1
|
Tsai CN, Massicotte MA, MacNair CR, Perry JN, Brown ED, Coombes BK. Screening under infection-relevant conditions reveals chemical sensitivity in multidrug resistant invasive non-typhoidal Salmonella (iNTS). RSC Chem Biol 2023; 4:600-612. [PMID: 37547457 PMCID: PMC10398353 DOI: 10.1039/d3cb00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Bloodstream infections caused by invasive, non-typhoidal Salmonella (iNTS) are a major global health concern, particularly in Africa where the pathogenic variant of Salmonella Typhimurium sequence type (ST) 313 is dominant. Unlike S. Typhimurium strains that cause gastroenteritis, iNTS strains cause bloodstream infections and are resistant to multiple first-line antibiotics, thus limiting current treatment options. Here, we developed and implemented multiple small molecule screens under physiological, infection-relevant conditions to reveal chemical sensitivities in ST313 and to identify host-directed therapeutics as entry points to drug discovery to combat the clinical burden of iNTS. Screening ST313 iNTS under host-mimicking growth conditions identified 92 compounds with antimicrobial activity despite inherent multidrug resistance. We characterized the antimicrobial activity of the nucleoside analog 3'-azido-3'-deoxythymidine as an exemplary compound from this screen, which depended on bacterial thymidine kinase activity for antimicrobial activity. In a companion macrophage-based screening platform designed to enrich for host-directed therapeutics, we identified three compounds (amodiaquine, berbamine, and indatraline) as actives that required the presence of host cells for antibacterial activity. These three compounds had antimicrobial activity only in the presence of host cells that significantly inhibited intracellular ST313 iNTS replication in macrophages. This work provides evidence that despite high invasiveness and multidrug resistance, ST313 iNTS remains susceptible to unconventional drug discovery approaches.
Collapse
Affiliation(s)
- Caressa N Tsai
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Marie-Ange Massicotte
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Craig R MacNair
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Jordyn N Perry
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
| | - Eric D Brown
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
| | - Brian K Coombes
- Department of Biochemistry & Biomedical Sciences, McMaster University Hamilton ON L8S 4L8 Canada
- Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON Canada
- Farncombe Family Digestive Health Research Institute Hamilton ON Canada
| |
Collapse
|
2
|
Stimulation of Toll-Like Receptor 3 Diminishes Intracellular Growth of Salmonella Typhimurium by Enhancing Autophagy in Murine Macrophages. Metabolites 2021; 11:metabo11090602. [PMID: 34564417 PMCID: PMC8466172 DOI: 10.3390/metabo11090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative Gram-negative bacterium that causes acute gastroenteritis and food poisoning. S. Typhimurium can survive within macrophages that are able to initiate the innate immune response after recognizing bacteria via various pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs). In this study, we investigated the effects and molecular mechanisms by which agonists of endosomal TLRs—especially TLR3—contribute to controlling S. Typhimurium infection in murine macrophages. Treatment with polyinosinic:polycytidylic acid (poly(I:C))—an agonist of TLR3—significantly suppressed intracellular bacterial growth by promoting intracellular ROS production in S. Typhimurium-infected cells. Pretreatment with diphenyleneiodonium (DPI)—an NADPH oxidase inhibitor—reduced phosphorylated MEK1/2 levels and restored intracellular bacterial growth in poly(I:C)-treated cells during S. Typhimurium infection. Nitric oxide (NO) production increased through the NF-κB-mediated signaling pathway in poly(I:C)-treated cells during S. Typhimurium infection. Intracellular microtubule-associated protein 1A/1B-light chain 3 (LC3) levels were increased in poly(I:C)-treated cells; however, they were decreased in cells pretreated with 3-methyladenine (3-MA)—a commonly used inhibitor of autophagy. These results suggest that poly(I:C) induces autophagy and enhances ROS production via MEK1/2-mediated signaling to suppress intracellular bacterial growth in S. Typhimurium-infected murine macrophages, and that a TLR3 agonist could be developed as an immune enhancer to protect against S. Typhimurium infection.
