechanisms of CcpA in Streptococcus sanguinis, here, we analyzed the transcriptome of Streptococcus sanguinis SK36 and its CcpA-null derivative (ΔCcpA) using RNA-seq. Compared to the regulon of CcpA in SK36 in the RegPrecise database, we found that only minority of differentially expressed genes (DEGs) contained putative catabolite response element (cre) in their regulatory regions, indicating that many genes could have been affected indirectly by the loss of CcpA and analyzing the sequence of the promoter region using prediction tools is not a desirable method to recognize potential target genes of global regulator CcpA. Gene ontology and pathway analysis of DEGs revealed that CcpA exerts an influence predominantly involved in carbon catabolite metabolism and some amino acid catabolite pathways, which has been linked to expression of virulence genes in many pathogens and coordinately regulate the disease progression in vivo studies. However, in some scenarios, differences observed at the transcript level could not reflect the real differences at the protein level. Therefore, to confirm the differences in phenotype and virulence of SK36 and ΔCcpA, we characterized the role of CcpA in the regulation of biofilm development, EPS production and the virulence of Streptococcus sanguinis. Results showed CcpA inactivation impaired biofilm and EPS formation, and CcpA also involved in virulence in rabbit infective endocarditis model. These findings will undoubtedly contribute to investigate the mechanistic links between the global regulator CcpA and the virulence of Streptococcus sanguinis, further broaden our understanding of the relationship between basic metabolic processes and virulence.
Collapse
Affiliation(s)
- Yibo Bai
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Mengmeng Shang
- Department of Scientific Research, Peking Union Medical College Hospital (East), Beijing, China
| | - Mengya Xu
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Anyi Wu
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lanyan Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
31
|
Cendra MDM, Blanco-Cabra N, Pedraz L, Torrents E. Optimal environmental and culture conditions allow the in vitro coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in stable biofilms. Sci Rep 2019; 9:16284. [PMID: 31705015 PMCID: PMC6841682 DOI: 10.1038/s41598-019-52726-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
The coexistence between species that occurs in some infections remains hard to achieve in vitro since bacterial fitness differences eventually lead to a single organism dominating the mixed culture. Pseudomonas aeruginosa and Staphylococcus aureus are major pathogens found growing together in biofilms in disease-affected lungs or wounds. Herein, we tested and analyzed different culture media, additives and environmental conditions to support P. aeruginosa and S. aureus coexistence in vitro. We have unraveled the potential of DMEM to support the growth of these two organisms in mature cocultured biofilms (three days old) in an environment that dampens the pH rise. Our conditions use equal initial inoculation ratios of both strains and allow the stable formation of separate S. aureus microcolonies that grow embedded in a P. aeruginosa biofilm, as well as S. aureus biofilm overgrowth when bovine serum albumin is added to the system. Remarkably, we also found that S. aureus survival is strictly dependent on a well-characterized phenomenon of oxygen stratification present in the coculture biofilm. An analysis of differential tolerance to gentamicin and ciprofloxacin treatment, depending on whether P. aeruginosa and S. aureus were growing in mono- or coculture biofilms, was used to validate our in vitro coculture conditions.
Collapse
Affiliation(s)
- Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain.
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Lucas Pedraz
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain.
