1
|
Egan SL, Taylor CL, Banks PB, Northover AS, Ahlstrom LA, Ryan UM, Irwin PJ, Oskam CL. The bacterial biome of ticks and their wildlife hosts at the urban-wildland interface. Microb Genom 2021; 7. [PMID: 34913864 PMCID: PMC8767321 DOI: 10.1099/mgen.0.000730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Advances in sequencing technologies have revealed the complex and diverse microbial communities present in ticks (Ixodida). As obligate blood-feeding arthropods, ticks are responsible for a number of infectious diseases that can affect humans, livestock, domestic animals and wildlife. While cases of human tick-borne diseases continue to increase in the northern hemisphere, there has been relatively little recognition of zoonotic tick-borne pathogens in Australia. Over the past 5 years, studies using high-throughput sequencing technologies have shown that Australian ticks harbour unique and diverse bacterial communities. In the present study, free-ranging wildlife (n=203), representing ten mammal species, were sampled from urban and peri-urban areas in New South Wales (NSW), Queensland (QLD) and Western Australia (WA). Bacterial metabarcoding targeting the 16S rRNA locus was used to characterize the microbiomes of three sample types collected from wildlife: blood, ticks and tissue samples. Further sequence information was obtained for selected taxa of interest. Six tick species were identified from wildlife: Amblyomma triguttatum, Ixodes antechini, Ixodes australiensis, Ixodes holocyclus, Ixodes tasmani and Ixodes trichosuri. Bacterial 16S rRNA metabarcoding was performed on 536 samples and 65 controls, generating over 100 million sequences. Alpha diversity was significantly different between the three sample types, with tissue samples displaying the highest alpha diversity (P<0.001). Proteobacteria was the most abundant taxon identified across all sample types (37.3 %). Beta diversity analysis and ordination revealed little overlap between the three sample types (P<0.001). Taxa of interest included Anaplasmataceae, Bartonella, Borrelia, Coxiellaceae, Francisella, Midichloria, Mycoplasma and Rickettsia. Anaplasmataceae bacteria were detected in 17.7% (95/536) of samples and included Anaplasma, Ehrlichia and Neoehrlichia species. In samples from NSW, 'Ca. Neoehrlichia australis', 'Ca. Neoehrlichia arcana', Neoehrlichia sp. and Ehrlichia sp. were identified. A putative novel Ehrlichia sp. was identified from WA and Anaplasma platys was identified from QLD. Nine rodent tissue samples were positive for a novel Borrelia sp. that formed a phylogenetically distinct clade separate from the Lyme Borrelia and relapsing fever groups. This novel clade included recently identified rodent-associated Borrelia genotypes, which were described from Spain and North America. Bartonella was identified in 12.9% (69/536) of samples. Over half of these positive samples were obtained from black rats (Rattus rattus), and the dominant bacterial species identified were Bartonella coopersplainsensis and Bartonella queenslandensis. The results from the present study show the value of using unbiased high-throughput sequencing applied to samples collected from wildlife. In addition to understanding the sylvatic cycle of known vector-associated pathogens, surveillance work is important to ensure preparedness for potential zoonotic spillover events.
Collapse
Affiliation(s)
- Siobhon L Egan
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Casey L Taylor
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Amy S Northover
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Liisa A Ahlstrom
- Elanco Animal Health, Macquarie Park, New South Wales, 2113, Australia
| | - Una M Ryan
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Peter J Irwin
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.,School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Charlotte L Oskam
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
2
|
Pelletier JF, Sun L, Wise KS, Assad-Garcia N, Karas BJ, Deerinck TJ, Ellisman MH, Mershin A, Gershenfeld N, Chuang RY, Glass JI, Strychalski EA. Genetic requirements for cell division in a genomically minimal cell. Cell 2021; 184:2430-2440.e16. [PMID: 33784496 DOI: 10.1016/j.cell.2021.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 01/27/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Genomically minimal cells, such as JCVI-syn3.0, offer a platform to clarify genes underlying core physiological processes. Although this minimal cell includes genes essential for population growth, the physiology of its single cells remained uncharacterized. To investigate striking morphological variation in JCVI-syn3.0 cells, we present an approach to characterize cell propagation and determine genes affecting cell morphology. Microfluidic chemostats allowed observation of intrinsic cell dynamics that result in irregular morphologies. A genome with 19 genes not retained in JCVI-syn3.0 generated JCVI-syn3A, which presents morphology similar to that of JCVI-syn1.0. We further identified seven of these 19 genes, including two known cell division genes, ftsZ and sepF, a hydrolase of unknown substrate, and four genes that encode membrane-associated proteins of unknown function, which are required together to restore a phenotype similar to that of JCVI-syn1.0. This result emphasizes the polygenic nature of cell division and morphology in a genomically minimal cell.
Collapse
Affiliation(s)
- James F Pelletier
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Lijie Sun
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Kim S Wise
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, University of California-San Diego, La Jolla, CA 92037, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California-San Diego, La Jolla, CA 92037, USA
| | - Andreas Mershin
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil Gershenfeld
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - John I Glass
- J. Craig Venter Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
3
|
Su J, Wang C, Ma Q, Zhang A, Shi C, Liu J, Zhang X, Yang D, Ma X. An RTM-GWAS procedure reveals the QTL alleles and candidate genes for three yield-related traits in upland cotton. BMC PLANT BIOLOGY 2020; 20:416. [PMID: 32894064 PMCID: PMC7487830 DOI: 10.1186/s12870-020-02613-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cotton (Gossypium spp.) fiber yield is one of the key target traits, and improved fiber yield has always been thought of as an important objective in the breeding programs and production. Although some studies had been reported for the understanding of genetic bases for cotton yield-related traits, the detected quantitative trait loci (QTL) for the traits is still very limited. To uncover the whole-genome QTL controlling three yield-related traits in upland cotton (Gossypium hirsutum L.), phenotypic traits were investigated under four planting environments and 9244 single-nucleotide polymorphism linkage disequilibrium block (SNPLDB) markers were developed in an association panel consisting of 315 accessions. RESULTS A total of 53, 70 and 68 significant SNPLDB loci associated with boll number (BN), boll weight (BW) and lint percentage (LP), were respectively detected through a restricted two-stage multi-locus multi-allele genome-wide association study (RTM-GWAS) procedure in multiple environments. The haplotype/allele effects of the significant SNPLDB loci were estimated and the QTL-allele matrices were organized for offering the abbreviated genetic composition of the population. Among the significant SNPLDB loci, six of them were simultaneously identified in two or more single planting environments and were thought of as the stable SNPLDB loci. Additionally, a total of 115 genes were annotated in the nearby regions of the six stable SNPLDB loci, and 16 common potential candidate genes controlling target traits of them were predicted by two RNA-seq data. One of 16 genes (GH_D06G2161) was mainly expressed in the early ovule-development stages, and the stable SNPLDB locus (LDB_19_62926589) was mapped in its promoter region. CONCLUSION This study identified the QTL alleles and candidate genes that could provide important insights into the genetic basis of yield-related traits in upland cotton and might facilitate breeding cotton varieties with high yield.