Collapse
|
3
|
Zhang H, Wang M, Jia J, Zhao J, Radebe SM, Yu Q. The Protective Effect of E. faecium on S. typhimurium Infection Induced Damage to Intestinal Mucosa. Front Vet Sci 2021; 8:740424. [PMID: 34722703 PMCID: PMC8554125 DOI: 10.3389/fvets.2021.740424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 01/17/2023] Open
Abstract
Intensive farming is prone to induce large-scale outbreaks of infectious diseases, with increasing use of antibiotics, which deviate from the demand of organic farming. The high mortality rate of chickens infected with Salmonella caused huge economic losses; therefore, the promising safe prevention and treatment measures of Salmonella are in urgent need, such as probiotics. Probiotics are becoming an ideal alternative treatment option besides antibiotics, but the effective chicken probiotic strains with clear protective mechanism against Salmonella remain unclear. In this study, we found Enterococcus faecium YQH2 was effective in preventing Salmonella typhimurium infection in chickens. Salmonella typhimurium induced the loss of body weight, and liver and intestinal morphology damage. The inflammatory factor levels increased and intestinal proliferation inhibited. However, after treatment with Enterococcus faecium YQH2, broilers grew normally, the pathological changes of liver and intestine were reduced, and the colonization of Salmonella in the intestine was improved. Not only that, the length of villi and the depth of crypts were relatively normal, and the levels of inflammatory factors such as IL-1β, TNF-α, and IL-8 were reduced. The number of PCNA cells of Enterococcus faecium YQH2 returned to normal under the action of Salmonella typhimurium infection, which was conducive to the normal proliferation of intestinal epithelial cells. The protective effect of Enterococcus faecium YQH2 may be due to the attribution to the activation of hypoxia and then induced the proliferation of intestinal stem cells to repair the damage of intestinal mucosa under Salmonella typhimurium infection. This study demonstrated that Enterococcus faecium YQH2 was effective in preventing Salmonella typhimurium infection, which could be further used in the chicken health breeding.
Collapse
|
4
|
Lee HJ, Hong WG, Woo Y, Ahn JH, Ko HJ, Kim H, Moon S, Hahn TW, Jung YM, Song DK, Jung YJ. Lysophosphatidylcholine Enhances Bactericidal Activity by Promoting Phagosome Maturation via the Activation of the NF-κB Pathway during Salmonella Infection in Mouse Macrophages. Mol Cells 2020; 43:989-1001. [PMID: 33250450 PMCID: PMC7772511 DOI: 10.14348/molcells.2020.0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes salmonellosis and mortality worldwide. S. Typhimurium infects macrophages and survives within phagosomes by avoiding the phagosome-lysosome fusion system. Phagosomes sequentially acquire different Rab GTPases during maturation and eventually fuse with acidic lysosomes. Lysophosphatidylcholine (LPC) is a bioactive lipid that is associated with the generation of chemoattractants and reactive oxygen species (ROS). In our previous study, LPC controlled the intracellular growth of Mycobacterium tuberculosis by promoting phagosome maturation. In this study, to verify whether LPC enhances phagosome maturation and regulates the intracellular growth of S. Typhimurium, macrophages were infected with S. Typhimurium. LPC decreased the intracellular bacterial burden, but it did not induce cytotoxicity in S. Typhimuriuminfected cells. In addition, combined administration of LPC and antibiotic significantly reduced the bacterial burden in the spleen and the liver. The ratios of the colocalization of intracellular S. Typhimurium with phagosome maturation markers, such as early endosome antigen 1 (EEA1) and lysosome-associated membrane protein 1 (LAMP-1), were significantly increased in LPC-treated cells. The expression level of cleaved cathepsin D was rapidly increased in LPCtreated cells during S. Typhimurium infection. Treatment with LPC enhanced ROS production, but it did not affect nitric oxide production in S. Typhimurium-infected cells. LPC also rapidly triggered the phosphorylation of IκBα during S. Typhimurium infection. These results suggest that LPC can improve phagosome maturation via ROS-induced activation of NF-κB pathway and thus may be developed as a therapeutic agent to control S. Typhimurium growth.