| |
Collapse
|
32
|
Zhang Y, Wu G, Palmer I, Wang B, Qian G, Fu ZQ, Liu F. The Role of a Host-Induced Arginase of Xanthomonas oryzae pv. oryzae in Promoting Virulence on Rice. PHYTOPATHOLOGY 2019; 109:1869-1877. [PMID: 31290730 DOI: 10.1094/phyto-02-19-0058-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The plant bacterial pathogen Xanthomonas oryzae pv. oryzae causes bacterial blight of rice, which is one of the most destructive rice diseases prevalent in Asia and parts of Africa. Despite many years of research, how X. oryzae pv. oryzae causes bacterial blight of rice is still not completely understood. Here, we show that the loss of the rocF gene caused a significant decrease in the virulence of X. oryzae pv. oryzae in the susceptible rice cultivar IR24. Bioinformatics analysis demonstrated that rocF encodes arginase. Quantitative real-time PCR and Western blot assays revealed that rocF expression was significantly induced by rice and arginine. The rocF deletion mutant strain showed elevated sensitivity to hydrogen peroxide, reduced extracellular polysaccharide (EPS) production, and reduced biofilm formation, all of which are important determinants for the full virulence of X. oryzae pv. oryzae, compared with the wild-type strain. Taken together, the results of this study revealed a mechanism by which a bacterial arginase is required for the full virulence of X. oryzae pv. oryzae on rice because of its contribution to tolerance to reactive oxygen species, EPS production, and biofilm formation.
Collapse
Affiliation(s)
- Yuqiang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, P.R. China
| | - Ian Palmer
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Bo Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
| | - Guoliang Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, P.R. China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
33
|
Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother 2019; 73:2003-2020. [PMID: 29506149 DOI: 10.1093/jac/dky042] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Efflux pumps are widely implicated in antibiotic resistance because they can extrude the majority of clinically relevant antibiotics from within cells to the extracellular environment. However, there is increasing evidence from many studies to suggest that the pumps also play a role in biofilm formation. These studies have involved investigating the effects of efflux pump gene mutagenesis and efflux pump inhibitors on biofilm formation, and measuring the levels of efflux pump gene expression in biofilms. In particular, several key pathogenic species associated with increasing multidrug resistance, such as Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, have been investigated, whilst other studies have focused on Salmonella enterica serovar Typhimurium as a model organism and problematic pathogen. Studies have shown that efflux pumps, including AcrAB-TolC of E. coli, MexAB-OprM of P. aeruginosa, AdeFGH of A. baumannii and AcrD of S. enterica, play important roles in biofilm formation. The substrates for such pumps, and whether changes in their efflux activity affect biofilm formation directly or indirectly, remain to be determined. By understanding the roles that efflux pumps play in biofilm formation, novel therapeutic strategies can be developed to inhibit their function, to help disrupt biofilms and improve the treatment of infections. This review will discuss and evaluate the evidence for the roles of efflux pumps in biofilm formation and the potential approaches to overcome the increasing problem of biofilm-based infections.
Collapse
Affiliation(s)
- Ilyas Alav
- School of Cancer and Pharmaceutical Science, King's College London, London, UK
| | - J Mark Sutton
- Public Health England, National Infection Service, Porton Down, Salisbury, UK
| | | |
Collapse
|
34
|
Efthimiou G, Tsiamis G, Typas MA, Pappas KM. Transcriptomic Adjustments of Staphylococcus aureus COL (MRSA) Forming Biofilms Under Acidic and Alkaline Conditions. Front Microbiol 2019; 10:2393. [PMID: 31681245 PMCID: PMC6813237 DOI: 10.3389/fmicb.2019.02393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are important human pathogens and a significant health hazard for hospitals and the food industry. They are resistant to β-lactam antibiotics including methicillin and extremely difficult to treat. In this study, we show that the Staphylococcus aureus COL (MRSA) strain, with a known complete genome, can easily survive and grow under acidic and alkaline conditions (pH5 and pH9, respectively), both planktonically and as a biofilm. A microarray-based analysis of both planktonic and biofilm cells was performed under acidic and alkaline conditions showing that several genes are up- or down-regulated under different environmental conditions and growth modes. These genes were coding for transcription regulators, ion transporters, cell wall biosynthetic enzymes, autolytic enzymes, adhesion proteins and antibiotic resistance factors, most of which are associated with biofilm formation. These results will facilitate a better understanding of the physiological adjustments occurring in biofilm-associated S. aureus COL cells growing in acidic or alkaline environments, which will enable the development of new efficient treatment or disinfection strategies.