Collapse
Affiliation(s)
- Junji Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Caixiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Qi Ma
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Ai Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chunhui Shi
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juanjuan Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Delong Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Michaels DL, Moneypenny CG, Shama SM, Leibowitz JA, May MA, Glass JI, Brown DR. Sialidase and N-acetylneuraminate catabolism in nutrition of Mycoplasma alligatoris. MICROBIOLOGY (READING, ENGLAND) 2019; 165:662-667. [PMID: 30422107 PMCID: PMC7137774 DOI: 10.1099/mic.0.000739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/11/2018] [Indexed: 11/18/2022]
Abstract
The contribution of N-acetylneuraminate scavenging to the nutrition of Mycoplasma alligatoris was examined. The wild-type grew substantially faster (P<0.01) than the mutant strains that were unable either to liberate (extracellular NanI- mutants) or to catabolize (NanA- mutants) N-acetylneuraminate from glycoconjugates in minimal SP-4 medium supplemented only with serum, but the growth of sialidase-negative mutants could not be restored to wild-type rate simply by adding unconjugated sialic acid to the culture medium. In 1 : 1 growth competition assays the wild-type was recovered in >99-fold excess of a sialidase-negative mutant after co-culture on pulmonary fibroblasts in serum-free RPMI 1640 medium, even with supplemental glucose. The advantage of nutrient scavenging via this mechanism in a complex glycan-rich environment may help to balance the expected selective disadvantage conferred by the pathogenic effects of mycoplasmal sialidase in an infected host.
Collapse
Affiliation(s)
- Dina L. Michaels
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida 32611, USA
| | - Craig G. Moneypenny
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida 32611, USA
| | - Suzanne M. Shama
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida 32611, USA
| | - Jeffrey A. Leibowitz
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida 32611, USA
- Present address: Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Meghan A. May
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida 32611, USA
- Present address: Department of Biomedical Sciences, University of New England, Biddeford, Maine 04005, USA
| | - John I. Glass
- The J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Daniel R. Brown
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
5
|
Seward EA, Kelly S. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms. Genome Biol 2016; 17:226. [PMID: 27842572 PMCID: PMC5109750 DOI: 10.1186/s13059-016-1087-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/12/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. RESULTS Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. CONCLUSIONS Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.
Collapse
Affiliation(s)
- Emily A Seward
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
6
|
Daubenspeck JM, Jordan DS, Simmons W, Renfrow MB, Dybvig K. General N-and O-Linked Glycosylation of Lipoproteins in Mycoplasmas and Role of Exogenous Oligosaccharide. PLoS One 2015; 10:e0143362. [PMID: 26599081 PMCID: PMC4657876 DOI: 10.1371/journal.pone.0143362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
The lack of a cell wall, flagella, fimbria, and other extracellular appendages and the possession of only a single membrane render the mycoplasmas structurally simplistic and ideal model organisms for the study of glycoconjugates. Most species have genomes of about 800 kb and code for few proteins predicted to have a role in glycobiology. The murine pathogens Mycoplasma arthritidis and Mycoplasma pulmonis have only a single gene annotated as coding for a glycosyltransferase but synthesize glycolipid, polysaccharide and glycoproteins. Previously, it was shown that M. arthritidis glycosylated surface lipoproteins through O-linkage. In the current study, O-linked glycoproteins were similarly found in M. pulmonis and both species of mycoplasma were found to also possess N-linked glycans at residues of asparagine and glutamine. Protein glycosylation occurred at numerous sites on surface-exposed lipoproteins with no apparent amino acid sequence specificity. The lipoproteins of Mycoplasma pneumoniae also are glycosylated. Glycosylation was dependent on the glycosidic linkages from host oligosaccharides. As far as we are aware, N-linked glycoproteins have not been previously described in Gram-positive bacteria, the organisms to which the mycoplasmas are phylogenetically related. The findings indicate that the mycoplasma cell surface is heavily glycosylated with implications for the modulation of mycoplasma-host interactions.
Collapse
Affiliation(s)
- James M. Daubenspeck
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David S. Jordan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Warren Simmons
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kevin Dybvig
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
7
|
Grosjean H, Breton M, Sirand-Pugnet P, Tardy F, Thiaucourt F, Citti C, Barré A, Yoshizawa S, Fourmy D, de Crécy-Lagard V, Blanchard A. Predicting the minimal translation apparatus: lessons from the reductive evolution of mollicutes. PLoS Genet 2014; 10:e1004363. [PMID: 24809820 PMCID: PMC4014445 DOI: 10.1371/journal.pgen.1004363] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
Mollicutes is a class of parasitic bacteria that have evolved from a common Firmicutes ancestor mostly by massive genome reduction. With genomes under 1 Mbp in size, most Mollicutes species retain the capacity to replicate and grow autonomously. The major goal of this work was to identify the minimal set of proteins that can sustain ribosome biogenesis and translation of the genetic code in these bacteria. Using the experimentally validated genes from the model bacteria Escherichia coli and Bacillus subtilis as input, genes encoding proteins of the core translation machinery were predicted in 39 distinct Mollicutes species, 33 of which are culturable. The set of 260 input genes encodes proteins involved in ribosome biogenesis, tRNA maturation and aminoacylation, as well as proteins cofactors required for mRNA translation and RNA decay. A core set of 104 of these proteins is found in all species analyzed. Genes encoding proteins involved in post-translational modifications of ribosomal proteins and translation cofactors, post-transcriptional modifications of t+rRNA, in ribosome assembly and RNA degradation are the most frequently lost. As expected, genes coding for aminoacyl-tRNA synthetases, ribosomal proteins and initiation, elongation and termination factors are the most persistent (i.e. conserved in a majority of genomes). Enzymes introducing nucleotides modifications in the anticodon loop of tRNA, in helix 44 of 16S rRNA and in helices 69 and 80 of 23S rRNA, all essential for decoding and facilitating peptidyl transfer, are maintained in all species. Reconstruction of genome evolution in Mollicutes revealed that, beside many gene losses, occasional gains by horizontal gene transfer also occurred. This analysis not only showed that slightly different solutions for preserving a functional, albeit minimal, protein synthetizing machinery have emerged in these successive rounds of reductive evolution but also has broad implications in guiding the reconstruction of a minimal cell by synthetic biology approaches.