Collapse
Affiliation(s)
- Hyo-Ji Lee
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon 2434, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Wan-Gi Hong
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 4341, Korea
| | - Yunseo Woo
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon 2434, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon 2441, Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 2441, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Hyeran Kim
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon 2434, Korea
| | - Sungjin Moon
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon 2434, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Tae-Wook Hahn
- Department of Veterinary Medicine, Kangwon National University, Chuncheon 231, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Yu-Jin Jung
- Department of Biological Sciences and Institute of Life Sciences, Kangwon National University, Chuncheon 2434, Korea
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 4341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
5
|
Wang S, Cao Y, Deng S, Jiang X, Wang J, Zhang X, Zhang J, Liu G, Lian Z. Overexpression of Toll-like Receptor 4-linked Mitogen-activated Protein Kinase Signaling Contributes to Internalization of Escherichia coli in Sheep. Int J Biol Sci 2018; 14:1022-1032. [PMID: 29989103 PMCID: PMC6036738 DOI: 10.7150/ijbs.25275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli is one of the most common causal pathogens of mastitis in milk-producing mammals. Toll-like receptor 4 (TLR4) is important for host recognition of this bacteria. Increased activation of TLR4 can markedly enhance the internalization of E. coli. In this study, the relationship between TLR4 and mitogen-activated protein kinase (MAPK) signaling pathways in mediating E. coli internalization was evaluated in sheep monocytes. Using a TLR4-overexpressing transgenic (Tg) sheep model, we explored the bacterial internalization mechanism in sheep. We found that monocytes of Tg sheep could phagocytize more bacteria and exhibited higher adhesive capacity. The specific inhibition of p38 MAPK or c-Jun N-terminal kinase (JNK) or extracellular signal-regulated kinases (ERKs) reduced TLR4-dependent internalization of bacteria into sheep monocytes. Furthermore, the inhibition of MAPK signaling down-regulated the adhesive capacity of monocytes and the expression of scavenger receptors and adhesion molecules. Taken together, the overexpression of TLR4 in transgenic sheep enhanced the internalization of E. coli via MAPK signaling.
Collapse
Affiliation(s)
- Sutian Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Jiang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiahao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Agbayani G, Wachholz K, Chattopadhyay A, Gurnani K, Murphy SP, Krishnan L. Modulation of Th17 and regulatory T-cell responses during murine pregnancy contributes to increased maternal susceptibility toSalmonellaTyphimurium infection. Am J Reprod Immunol 2017; 78. [DOI: 10.1111/aji.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gerard Agbayani
- Department of Biochemistry, Microbiology and Immunology; University of Ottawa; Ottawa ON Canada
- Division of Life Sciences; Human Health Therapeutics, National Research Council Canada; Ottawa ON Canada
| | - Kristina Wachholz
- Division of Life Sciences; Human Health Therapeutics, National Research Council Canada; Ottawa ON Canada
| | - Anindita Chattopadhyay
- Division of Life Sciences; Human Health Therapeutics, National Research Council Canada; Ottawa ON Canada
| | - Komal Gurnani
- Division of Life Sciences; Human Health Therapeutics, National Research Council Canada; Ottawa ON Canada
| | - Shawn P. Murphy
- Department of Obstetrics and Gynecology; University of Rochester; Rochester NY USA
- Department of Microbiology and Immunology; University of Rochester; Rochester NY USA
| | - Lakshmi Krishnan
- Department of Biochemistry, Microbiology and Immunology; University of Ottawa; Ottawa ON Canada
- Division of Life Sciences; Human Health Therapeutics, National Research Council Canada; Ottawa ON Canada
| |
Collapse
|
7
|
Ilyas B, Tsai CN, Coombes BK. Evolution of Salmonella-Host Cell Interactions through a Dynamic Bacterial Genome. Front Cell Infect Microbiol 2017; 7:428. [PMID: 29034217 PMCID: PMC5626846 DOI: 10.3389/fcimb.2017.00428] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonella Typhimurium has a broad arsenal of genes that are tightly regulated and coordinated to facilitate adaptation to the various host environments it colonizes. The genome of Salmonella Typhimurium has undergone multiple gene acquisition events and has accrued changes in non-coding DNA that have undergone selection by regulatory evolution. Together, at least 17 horizontally acquired pathogenicity islands (SPIs), prophage-associated genes, and changes in core genome regulation contribute to the virulence program of Salmonella. Here, we review the latest understanding of these elements and their contributions to pathogenesis, emphasizing the regulatory circuitry that controls niche-specific gene expression. In addition to an overview of the importance of SPI-1 and SPI-2 to host invasion and colonization, we describe the recently characterized contributions of other SPIs, including the antibacterial activity of SPI-6 and adhesion and invasion mediated by SPI-4. We further discuss how these fitness traits have been integrated into the regulatory circuitry of the bacterial cell through cis-regulatory evolution and by a careful balance of silencing and counter-silencing by regulatory proteins. Detailed understanding of regulatory evolution within Salmonella is uncovering novel aspects of infection biology that relate to host-pathogen interactions and evasion of host immunity.