Collapse
Affiliation(s)
- Georgios Efthimiou
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Milton A Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katherine M Pappas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
35
|
Negative interaction of Staphylococcus aureus on Fusarium falciforme growth ocular isolates in an in vitro mixed biofilm. Microb Pathog 2019; 135:103644. [DOI: 10.1016/j.micpath.2019.103644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/27/2023]
|
36
|
Dupre JM, Johnson WL, Ulanov AV, Li Z, Wilkinson BJ, Gustafson JE. Transcriptional profiling and metabolomic analysis of Staphylococcus aureus grown on autoclaved chicken breast. Food Microbiol 2019; 82:46-52. [DOI: 10.1016/j.fm.2019.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
37
|
Maudsdotter L, Ushijima Y, Morikawa K. Fitness of Spontaneous Rifampicin-Resistant Staphylococcus aureus Isolates in a Biofilm Environment. Front Microbiol 2019; 10:988. [PMID: 31134027 PMCID: PMC6514104 DOI: 10.3389/fmicb.2019.00988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022] Open
Abstract
Biofilms of S. aureus accumulate cells resistant to the antibiotic rifampicin. We show here that the accumulation of rifampicin resistant mutants (RifR) in biofilms is not equable but rather is a local event, suggesting that the growth of a few locally emerged mutants is responsible for this. Competition assays demonstrated that, compared to wild-type bacteria, the isolated RifR mutants have a growth advantage in biofilms, but not in planktonic culture. To gain insight into the mechanism of the growth advantage, we tested the involvement of the two-component systems (TCS) that sense and respond to environmental changes. We found that a deletion of SrrAB or NreBC has a drastic effect on the growth advantage of RifR mutants, suggesting the importance of oxygen/respiration responses. All six of the RifR isolates tested showed increased resistance to at least one of the common stresses found in the biofilm environment (i.e., oxidative, nitric acid, and organic acid stress). The RifR mutants also had a growth advantage in a biofilm flow model, which highlights the physiological relevance of our findings.
Collapse
Affiliation(s)
- Lisa Maudsdotter
- Department of Biomedical Science, University of Tsukuba, Tsukuba, Japan
| | - Yuri Ushijima
- Department of Biomedical Science, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Morikawa
- Department of Biomedical Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
38
|
Arifuzzaman M, Millhouse PW, Raval Y, Pace TB, Behrend CJ, Behbahani SB, DesJarins JD, Tzeng TRJ, Anker JN. An implanted pH sensor read using radiography. Analyst 2019; 144:2984-2993. [PMID: 30888348 PMCID: PMC6491216 DOI: 10.1039/c8an02337a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A biomedical sensor was developed to measure local pH near orthopedic implants to detect and study implant-associated infection. The sensor is read using plain radiography, a technique which is noninvasive, inexpensive, ubiquitously available in medical facilities, and routinely used in diagnosis and follow-up. The sensor comprises a radiopaque tungsten indicator pin embedded within a chemically responsive hydrogel that exhibits a pH-dependent swelling. A stainless steel well holds this hydrogel and attaches to an orthopedic plate. The local pH may be determined from the extent of hydrogel swelling by radiographically measuring the indicator position relative to the well. We calibrated the sensor in a series of standard pH buffers and tested it during bacterial growth in culture. The sensor was robust: its response was negligibly affected by changes in temperature, ionic strength within the normal physiological range, or long-term incubation with reactive oxygen species generated from hydrogen peroxide and copper. Pooled data from several sensors fabricated at different times and tested in different conditions had a root-mean-square deviation from a pH electrode reading of 0.24 pH units. Radiographic measurements were also performed in cadaveric tissue with the sensor attached to an orthopedic plate fixed to a tibia. Pin position readings varied by 100 μm between observers surveying the same radiographs, corresponding to 0.065 pH units precision in the range pH 4-8. The sensor was designed to augment standard radiographs of tissue, bony anatomy, and hardware by also indicating local chemical concentrations.