Collapse
Affiliation(s)
- Henri Grosjean
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Université Paris-Sud, FRC 3115, Gif-sur-Yvette, France
| | - Marc Breton
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Pascal Sirand-Pugnet
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Florence Tardy
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, Lyon, France
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy L'Etoile, France
| | - François Thiaucourt
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France
| | - Christine Citti
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
- Université de Toulouse, INP-ENVT, UMR1225, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Aurélien Barré
- Univ. Bordeaux, Centre de bioinformatique et de génomique fonctionnelle, CBiB, Bordeaux, France
| | - Satoko Yoshizawa
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Université Paris-Sud, FRC 3115, Gif-sur-Yvette, France
| | - Dominique Fourmy
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Université Paris-Sud, FRC 3115, Gif-sur-Yvette, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University Florida, Gainesville, Florida, United States of America
| | - Alain Blanchard
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- * E-mail:
| |
Collapse
|
8
|
Jordan DS, Daubenspeck JM, Laube AH, Renfrow MB, Dybvig K. O-linked protein glycosylation in Mycoplasma. Mol Microbiol 2013; 90:1046-53. [PMID: 24118505 DOI: 10.1111/mmi.12415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 01/06/2023]
Abstract
Although mycoplasmas have a paucity of glycosyltransferases and nucleotidyltransferases recognizable by bioinformatics, these bacteria are known to produce polysaccharides and glycolipids. We show here that mycoplasmas also produce glycoproteins and hence have glycomes more complex than previously realized. Proteins from several species of Mycoplasma reacted with a glycoprotein stain, and the murine pathogen Mycoplasma arthritidis was chosen for further study. The presence of M. arthritidis glycoproteins was confirmed by high-resolution mass spectrometry. O-linked glycosylation was clearly identified at both serine and threonine residues. No consensus amino acid sequence was evident for the glycosylation sites of the glycoproteins. A single hexose was identified as the O-linked modification, and glucose was inferred by (13) C-labelling to be the hexose at several of the glycosylation sites. This is the first study to conclusively identify sites of protein glycosylation in any of the mollicutes.
Collapse
Affiliation(s)
- David S Jordan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | | | | | |
Collapse
|
9
|
Jordan DS, Daubenspeck JM, Dybvig K. Rhamnose biosynthesis in mycoplasmas requires precursor glycans larger than monosaccharide. Mol Microbiol 2013; 89:918-28. [PMID: 23826905 DOI: 10.1111/mmi.12320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2013] [Indexed: 11/30/2022]
Abstract
Despite the apparent absence of genes coding for the known pathways for biosynthesis, the monosaccharide rhamnose was detected in the d configuration in Mycoplasma pneumoniae and Mycoplasma pulmonis, and in both the d and l configurations in Mycoplasma arthritidis. Surprisingly, the monosaccharide glucose was not a precursor for rhamnose biosynthesis and was not incorporated at detectable levels in glucose-containing polysaccharides or glycoconjugates. In contrast, carbon atoms from starch, a polymer of glucose, were incorporated into rhamnose in each of the three species examined. When grown in a serum-free medium supplemented with starch, M. arthritidis synthesized higher levels of rhamnose, with a shift in the relative amounts of the d and l configurations. Our findings suggest the presence of a novel pathway for rhamnose synthesis that is widespread in the genus Mycoplasma.
Collapse
Affiliation(s)
- David S Jordan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | |
Collapse
|
10
|
Klein CC, Cottret L, Kielbassa J, Charles H, Gautier C, Ribeiro de Vasconcelos AT, Lacroix V, Sagot MF. Exploration of the core metabolism of symbiotic bacteria. BMC Genomics 2012; 13:438. [PMID: 22938206 PMCID: PMC3543179 DOI: 10.1186/1471-2164-13-438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/18/2012] [Indexed: 12/01/2022] Open
Abstract
Background A large number of genome-scale metabolic networks is now available for many organisms, mostly bacteria. Previous works on minimal gene sets, when analysing host-dependent bacteria, found small common sets of metabolic genes. When such analyses are restricted to bacteria with similar lifestyles, larger portions of metabolism are expected to be shared and their composition is worth investigating. Here we report a comparative analysis of the small molecule metabolism of symbiotic bacteria, exploring common and variable portions as well as the contribution of different lifestyle groups to the reduction of a common set of metabolic capabilities. Results We found no reaction shared by all the bacteria analysed. Disregarding those with the smallest genomes, we still do not find a reaction core, however we did find a core of biochemical capabilities. While obligate intracellular symbionts have no core of reactions within their group, extracellular and cell-associated symbionts do have a small core composed of disconnected fragments. In agreement with previous findings in Escherichia coli, their cores are enriched in biosynthetic processes whereas the variable metabolisms have similar ratios of biosynthetic and degradation reactions. Conversely, the variable metabolism of obligate intracellular symbionts is enriched in anabolism. Conclusion Even when removing the symbionts with the most reduced genomes, there is no core of reactions common to the analysed symbiotic bacteria. The main reason is the very high specialisation of obligate intracellular symbionts, however, host-dependence alone is not an explanation for such absence. The composition of the metabolism of cell-associated and extracellular bacteria shows that while they have similar needs in terms of the building blocks of their cells, they have to adapt to very distinct environments. On the other hand, in obligate intracellular bacteria, catabolism has largely disappeared, whereas synthetic routes appear to have been selected for depending on the nature of the symbiosis. As more genomes are added, we expect, based on our simulations, that the core of cell-associated and extracellular bacteria continues to diminish, converging to approximately 60 reactions.