Collapse
Affiliation(s)
- Bushra Ilyas
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Brian K Coombes
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Perkins DJ, Rajaiah R, Tennant SM, Ramachandran G, Higginson EE, Dyson TN, Vogel SN. Salmonella Typhimurium Co-Opts the Host Type I IFN System To Restrict Macrophage Innate Immune Transcriptional Responses Selectively. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202980 DOI: 10.4049/jimmunol.1500105] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Innate immune inflammatory responses are subject to complex layers of negative regulation at intestinal mucosal surfaces. Although the type I IFN system is critical for amplifying antiviral immunity, it has been shown to play a homeostatic role in some models of autoimmune inflammation. Type I IFN is triggered in the gut by select bacterial pathogens, but whether and how the type I IFN might regulate innate immunity in the intestinal environment have not been investigated in the context of Salmonella enterica serovar Typhimurium (ST). ST infection of human or murine macrophages reveals that IFN-β selectively restricts the transcriptional responses mediated by both the TLRs and the NOD-like receptors. Specifically, IFN-β potently represses ST-dependent innate induction of IL-1 family cytokines and neutrophil chemokines. This IFN-β-mediated transcriptional repression was independent of the effects of IFN-β on ST-induced macrophage cell death, but significantly dependent on IL-10 regulation. We further evaluated ST pathogenesis in vivo following oral inoculation of mice lacking IFN-β. We show that IFN-β(-/-) mice exhibit greater resistance to oral ST infection and a slower spread of ST to distal sterile sites. This work provides mechanistic insight into the relationship between ST and type I IFN, and demonstrates an additional mechanism by which IFN-β may promote spread of enteric pathogens.
Collapse
Affiliation(s)
- Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Rajesh Rajaiah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Sharon M Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Girish Ramachandran
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ellen E Higginson
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tristan N Dyson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| |
Collapse
|
9
|
Behnsen J, Perez-Lopez A, Nuccio SP, Raffatellu M. Exploiting host immunity: the Salmonella paradigm. Trends Immunol 2015; 36:112-20. [PMID: 25582038 DOI: 10.1016/j.it.2014.12.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/08/2023]
Abstract
Pathogens have evolved clever strategies to evade and in some cases exploit the attacks of an activated immune system. Salmonella enterica is one such pathogen, exploiting multiple aspects of host defense to promote its replication in the host. Here we review recent findings on the mechanisms by which Salmonella establishes systemic and chronic infection, including strategies involving manipulation of innate immune signaling and inflammatory forms of cell death, as well as immune evasion by establishing residency in M2 macrophages. We also examine recent evidence showing that the oxidative environment and the high levels of antimicrobial proteins produced in response to localized Salmonella gastrointestinal infection enable the pathogen to successfully outcompete the resident gut microbiota.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Araceli Perez-Lopez
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Sean-Paul Nuccio
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA.