Collapse
Affiliation(s)
| | | | - Yash Raval
- Department of Biological Sciences, Clemson University, Clemson, SC
| | - Thomas B. Pace
- Department of Orthopedic Surgery, Greenville Health System (GHS), and University of South Carolina School of Medicine-Greenville (USCSOMG), Greenville, SC
| | - Caleb J. Behrend
- Department of Bioengineering, Clemson University, Clemson, SC
- OrthoArizona, Pheonix AZ
| | | | | | | | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC
- Department of Bioengineering, Clemson University, Clemson, SC
| |
Collapse
|
39
|
Liu J, Li W, Zhu X, Zhao H, Lu Y, Zhang C, Lu Z. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Appl Microbiol Biotechnol 2019; 103:4565-4574. [PMID: 31011774 DOI: 10.1007/s00253-019-09808-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 11/26/2022]
Abstract
Biosurfactants are amphiphilic compounds that composed of hydrophilic and hydrophobic moieties, which possess the ability of self-organizing between phases, reducing the interfacial tension, and forming aggregates such as micelles. This spontaneous process results in significant changes in surface properties that directly influence the adherence of microorganisms. In this study, the ability of surfactin, a biosurfactant produced by Bacillus subtilis in reducing adhesion and disrupting the presence of biofilm of Staphylococcus aureus (S. aureus) on several surfaces, was investigated. Significant biofilm removal was observed on glass, polystyrene, and stainless steel surfaces. Furthermore, we explored the probable mechanism about how surfactin affected S. aureus biofilm formation. Based on our findings, surfactin had a significant effect on the polysaccharides production and especially decreased the percentage of alkali-soluble polysaccharide in biofilms. It also down-regulated the expression of icaA and icaD significantly, which are necessary for the important constituents to take shape of staphylococcal biofilm. In addition, it was found that the lipopeptide affected the quorum sensing (QS) system in S. aureus through regulating the auto inducer 2 (AI-2) activity, which has been reported to be negative for biofilm formation in S. aureus. These above properties could be applied in developing surfactin as a potential pre-coating agent on material surfaces to prevent S. aureus biofilm formation.
Collapse
Affiliation(s)
- Jin Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingjian Lu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210003, China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
ciaR impacts biofilm formation by regulating an arginine biosynthesis pathway in Streptococcus sanguinis SK36. Sci Rep 2017; 7:17183. [PMID: 29215019 PMCID: PMC5719415 DOI: 10.1038/s41598-017-17383-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/21/2017] [Indexed: 01/02/2023] Open
Abstract
Streptococcus sanguinis is an early colonizer of the tooth surface and competes with oral pathogens such as Streptococcus mutans to maintain oral health. However, little is known about its mechanism of biofilm formation. Here, we show that mutation of the ciaR gene, encoding the response regulator of the CiaRH two-component system in S. sanguinis SK36, produced a fragile biofilm. Cell aggregation, gtfP gene expression and water-insoluble glucan production were all reduced, which suggested polysaccharide production was decreased in ΔciaR. RNA sequencing and qRT-PCR revealed that arginine biosynthesis genes (argR, argB, argC, argG, argH and argJ) and two arginine/histidine permease genes (SSA_1568 and SSA_1569) were upregulated in ΔciaR. In contrast to ΔciaR, most of strains constructed to contain deletions in each of these genes produced more biofilm and water-insoluble glucan than SK36. A ΔciaRΔargB double mutant was completely restored for the gtfP gene expression, glucan production and biofilm formation ability that was lost in ΔciaR, indicating that argB was essential for ciaR to regulate biofilm formation. We conclude that by promoting the expression of arginine biosynthetic genes, especially argB gene, the ciaR mutation reduced polysaccharide production, resulting in the formation of a fragile biofilm in Streptococcus sanguinis.