Collapse
|
11
|
Béven L, Charenton C, Dautant A, Bouyssou G, Labroussaa F, Sköllermo A, Persson A, Blanchard A, Sirand-Pugnet P. Specific evolution of F1-like ATPases in mycoplasmas. PLoS One 2012; 7:e38793. [PMID: 22685606 PMCID: PMC3369863 DOI: 10.1371/journal.pone.0038793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/10/2012] [Indexed: 01/22/2023] Open
Abstract
F(1)F(0) ATPases have been identified in most bacteria, including mycoplasmas which have very small genomes associated with a host-dependent lifestyle. In addition to the typical operon of eight genes encoding genuine F(1)F(0) ATPase (Type 1), we identified related clusters of seven genes in many mycoplasma species. Four of the encoded proteins have predicted structures similar to the α, β, γ and ε subunits of F(1) ATPases and could form an F(1)-like ATPase. The other three proteins display no similarity to any other known proteins. Two of these proteins are probably located in the membrane, as they have three and twelve predicted transmembrane helices. Phylogenomic studies identified two types of F(1)-like ATPase clusters, Type 2 and Type 3, characterized by a rapid evolution of sequences with the conservation of structural features. Clusters encoding Type 2 and Type 3 ATPases were assumed to originate from the Hominis group of mycoplasmas. We suggest that Type 3 ATPase clusters may spread to other phylogenetic groups by horizontal gene transfer between mycoplasmas in the same host, based on phylogeny and genomic context. Functional analyses in the ruminant pathogen Mycoplasma mycoides subsp. mycoides showed that the Type 3 cluster genes were organized into an operon. Proteomic analyses demonstrated that the seven encoded proteins were produced during growth in axenic media. Mutagenesis and complementation studies demonstrated an association of the Type 3 cluster with a major ATPase activity of membrane fractions. Thus, despite their tendency toward genome reduction, mycoplasmas have evolved and exchanged specific F(1)-like ATPases with no known equivalent in other bacteria. We propose a model, in which the F(1)-like structure is associated with a hypothetical X(0) sector located in the membrane of mycoplasma cells.
Collapse
Affiliation(s)
- Laure Béven
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Claire Charenton
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Alain Dautant
- University Bordeaux, IBGC, UMR 5095, Bordeaux, France
- CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Guillaume Bouyssou
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Fabien Labroussaa
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Anna Sköllermo
- Department of Proteomics, School of Biotechnology, KTH-Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Anja Persson
- Department of Proteomics, School of Biotechnology, KTH-Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Alain Blanchard
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Pascal Sirand-Pugnet
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- * E-mail:
| |
Collapse
|
12
|
Shu HW, Liu TT, Chan HI, Liu YM, Wu KM, Shu HY, Tsai SF, Hsiao KJ, Hu WS, Ng WV. Complexity of the Mycoplasma fermentans M64 genome and metabolic essentiality and diversity among mycoplasmas. PLoS One 2012; 7:e32940. [PMID: 22509252 PMCID: PMC3317919 DOI: 10.1371/journal.pone.0032940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/02/2012] [Indexed: 11/30/2022] Open
Abstract
Recently, the genomes of two Mycoplasma fermentans strains, namely M64 and JER, have been completely sequenced. Gross comparison indicated that the genome of M64 is significantly bigger than the other strain and the difference is mainly contributed by the repetitive sequences including seven families of simple and complex transposable elements ranging from 973 to 23,778 bps. Analysis of these repeats resulted in the identification of a new distinct family of Integrative Conjugal Elements of M. fermentans, designated as ICEF-III. Using the concept of “reaction connectivity”, the metabolic capabilities in M. fermentans manifested by the complete and partial connected biomodules were revealed. A comparison of the reported M. pulmonis, M. arthritidis, M. genitalium, B. subtilis, and E. coli essential genes and the genes predicted from the M64 genome indicated that more than 73% of the Mycoplasmas essential genes are preserved in M. fermentans. Further examination of the highly and partly connected reactions by a novel combinatorial phylogenetic tree, metabolic network, and essential gene analysis indicated that some of the pathways (e.g. purine and pyrimidine metabolisms) with partial connected reactions may be important for the conversions of intermediate metabolites. Taken together, in light of systems and network analyses, the diversity among the Mycoplasma species was manifested on the variations of their limited metabolic abilities during evolution.
Collapse
Affiliation(s)
- Hung-Wei Shu
- Laboratory Science in Medicine, Department of Biotechnology, Institute of Biotechnology in Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Tze-Tze Liu
- Genome Research Center, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Huang-I Chan
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Yen-Ming Liu
- Institute of Genome Sciences, Department of Life Sciences, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Keh-Ming Wu
- Genome Research Center, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Hung-Yu Shu
- Genome Research Center, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Shih-Feng Tsai
- Genome Research Center, National Yang Ming University, Taipei, Taiwan, Republic of China
- Institute of Genome Sciences, Department of Life Sciences, National Yang Ming University, Taipei, Taiwan, Republic of China
- Division of Molecular and Genome Medicine, National Health Research Institute, Zhunan Town, Miaoli County, Taiwan, Republic of China
| | - Kwang-Jen Hsiao
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
| | - Wensi S. Hu
- Laboratory Science in Medicine, Department of Biotechnology, Institute of Biotechnology in Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (WSH); (WVN)
| | - Wailap Victor Ng
- Laboratory Science in Medicine, Department of Biotechnology, Institute of Biotechnology in Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (WSH); (WVN)
| |
Collapse
|
13
|
Li Y, Zheng H, Liu Y, Jiang Y, Xin J, Chen W, Song Z. The complete genome sequence of Mycoplasma bovis strain Hubei-1. PLoS One 2011; 6:e20999. [PMID: 21731639 PMCID: PMC3120828 DOI: 10.1371/journal.pone.0020999] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 05/16/2011] [Indexed: 11/27/2022] Open
Abstract
Infection by Mycoplasma bovis (M. bovis) can induce diseases, such as pneumonia and otitis media in young calves and mastitis and arthritis in older animals. Here, we report the finished and annotated genome sequence of M. bovis strain Hubei-1, a strain isolated in 2008 that caused calf pneumonia on a Chinese farm. The genome of M. bovis strain Hubei-1 contains a single circular chromosome of 953,114 bp with a 29.37% GC content. We identified 803 open reading frames (ORFs) that occupy 89.5% of the genome. While 34 ORFs were Hubei-1 specific, 662 ORFs had orthologs in the M. bovis type strain PG45 genome. Genome analysis validated lateral gene transfer between M. bovis and the Mycoplasma mycoides subspecies mycoides, while phylogenetic analysis found that the closest M. bovis neighbor is Mycoplasma agalactiae. Glycerol may be the main carbon and energy source of M. bovis, and most of the biosynthesis pathways were incomplete. We report that 47 lipoproteins, 12 extracellular proteins and 18 transmembrane proteins are phase-variable and may help M. bovis escape the immune response. Besides lipoproteins and phase-variable proteins, genomic analysis found two possible pathogenicity islands, which consist of four genes and 11 genes each, and several other virulence factors including hemolysin, lipoate protein ligase, dihydrolipoamide dehydrogenase, extracellular cysteine protease and 5′-nucleotidase.