| |
Collapse
|
10
|
Hickey AJ, Lin JS, Kummer LW, Szaba FM, Duso DK, Tighe M, Parent MA, Smiley ST. Intranasal prophylaxis with CpG oligodeoxynucleotide can protect against Yersinia pestis infection. Infect Immun 2013; 81:2123-32. [PMID: 23545300 PMCID: PMC3676034 DOI: 10.1128/iai.00316-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/03/2023] Open
Abstract
Immunomodulatory agents potentially represent a new class of broad-spectrum antimicrobials. Here, we demonstrate that prophylaxis with immunomodulatory cytosine-phosphate-guanidine (CpG) oligodeoxynucleotide (ODN), a toll-like receptor 9 (TLR9) agonist, confers protection against Yersinia pestis, the etiologic agent of plague. The data establish that intranasal administration of CpG ODN 1 day prior to lethal pulmonary exposure to Y. pestis strain KIM D27 significantly improves survival of C57BL/6 mice and reduces bacterial growth in hepatic tissue, despite paradoxically increasing bacterial growth in the lung. All of these CpG ODN-mediated impacts, including the increased pulmonary burden, are TLR9 dependent, as they are not observed in TLR9-deficient mice. The capacity of prophylactic intranasal CpG ODN to enhance survival does not require adaptive immunity, as it is evident in mice lacking B and/or T cells; however, the presence of T cells improves long-term survival. The prophylactic regimen also improves survival and reduces hepatic bacterial burden in mice challenged intraperitoneally with KIM D27, indicating that intranasal delivery of CpG ODN has systemic impacts. Indeed, intranasal prophylaxis with CpG ODN provides significant protection against subcutaneous challenge with Y. pestis strain CO92 even though it fails to protect mice from intranasal challenge with that fully virulent strain.
Collapse
|
11
|
Hyun J, Kanagavelu S, Fukata M. A unique host defense pathway: TRIF mediates both antiviral and antibacterial immune responses. Microbes Infect 2012; 15:1-10. [PMID: 23116944 DOI: 10.1016/j.micinf.2012.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/19/2012] [Indexed: 01/07/2023]
Abstract
Both anti-viral and anti-bacterial host defense mechanisms involve TRIF signaling. TRIF provides early clearance of pathogens and coordination of a local inflammatory ensemble through an interferon cascade, while it may trigger organ damage. The multipotentiality of TRIF-mediated immune machinery may direct the fate of our continuous battle with microbes.
Collapse
Affiliation(s)
- Jinhee Hyun
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
12
|
Sotolongo J, Ruiz J, Fukata M. The role of innate immunity in the host defense against intestinal bacterial pathogens. Curr Infect Dis Rep 2012; 14:15-23. [PMID: 22139594 DOI: 10.1007/s11908-011-0234-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Eradication of infectious disease is our global health challenge. After encountering intestinal infection with a bacterial pathogen, the host defense program is initiated by local antigen-presenting cells (APCs) that eliminate invading pathogens by phagocytosis and establish localized inflammation by secreting cytokines and chemokines. These pathogen-experienced APCs migrate to the mesenteric lymph nodes, where host immune responses are precisely orchestrated. Initiation and regulation of this defense program appear to be largely dependent on innate immunity which is antigen non-specific and provides a rapid defense against broader targets. On the other hand, many bacterial enteropathogens have evoked abilities to modify the host defense program to their advantage. Therefore, better understanding of the host-pathogen interactions is essential to establish effective eradication strategies for enteric infectious diseases. In this review, we will discuss the current understanding of innate immune regulation of the host defense mechanisms against intestinal infection by bacterial pathogens.
Collapse
Affiliation(s)
- John Sotolongo
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Post Office Box 016960 (D-149), Miami, FL, 33101, USA
| | | | | |
Collapse
|
13
|
Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 2012; 13:954-62. [PMID: 22922364 DOI: 10.1038/ni.2397] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/16/2012] [Indexed: 01/04/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1(-/-) mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1(-/-) macrophages, they were highly resistant to S. Typhimurium-induced cell death. Specific inhibition of the kinase RIP1 or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response.