Collapse
|
41
|
Huang X, Zhang K, Deng M, Exterkate RA, Liu C, Zhou X, Cheng L, ten Cate JM. Effect of arginine on the growth and biofilm formation of oral bacteria. Arch Oral Biol 2017; 82:256-262. [DOI: 10.1016/j.archoralbio.2017.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
|
42
|
Mining marine shell wastes for polyelectrolyte chitosan anti-biofoulants: Fabrication of high-performance economic and ecofriendly anti-biofouling coatings. Carbohydr Polym 2017; 172:352-364. [DOI: 10.1016/j.carbpol.2017.05.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/30/2022]
|
43
|
Sánchez Mainar M, Matheuse F, De Vuyst L, Leroy F. Effects of glucose and oxygen on arginine metabolism by coagulase-negative staphylococci. Food Microbiol 2017; 65:170-178. [PMID: 28399999 DOI: 10.1016/j.fm.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/01/2022]
Abstract
Coagulase-negative staphylococci (CNS) are not only part of the desirable microbiota of fermented meat products but also commonly inhabit skin and flesh wounds. Their proliferation depends on the versatility to use energy sources and the adaptation to fluctuating environmental parameters. In this study, the conversion of the amino acid arginine by two strains with arginine deiminase (ADI) activity (Staphylococcus carnosus 833 and S. pasteuri αs3-13) and a strain with nitric oxide synthase (NOS) activity (S. haemolyticus G110) was modelled as a function of glucose and oxygen availability. Both factors moderately inhibited the ADI-based conversion kinetics, never leading to full repression. However, for NOS-driven conversion of arginine by S. haemolyticus G110, oxygen was an absolute requirement. When changing from microaerobic conditions to aerobiosis, a switch from homolactic fermentation to a combined formation of lactic acid, acetic acid, and acetoin was found in all cases, after which lactic acid and acetic acid were used as substrates. The kinetic model proposed provided a suitable description of the data of glucose and arginine co-metabolism as a function of oxygen levels and may serve as a tool to further analyse the behaviour of staphylococci in different ecosystems or when applying specific food processing conditions.
Collapse
Affiliation(s)
- María Sánchez Mainar
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Fréderick Matheuse
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
44
|
Mashruwala AA, Guchte AVD, Boyd JM. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. eLife 2017; 6. [PMID: 28221135 PMCID: PMC5380435 DOI: 10.7554/elife.23845] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/20/2017] [Indexed: 01/25/2023] Open
Abstract
Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI:http://dx.doi.org/10.7554/eLife.23845.001 Millions of bacteria live on the human body. Generally these bacteria co-exist with us peacefully, but sometimes certain bacteria may enter the body and cause infections, such as gum disease or a bone infection called osteomyelitis. Many of these infections are thought to occur when the bacteria become able to form complex communities called biofilms. Bacteria living in a biofilm cooperate and make lifestyle choices as a community, so in this way, they behave like a single organism containing many cells. A sticky glue-like material called the matrix holds the bacteria in a biofilm together. This matrix protects the bacteria in the biofilm from both the human immune system and antibiotics, allowing infections to develop and making them difficult to treat. Previous research has shown that the supply and level of oxygen in infected tissues decreases as an infection gets worse. One bacterium that typically lives peacefully on our bodies, called Staphylococcus aureus, can sometimes cause serious biofilm-associated infections. S. aureus forms biofilms more readily when oxygen is in short supply, but it was not known how these biofilms form. Understanding how S. aureus forms biofilms could help scientists develop better treatments for bacterial infections. Most bacterial cells have a cell wall to provide them with structural support. Mashruwala