Collapse
Affiliation(s)
- Yuan Li
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yang Liu
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Yanwei Jiang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Jiuqing Xin
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- * E-mail:
| | - Wei Chen
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Zhiqiang Song
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| |
Collapse
|
14
|
Guimaraes AMS, Santos AP, SanMiguel P, Walter T, Timenetsky J, Messick JB. Complete genome sequence of Mycoplasma suis and insights into its biology and adaption to an erythrocyte niche. PLoS One 2011; 6:e19574. [PMID: 21573007 PMCID: PMC3091866 DOI: 10.1371/journal.pone.0019574] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/01/2011] [Indexed: 12/01/2022] Open
Abstract
Mycoplasma suis, the causative agent of porcine infectious anemia, has never been cultured in vitro and mechanisms by which it causes disease are poorly understood. Thus, the objective herein was to use whole genome sequencing and analysis of M. suis to define pathogenicity mechanisms and biochemical pathways. M. suis was harvested from the blood of an experimentally infected pig. Following DNA extraction and construction of a paired end library, whole-genome sequencing was performed using GS-FLX (454) and Titanium chemistry. Reads on paired-end constructs were assembled using GS De Novo Assembler and gaps closed by primer walking; assembly was validated by PFGE. Glimmer and Manatee Annotation Engine were used to predict and annotate protein-coding sequences (CDS). The M. suis genome consists of a single, 742,431 bp chromosome with low G+C content of 31.1%. A total of 844 CDS, 3 single copies, unlinked rRNA genes and 32 tRNAs were identified. Gene homologies and GC skew graph show that M. suis has a typical Mollicutes oriC. The predicted metabolic pathway is concise, showing evidence of adaptation to blood environment. M. suis is a glycolytic species, obtaining energy through sugars fermentation and ATP-synthase. The pentose-phosphate pathway, metabolism of cofactors and vitamins, pyruvate dehydrogenase and NAD+ kinase are missing. Thus, ribose, NADH, NADPH and coenzyme A are possibly essential for its growth. M. suis can generate purines from hypoxanthine, which is secreted by RBCs, and cytidine nucleotides from uracil. Toxins orthologs were not identified. We suggest that M. suis may cause disease by scavenging and competing for host' nutrients, leading to decreased life-span of RBCs. In summary, genome analysis shows that M. suis is dependent on host cell metabolism and this characteristic is likely to be linked to its pathogenicity. The prediction of essential nutrients will aid the development of in vitro cultivation systems.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- CAPES-Fulbright Program, Ministério da Educação, Brasília, Brazil
- * E-mail: (AMSG); (JBM)
| | - Andrea P. Santos
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Phillip SanMiguel
- Purdue Genomics Core Facility, Purdue University, West Lafayette, Indiana, United States of America
| | - Thomas Walter
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jorge Timenetsky
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Joanne B. Messick
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (AMSG); (JBM)
| |
Collapse
|
15
|
Genome sequences of Mycoplasma alligatoris A21JP2T and Mycoplasma crocodyli MP145T. J Bacteriol 2011; 193:2892-3. [PMID: 21460083 DOI: 10.1128/jb.00309-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma alligatoris and Mycoplasma crocodyli are closely related siblings, one being highly virulent and the other relatively attenuated. We compared their genomes to better understand the mechanisms and origins of M. alligatoris' remarkable virulence amid a clade of harmless or much less virulent species. Although its chromosome was refractory to closure, M. alligatoris differed most notably by its complement of sialidases and other genes of the N-acetylneuraminate scavenging and catabolism pathway.
Collapse
|
16
|
Rechnitzer H, Brzuszkiewicz E, Strittmatter A, Liesegang H, Lysnyansky I, Daniel R, Gottschalk G, Rottem S. Genomic features and insights into the biology of Mycoplasma fermentans. Microbiology (Reading) 2011; 157:760-773. [DOI: 10.1099/mic.0.043208-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the complete genomic sequence of Mycoplasma fermentans, an organism suggested to be associated with the pathogenesis of rheumatoid arthritis in humans. The genome is composed of 977 524 bp and has a mean G+C content of 26.95 mol%. There are 835 predicted protein-coding sequences and a mean coding density of 87.6 %. Functions have been assigned to 58.8 % of the predicted protein-coding sequences, while 18.4 % of the proteins are conserved hypothetical proteins and 22.8 % are hypothetical proteins. In addition, there are two complete rRNA operons and 36 tRNA coding sequences. The largest gene families are the ABC transporter family (42 members), and the functionally heterogeneous group of lipoproteins (28 members), which encode the characteristic prokaryotic cysteine ‘lipobox’. Protein secretion occurs through a pathway consisting of SecA, SecD, SecE, SecG, SecY and YidC. Some highly conserved eubacterial proteins, such as GroEL and GroES, are notably absent. The genes encoding DnaK-DnaJ-GrpE and Tig, forming the putative complex of chaperones, are intact, providing the only known control over protein folding. Eighteen nucleases and 17 proteases and peptidases were detected as well as three genes for the thioredoxin-thioreductase system. Overall, this study presents insights into the physiology of M. fermentans, and provides several examples of the genetic basis of systems that might function as virulence factors in this organism.
Collapse
Affiliation(s)
- Hagai Rechnitzer
- Department of Microbiology and Molecular Genetics, The Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Elzbieta Brzuszkiewicz
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität, 37077 Göttingen, Germany
| | | | - Heiko Liesegang
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität, 37077 Göttingen, Germany
| | - Inna Lysnyansky
- Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität, 37077 Göttingen, Germany
| | - Gerhard Gottschalk
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität, 37077 Göttingen, Germany
| | - Shlomo Rottem
- Department of Microbiology and Molecular Genetics, The Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
17
|
Mu HH, Hasebe A, Van Schelt A, Cole BC. Novel interactions of a microbial superantigen with TLR2 and TLR4 differentially regulate IL-17 and Th17-associated cytokines. Cell Microbiol 2010; 13:374-87. [PMID: 20946245 DOI: 10.1111/j.1462-5822.2010.01540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycoplasma arthritidis, an inflammatory murine pathogen, secretes a potent superantigen, Mycoplasma arthritidis mitogen (MAM) that contributes to toxic shock, arthritis and skin necrosis. Previously we showed that MAM induced type 2 T-cell cytokines in mice that express functional TLR2 and TLR4, but type 1 cytokines in mice that lack TLR4 function. We show here that IL-17, pSTAT3 and retinoid-related orphan nuclear receptorγt are rapidly expressed in wild-type C3H/HeSnJ (TLR2+/4+) mice but are significantly delayed in mutant C3H/HeJ (TLR2+/4-) mice. This marked kinetic difference was associated with a high level of IL-6 in TLR2+/4+ mice versus high levels of IL-1β and TNFα in TLR2+/4- mice. Also antibodies to IL-6 and IL-23, suppressed IL-17 responses to MAM in TLR2+/4+ mice whereas anti-IL-1β, but not anti-TNFα, enhanced IL-17 in TLR2+/4- mice. Antibody blocking of TLR4 in TLR2+/4+ mice decreased IL-17 and IL-6 but not IL-23. In addition both IL-17 and IL-6 but not IL-23 were elevated in TLR2 KO mice versus wild-type TLR2+/4+ mice given MAM. We conclude that the MAM interaction with TLR2 versus TLR4 leads to distinct cytokine pathways mediated primarily by IL-1β or IL-6/IL-17 signalling respectively. Our findings suggest that the differential interaction of MAM with different TLRs might play an important role in disease outcomes by M. arthritidis.
Collapse
Affiliation(s)
- Hong-Hua Mu
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, 84132, USA.
| | | | | | | |
Collapse
|
18
|
Cizelj I, Berčič RL, Dušanić D, Narat M, Kos J, Dovč P, Benčina D. Mycoplasma gallisepticum and Mycoplasma synoviae express a cysteine protease CysP, which can cleave chicken IgG into Fab and Fc. MICROBIOLOGY-SGM 2010; 157:362-372. [PMID: 20966088 DOI: 10.1099/mic.0.045641-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Major poultry pathogens M. gallisepticum and M. synoviae share a gene encoding a putative cysteine protease CysP similar to papain cysteine protease (C1A subfamily). Comparison of the cysP gene sequences of 18 M. synoviae and 10 M. gallisepticum strains sequenced in this study showed polymorphisms, including deletions. Seven M. synoviae strains, including the type strain WVU 1853, had a 39 bp deletion in the 3' end of the cysP gene. In the same cysP region, all M. gallisepticum strains showed a deletion of 66 bp. Immunoblot analysis with specific antibodies demonstrated that M. synoviae strains expressed CysP, which was approximately 65 kDa. Both M. synoviae and M. gallisepticum were able to digest chicken IgG (cIgG). Incubation of cIgG (∼170 kDa) with M. synoviae or M. gallisepticum cells (∼15 h at 37 °C) resulted in a papain-like cleavage pattern of cIgG and fragments corresponding to the antigen-binding fragment of IgG (Fab, ∼45 kDa) and the crystallizable region fragment (Fc) of the IgG heavy chain (dimer of ∼60 kDa). Iodoacetamide (50 mM) prevented cleavage of cIgG by both Mycoplasma species. Following site-directed mutagenesis (eight TGA codons were changed to TGG) the cysP gene of M. synoviae ULB 925 was expressed as a His-tagged protein in a cell-free system. Purified recombinant CysP (rCysP; ∼67 kDa, pI∼8) cleaved cIgG into Fab and Fc fragments. This indicates that CysP is responsible for the cIgG cleavage caused by M. synoviae and, probably, by M. gallisepticum. This is the first evidence to our knowledge that mycoplasmas have enzymes that can cleave the host IgG and indicates a novel strategy used by M. gallisepticum and M. synoviae for prolonged survival despite the antibody response of their host.
Collapse
Affiliation(s)
- Ivanka Cizelj
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| | - Rebeka Lucijana Berčič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| | - Daliborka Dušanić
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| | - Mojca Narat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Peter Dovč
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| | - Dušan Benčina
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| |
Collapse
|
19
|
Dybvig K, Lao P, Jordan DS, Simmons WL. Fewer essential genes in mycoplasmas than previous studies suggest. FEMS Microbiol Lett 2010; 311:51-5. [PMID: 20722737 DOI: 10.1111/j.1574-6968.2010.02078.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we describe mutants of Mycoplasma pulmonis that were obtained using a minitransposon, Tn4001TF1, which actively transposes but is then unable to undergo subsequent excision events. Using Tn4001TF1, we disrupted 39 genes previously thought to be essential for growth. Thus, the number of genes required for growth has been overestimated. This study also revealed evidence of gene duplications in M. pulmonis and identified chromosome segregation proteins that are dispensable in mycoplasmas but essential in Bacillus subtilis.
Collapse
Affiliation(s)
- Kevin Dybvig
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | |
Collapse
|
20
|
Nouvel LX, Sirand-Pugnet P, Marenda MS, Sagné E, Barbe V, Mangenot S, Schenowitz C, Jacob D, Barré A, Claverol S, Blanchard A, Citti C. Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity. BMC Genomics 2010; 11:86. [PMID: 20122262 PMCID: PMC2824730 DOI: 10.1186/1471-2164-11-86] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study. RESULTS The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms. CONCLUSION Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow among ruminant mycoplasmas and expansion-reduction of gene repertoires encoding surface proteins, the expression of which is driven by localized genetic micro-events.