et al. found that, when oxygen levels are low, S. aureus decreases the production of a type of sugar that makes up the cell wall. At the same time, the bacteria produce more of an enzyme that breaks down cell walls. Together, these processes cause some of the bacteria cells to break open. The contents of these broken cells, including their DNA, help form the matrix that will hold together and protect the other bacterial cells in the biofilm. The experiments also identified a protein called SrrAB that switches on the process that ruptures the cells when oxygen is low. The findings of Mashruwala et al. show how bacteria grown in the laboratory form biofilms when they are starved of oxygen. The next steps following on from this work are to find out whether the same thing happens when bacteria infect animals and whether drugs that block the rupturing of bacterial cells could be used to treat infections. DOI:http://dx.doi.org/10.7554/eLife.23845.002
Collapse
Affiliation(s)
- Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Adriana van de Guchte
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States
| |
Collapse
|
45
|
Amino Acid Catabolism in Staphylococcus aureus and the Function of Carbon Catabolite Repression. mBio 2017; 8:mBio.01434-16. [PMID: 28196956 PMCID: PMC5312079 DOI: 10.1128/mbio.01434-16] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus must rapidly adapt to a variety of carbon and nitrogen sources during invasion of a host. Within a staphylococcal abscess, preferred carbon sources such as glucose are limiting, suggesting that S. aureus survives through the catabolism of secondary carbon sources. S. aureus encodes pathways to catabolize multiple amino acids, including those that generate pyruvate, 2-oxoglutarate, and oxaloacetate. To assess amino acid catabolism, S. aureus JE2 and mutants were grown in complete defined medium containing 18 amino acids but lacking glucose (CDM). A mutation in the gudB gene, coding for glutamate dehydrogenase, which generates 2-oxoglutarate from glutamate, significantly reduced growth in CDM, suggesting that glutamate and those amino acids generating glutamate, particularly proline, serve as the major carbon source in this medium. Nuclear magnetic resonance (NMR) studies confirmed this supposition. Furthermore, a mutation in the ackA gene, coding for acetate kinase, also abrogated growth of JE2 in CDM, suggesting that ATP production from pyruvate-producing amino acids is also critical for growth. In addition, although a functional respiratory chain was absolutely required for growth, the oxygen consumption rate and intracellular ATP concentration were significantly lower during growth in CDM than during growth in glucose-containing media. Finally, transcriptional analyses demonstrated that expression levels of genes coding for the enzymes that synthesize glutamate from proline, arginine, and histidine are repressed by CcpA and carbon catabolite repression. These data show that pathways important for glutamate catabolism or ATP generation via Pta/AckA are important for growth in niches where glucose is not abundant, such as abscesses within skin and soft tissue infections. S. aureus is a significant cause of both morbidity and mortality worldwide. This bacterium causes infections in a wide variety of organ systems, the most common being skin and soft tissue. Within a staphylococcal abscess, levels of glucose, a preferred carbon source, are limited due to the host immune response. Therefore, S. aureus must utilize other available carbon sources such as amino acids or peptides to proliferate. Our results show that glutamate and amino acids that serve as substrates for glutamate synthesis, particularly proline, function as major carbon sources during growth, whereas other amino acids that generate pyruvate are important for ATP synthesis via substrate-level phosphorylation in the Pta-AckA pathway. Our data support a model whereby certain amino acid catabolic pathways, and acquisition of those particular amino acids, are crucial for growth in niches where glucose is not abundant.