Collapse
Affiliation(s)
- Laurent X Nouvel
- Université de Toulouse, ENVT, UMR 1225 Interactions Hôtes - Agents Pathogènes, 31076 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Critical role of dispensable genes in Mycoplasma agalactiae interaction with mammalian cells. Infect Immun 2010; 78:1542-51. [PMID: 20123713 DOI: 10.1128/iai.01195-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mycoplasmas are minimal bacteria whose genomes barely exceed the smallest amount of information required to sustain autonomous life. Despite this apparent simplicity, several mycoplasmas are successful pathogens of humans and animals, in which they establish intimate interactions with epithelial cells at mucosal surfaces. To identify biological functions mediating mycoplasma interactions with mammalian cells, we produced a library of transposon knockout mutants in the ruminant pathogen Mycoplasma agalactiae and used this library to identify mutants displaying a growth-deficient pheonotype in cell culture. M. agalactiae mutants displaying a 3-fold reduction in CFU titers to nearly complete extinction in coculture with HeLa cells were identified. Mapping of transposon insertion sites revealed 18 genomic regions putatively involved in the interaction of M. agalactiae with HeLa cells. Several of these regions encode proteins with features of membrane lipoproteins and/or were involved in horizontal gene transfer with phylogenetically distant pathogenic mycoplasmas of ruminants. Two mutants with the most extreme phenotype carry a transposon in a genomic region designated the NIF locus which encodes homologues of SufS and SufU, two proteins presumably involved in [Fe-S] cluster biosynthesis in Gram-positive bacteria. Complementation studies confirmed the conditional essentiality of the NIF locus, which was found to be critical for proliferation in the presence of HeLa cells and several other mammalian cell lines but dispensable for axenic growth. While our results raised questions regarding essential functions in mycoplasmas, they also provide a means for studying the role of mycoplasmas as minimal pathogens.
Collapse
|
22
|
Pereyre S, Sirand-Pugnet P, Beven L, Charron A, Renaudin H, Barré A, Avenaud P, Jacob D, Couloux A, Barbe V, de Daruvar A, Blanchard A, Bébéar C. Life on arginine for Mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas. PLoS Genet 2009; 5:e1000677. [PMID: 19816563 PMCID: PMC2751442 DOI: 10.1371/journal.pgen.1000677] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/07/2009] [Indexed: 12/24/2022] Open
Abstract
Mycoplasma hominis is an opportunistic human mycoplasma. Two other pathogenic human species, M. genitalium and Ureaplasma parvum, reside within the same natural niche as M. hominis: the urogenital tract. These three species have overlapping, but distinct, pathogenic roles. They have minimal genomes and, thus, reduced metabolic capabilities characterized by distinct energy-generating pathways. Analysis of the M. hominis PG21 genome sequence revealed that it is the second smallest genome among self-replicating free living organisms (665,445 bp, 537 coding sequences (CDSs)). Five clusters of genes were predicted to have undergone horizontal gene transfer (HGT) between M. hominis and the phylogenetically distant U. parvum species. We reconstructed M. hominis metabolic pathways from the predicted genes, with particular emphasis on energy-generating pathways. The Embden–Meyerhoff–Parnas pathway was incomplete, with a single enzyme absent. We identified the three proteins constituting the arginine dihydrolase pathway. This pathway was found essential to promote growth in vivo. The predicted presence of dimethylarginine dimethylaminohydrolase suggested that arginine catabolism is more complex than initially described. This enzyme may have been acquired by HGT from non-mollicute bacteria. Comparison of the three minimal mollicute genomes showed that 247 CDSs were common to all three genomes, whereas 220 CDSs were specific to M. hominis, 172 CDSs were specific to M. genitalium, and 280 CDSs were specific to U. parvum. Within these species-specific genes, two major sets of genes could be identified: one including genes involved in various energy-generating pathways, depending on the energy source used (glucose, urea, or arginine) and another involved in cytadherence and virulence. Therefore, a minimal mycoplasma cell, not including cytadherence and virulence-related genes, could be envisaged containing a core genome (247 genes), plus a set of genes required for providing energy. For M. hominis, this set would include 247+9 genes, resulting in a theoretical minimal genome of 256 genes. Mycoplasma hominis, M. genitalium, and Ureaplasma parvum are human pathogenic bacteria that colonize the urogenital tract. They have minimal genomes, and thus have a minimal metabolic capacity. However, they have distinct energy-generating pathways and distinct pathogenic roles. We compared the genomes of these three human pathogen minimal species, providing further insight into the composition of hypothetical minimal gene sets needed for life. To this end, we sequenced the whole M. hominis genome and reconstructed its energy-generating pathways from gene predictions. Its unusual major energy-producing pathway through arginine hydrolysis was confirmed in both genome analyses and in vivo assays. Our findings suggest that M. hominis and U. parvum underwent genetic exchange, probably while sharing a common host. We proposed a set of genes likely to represent a minimal genome. For M. hominis, this minimal genome, not including cytadherence and virulence-related genes, can be defined comprising the 247 genes shared by the three minimal genital mollicutes, combined with a set of nine genes needed for energy production for cell metabolism. This study provides insight for the synthesis of artificial genomes.
Collapse
Affiliation(s)
- Sabine Pereyre
- Université de Bordeaux, Laboratoire de Bactériologie EA 3671, Bordeaux, France
| | - Pascal Sirand-Pugnet
- INRA, UMR 1090, Villenave d'Ornon, France
- Université de Bordeaux, UMR 1090, Villenave d'Ornon, France
| | - Laure Beven
- INRA, UMR 1090, Villenave d'Ornon, France
- Université de Bordeaux, UMR 1090, Villenave d'Ornon, France
| | - Alain Charron
- Université de Bordeaux, Laboratoire de Bactériologie EA 3671, Bordeaux, France
| | - Hélène Renaudin
- Université de Bordeaux, Laboratoire de Bactériologie EA 3671, Bordeaux, France
| | - Aurélien Barré
- Université de Bordeaux, Centre de Bioinformatique de Bordeaux, Bordeaux, France
| | - Philippe Avenaud
- Université de Bordeaux, Laboratoire de Bactériologie EA 3671, Bordeaux, France
| | - Daniel Jacob
- Université de Bordeaux, Centre de Bioinformatique de Bordeaux, Bordeaux, France
| | | | - Valérie Barbe
- Génoscope, Centre National de Séquençage, Evry, France
| | - Antoine de Daruvar
- Université de Bordeaux, Centre de Bioinformatique de Bordeaux, Bordeaux, France
- CNRS UMR 5800, Laboratoire Bordelais de Recherche en Informatique, Talence, France
| | - Alain Blanchard
- INRA, UMR 1090, Villenave d'Ornon, France
- Université de Bordeaux, UMR 1090, Villenave d'Ornon, France
| | - Cécile Bébéar
- Université de Bordeaux, Laboratoire de Bactériologie EA 3671, Bordeaux, France
- * E-mail:
| |
Collapse
|
23
|
Daubenspeck JM, Bolland JR, Luo W, Simmons WL, Dybvig K. Identification of exopolysaccharide-deficient mutants of Mycoplasma pulmonis. Mol Microbiol 2009; 72:1235-45. [PMID: 19432800 DOI: 10.1111/j.1365-2958.2009.06720.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The presence of capsular exopolysaccharide (EPS) in Mollicutes has been inferred from electron micrographs for over 50 years without conclusive data to support the production of complex carbohydrates by the organism. Mycoplasma pulmonis binds the lectin Griffonia simplicifolia I (GS-I), which is specific for terminal beta-linked galactose residues. Mutants that failed to produce the EPS bound by GS-I were isolated from a transposon library. All of the mutants had the transposon located in open reading frame MYPU_7410 or MYPU_7420. These overlapping genes are predicted to code for a heterodimeric pair of ABC transporter permeases and may code for part of a new pathway for synthesis of EPS. Analysis by lectin-affinity chromatography in conjunction with gas chromatography demonstrated that the wild-type mycoplasma produced an EPS (EPS-I) composed of equimolar amounts of glucose and galactose that was lacking in the mutants. Phenotypic analysis revealed that the mutants had an increased propensity to form a biofilm on glass surfaces, colonized mouse lung and trachea efficiently, but had a decreased association with the A549 lung cell line. Confounding the interpretation of these results is the observation that the mutants missing EPS-I had an eightfold overproduction of an apparent second EPS (EPS-II) containing N-acetylglucosamine.
Collapse
Affiliation(s)
- James M Daubenspeck
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
24
|
Sippel KH, Robbins AH, Reutzel R, Boehlein SK, Namiki K, Goodison S, Agbandje-McKenna M, Rosser CJ, McKenna R. Structural insights into the extracytoplasmic thiamine-binding lipoprotein p37 of Mycoplasma hyorhinis. J Bacteriol 2009; 191:2585-92. [PMID: 19233924 PMCID: PMC2668404 DOI: 10.1128/jb.01680-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/09/2009] [Indexed: 01/07/2023] Open
Abstract
The Mycoplasma hyorhinis protein p37 has been implicated in tumorigenic transformation for more than 20 years. Though there are many speculations as to its function, based solely on sequence homology, the issue has remained unresolved. Presented here is the 1.6-A-resolution refined crystal structure of M. hyorhinis p37, renamed the extracytoplasmic thiamine-binding lipoprotein (Cypl). The structure shows thiamine pyrophosphate (TPP) and two calcium ions are bound to Cypl and give the first insights into possible functions of the Cypl-like family of proteins. Sequence alignments of Cypl-like proteins between several different species of mycoplasma show that the thiamine-binding site is likely conserved and structural alignments reveal the similarity of Cypl to various binding proteins. While the experimentally determined function of Cypl remains unknown, the structure shows that the protein is a TPP-binding protein, opening up many avenues for future mechanistic studies and making Cypl a possible target for combating mycoplasma infections and tumorigenic transformation.
Collapse
Affiliation(s)
- Katherine H Sippel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Luo W, Tu AHT, Cao Z, Yu H, Dybvig K. Identification of an isoschizomer of the HhaI DNA methyltransferase in Mycoplasma arthritidis. FEMS Microbiol Lett 2008; 290:195-8. [PMID: 19054074 DOI: 10.1111/j.1574-6968.2008.01428.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The genome of Mycoplasma arthritidis strain 158 has modified cytosine residues at AGCT sequences that render the DNA resistant to digestion with the AluI restriction endonuclease. The DNA methyltransferase responsible for the base modification has previously been designated MarI. From the complete genome sequence of M. arthritidis, we identify Marth_orf138 as a candidate marI gene. Marth_orf138 was cloned in Escherichia coli and its TGA codons converted to TGG. DNA isolated from E. coli cells expressing the modified Marth_orf138 gene was degraded by the AluI nuclease, indicating that Marth_orf138 does not code for MarI. However, the DNA from E. coli was found to have acquired resistance to the restriction endonuclease HhaI. Genomic DNA from M. arthritidis was also found to be resistant to HhaI (recognizes GCGC). The M. arthritidis isoschizomer of the HhaI DNA methyltransferase, coded by Marth_orf138, is designated MarII. Transformation of M. arthritidis was not significantly affected by modification of plasmid at HhaI sites, indicating that the mycoplasma lacks a restriction endonuclease that recognizes GCGC sites.
Collapse
Affiliation(s)
- Wenyi Luo
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
27
|
Association of Mycoplasma arthritidis mitogen with lethal toxicity but not with arthritis in mice. Infect Immun 2008; 76:4989-98. [PMID: 18779340 DOI: 10.1128/iai.00667-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma arthritidis induces an acute to chronic arthritis in rodents. Arthritis induced in mice histologically resembles human rheumatoid arthritis and can be associated with lethal toxicity following systemic injection. The M. arthritidis mitogen (MAM) superantigen has long been implicated as having a role in pathogenesis, but its significance with respect to toxicity and arthritogenicity in mycoplasma-induced disease is unclear. To study the pathogenic significance of MAM, M. arthritidis mutants that overproduced or failed to produce MAM were developed. MAM overproduction and knockout mutants were more and less mitogenic, respectively, than the wild-type strain. The degree of mitogenic activity correlated with lethal toxicity in DBA/2J mice. In contrast, histopathological studies detected no correlation between MAM production and the severity of arthritis induced in DBA/2J and CBA/J mice.
Collapse
|