Collapse
|
46
|
Zhao X, Chen C, Jiang X, Shen W, Huang G, Le S, Lu S, Zou L, Ni Q, Li M, Zhao Y, Wang J, Rao X, Hu F, Tan Y. Transcriptomic and Metabolomic Analysis Revealed Multifaceted Effects of Phage Protein Gp70.1 on Pseudomonas aeruginosa. Front Microbiol 2016; 7:1519. [PMID: 27725812 PMCID: PMC5035744 DOI: 10.3389/fmicb.2016.01519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The impact of phage infection on the host cell is severe. In order to take over the cellular machinery, some phage proteins were produced to shut off the host biosynthesis early in the phage infection. The discovery and identification of these phage-derived inhibitors have a significant prospect of application in antibacterial treatment. This work presented a phage protein, gp70.1, with non-specific inhibitory effects on Pseudomonas aeruginosa and Escherichia coli. Gp70.1 was encoded by early gene – orf 70.1 from P. aeruginosa phage PaP3. The P. aeruginosa with a plasmid encoding gp70.1 showed with delayed growth and had the appearance of a small colony. The combination of multifaceted analysis including microarray-based transcriptomic analysis, RT-qPCR, nuclear magnetic resonance (NMR) spectroscopy-based metabolomics and phenotype experiments were performed to investigate the effects of gp70.1 on P. aeruginosa. A total of 178 genes of P. aeruginosa mainly involved in extracellular function and metabolism were differentially expressed in the presence of gp70.1 at three examined time points. Furthermore, our results indicated that gp70.1 had an extensive impact on the extracellular phenotype of P. aeruginosa, such as motility, pyocyanin, extracellular protease, polysaccharide, and cellulase. For the metabolism of P. aeruginosa, the main effect of gp70.1 was the reduction of amino acid consumption. Finally, the RNA polymerase sigma factor RpoS was identified as a potential cellular target of gp70.1. Gp70.1 was the first bacterial inhibitor identified from Pseudomonas aeruginosa phage PaP3. It was also the first phage protein that interacted with the global regulator RpoS of bacteria. Our results indicated the potential value of gp70.1 in antibacterial applications. This study preliminarily revealed the biological function of gp70.1 and provided a reference for the study of other phage genes sharing similarities with orf70.1.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | | | - Xingyu Jiang
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University Chongqing, China
| | - Wei Shen
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Guangtao Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University Chongqing, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Lingyun Zou
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Qingshan Ni
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University Chongqing, China
| |
Collapse
|
47
|
Gel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates, Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression. Antimicrob Agents Chemother 2016; 60:6294-301. [PMID: 27503656 DOI: 10.1128/aac.01336-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/03/2016] [Indexed: 11/20/2022] Open
Abstract
An experimental model that mimicked the structure and characteristics of in vivo biofilm infections, such as those occurring in the lung or in dermal wounds where no biomaterial surface is present, was developed. In these infections, microbial biofilm forms as cell aggregates interspersed in a layer of mucus or host matrix material. This structure was modeled by filling glass capillary tubes with an agarose gel that had been seeded with Staphylococcus aureus bacteria and then incubating the gel biofilm in medium for up to 30 h. Confocal microscopy showed that the bacteria formed in discrete pockets distributed throughout the gel matrix. These aggregates enlarged over time and also developed a size gradient, with the clusters being larger near the nutrient- and oxygen-supplied interface and smaller at greater depths. Bacteria entrapped in gels for 24 h grew slowly (specific growth rate, 0.06 h(-1)) and were much less susceptible to oxacillin, minocycline, or ciprofloxacin than planktonic cells. Microelectrode measurements showed that the oxygen concentration decreased with depth into the gel biofilm, falling to values less than 3% of air saturation at depths of 500 μm. An anaerobiosis-responsive green fluorescent protein reporter gene for lactate dehydrogenase was induced in the region of the gel where the measured oxygen concentrations were low, confirming biologically relevant hypoxia. These results show that the gel biofilm model captures key features of biofilm infection in mucus or compromised tissue: formation of dense, distinct aggregates, reduced specific growth rates, local hypoxia, and antibiotic tolerance.
Collapse
|
48
|
Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc Natl Acad Sci U S A 2016; 113:E3801-9. [PMID: 27286824 DOI: 10.1073/pnas.1523199113] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world.
Collapse
|
49
|
Xu Y, Maltesen RG, Larsen LH, Schønheyder HC, Le VQ, Nielsen JL, Nielsen PH, Thomsen TR, Nielsen KL. In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol 2016; 16:80. [PMID: 27150914 PMCID: PMC4858865 DOI: 10.1186/s12866-016-0695-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/26/2016] [Indexed: 02/01/2023] Open
Abstract
Background Staphylococcus aureus gene expression has been sparsely studied in deep-sited infections in humans. Here, we characterized the staphylococcal transcriptome in vivo and the joint fluid metabolome in a prosthetic joint infection with an acute presentation using deep RNA sequencing and nuclear magnetic resonance spectroscopy, respectively. We compared our findings with the genome, transcriptome and metabolome of the S. aureus joint fluid isolate grown in vitro. Result From the transcriptome analysis we found increased expression of siderophore synthesis genes and multiple known virulence genes. The regulatory pattern of catabolic pathway genes indicated that the bacterial infection was sustained on amino acids, glycans and nucleosides. Upregulation of fermentation genes and the presence of ethanol in joint fluid indicated severe oxygen limitation in vivo. Conclusion This single case study highlights the capacity of combined transcriptome and metabolome analyses for elucidating the pathogenesis of prosthetic infections of major clinical importance. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0695-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yijuan Xu
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.,The Danish Technological Institute, Life Science Division, Aarhus, Denmark
| | - Raluca Georgiana Maltesen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark
| | - Lone Heimann Larsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.,Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Carl Schønheyder
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Vang Quy Le
- Section for Molecular Diagnostics, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark
| | - Trine Rolighed Thomsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.,The Danish Technological Institute, Life Science Division, Aarhus, Denmark
| | - Kåre Lehmann Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
50
|
Stipetic LH, Dalby MJ, Davies RL, Morton FR, Ramage G, Burgess KEV. A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples. Metabolomics 2016; 12:75. [PMID: 27013931 PMCID: PMC4783440 DOI: 10.1007/s11306-016-1002-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/16/2016] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Bacterial cell characteristics change significantly during differentiation between planktonic and biofilm states. While established methods exist to detect and identify transcriptional and proteomic changes, metabolic fluctuations that distinguish these developmental stages have been less amenable to investigation. OBJECTIVES The objectives of the study were to develop a robust reproducible sample preparation methodology for high throughput biofilm analysis and to determine differences between Staphylococcus aureus in planktonic and biofilm states. METHODS The method uses bead beating in a chloroform/methanol/water extraction solvent to both disrupt cells and quench metabolism. Verification of the method was performed using liquid-chromatography-mass spectrometry. Raw mass-spectrometry data was analysed using an in-house bioinformatics pipe-line incorporating XCMS, MzMatch and in-house R-scripts, with identifications matched to internal standards and metabolite data-base entries. RESULTS We have demonstrated a novel mechanical bead beating method that has been optimised for the extraction of the metabolome from cells of a clinical Staphylococcus aureus strain existing in a planktonic or biofilm state. This high-throughput method is fast and reproducible, allowing for direct comparison between different bacterial growth states. Significant changes in arginine biosynthesis were identified between the two cell populations. CONCLUSIONS The method described herein represents a valuable tool in studying microbial biochemistry at a molecular level. While the methodology is generally applicable to the lysis and extraction of metabolites from Gram positive bacteria, it is particularly applicable to biofilms. Bacteria that exist as a biofilm are shown to be highly distinct metabolically from their 'free living' counterparts, thus highlighting the need to study microbes in different growth states. Metabolomics can successfully distinguish between a planktonic and biofilm growth state. Importantly, this study design, incorporating metabolomics, could be optimised for studying the effects of antimicrobials and drug modes of action, potentially providing explanations and mechanisms of antibiotic resistance and to help devise new antimicrobials.
Collapse
Affiliation(s)
- Laurence H. Stipetic
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| | - Matthew J. Dalby
- />Institute of Molecular Cell and Systems Biology, The University of Glasgow, Glasgow, UK
| | - Robert L. Davies
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Fraser R. Morton
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| | - Gordon Ramage
- />Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Karl E. V. Burgess
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| |
Collapse
|