Collapse
|
14
|
Eicher SD, Patterson JA, Rostagno MH. β-Glucan plus ascorbic acid in neonatal calves modulates immune functions with and without Salmonella enterica serovar Dublin. Vet Immunol Immunopathol 2011; 142:258-64. [PMID: 21628075 DOI: 10.1016/j.vetimm.2011.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 04/10/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
Abstract
To determine if β-glucan plus ascorbic acid affects adherence and pathogenicity of Salmonella Dublin and innate immune response in neonatal calves, 20 calves were fed control or supplemented diets (β-glucan, 0.9 g/d, plus ascorbic acid, 500 mg/d) until d 23. On d 21, 5 calves per treatment received 2.4 × 10(8)CFU of S. Dublin orally. S. Dublin spread through intestinal tissues into mesenteric lymph nodes (MLN), spleen, and lung tissues within 48 h. All supplemented calves had less mRNA expression of IL-1 receptor antagonist in liver. Leukocyte cell surface markers changed in lung cells, but not in blood, MLN, or spleen. CD14 in lungs was greatest for calves receiving supplement and challenge, but CD18 in lungs was greater for challenged than control calves. Lung DEC205 was greatest for challenged calves with and without supplement compared to controls, but more lung cells expressed CD14 for all treated groups compared to controls. These data show that S. Dublin briefly inhabited the intestinal tract, moving quickly to spleen, MLN, and lung tissues. Lung tissue was modulated by S. Dublin, but supplement alone increased CD14 expressing cells. The supplement appears not to attenuate invasiness but modified some lung cell populations by 48h.
Collapse
Affiliation(s)
- S D Eicher
- USDA-ARS, Livestock Behavior Research Unit, 125 S. Russell St., West Lafayette, IN 47907, United States.
| | | | | |
Collapse
|
15
|
Arpaia N, Godec J, Lau L, Sivick KE, McLaughlin LM, Jones MB, Dracheva T, Peterson SN, Monack DM, Barton GM. TLR signaling is required for Salmonella typhimurium virulence. Cell 2011; 144:675-88. [PMID: 21376231 DOI: 10.1016/j.cell.2011.01.031] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 12/06/2010] [Accepted: 01/10/2011] [Indexed: 01/02/2023]
Abstract
Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.
Collapse
Affiliation(s)
- Nicholas Arpaia
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rostagno MH, Eicher SD, Lay DC. Immunological, physiological, and behavioral effects of Salmonella enterica carriage and shedding in experimentally infected finishing pigs. Foodborne Pathog Dis 2011; 8:623-30. [PMID: 21254892 DOI: 10.1089/fpd.2010.0735] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Finishing pigs infected with Salmonella pose significant food safety risks by carrying the pathogen into abattoirs. This study was conducted to determine the dynamics of Salmonella infection in finishing pigs, and associated immunological, physiological, and behavioral alterations, by longitudinally comparing infected to noninfected pigs during 6 weeks postinfection (p.i.). Bacteriological data revealed that all inoculated pigs started shedding Salmonella within 2 h p.i., and persistently shed the bacteria up to the end of the study. Ileal and cecal contents, as well as mesenteric lymph node samples, were all positive throughout the study, containing 3-4 log(10) cfu/g of Salmonella at 24 h p.i., and 4-5 log(10) cfu/g of Salmonella up to 4 weeks p.i. Levels of Salmonella dropped markedly (p < 0.05) in all samples at 5 weeks p.i. There was no difference between groups for blood cell counts. Tumor necrosis factor-α was greater (p < 0.05) in infected pigs: (1) in the mesenteric lymph nodes by 48 h p.i.; (2) at 24 h and 3 weeks p.i. in the ileum; and (3) in the cecum and spleen at 3 weeks p.i. Interleukin-12, interleukin-1 and its antagonist, and a porcine-specific antimicrobial peptide RNA expression in tissues changed over time, but were not different between groups. Infected pigs spent more time in ventral recumbency, standing, and sitting than controls (p < 0.01). Infected pigs were also more active (p < 0.01), and approached a novel object more quickly than control pigs (p < 0.05). No treatment differences were detected for rectal temperature or plasma cortisol (p > 0.10). This study shows that finishing pigs can carry high levels of Salmonella for up to 4 weeks p.i. in the gastrointestinal contents and mesenteric lymph nodes, shedding high levels of the bacteria without developing clinical symptoms, but developing an immune response throughout the intestinal tract. Moreover, subtle behavioral changes measured as postures were detected, and therefore warrant additional investigation.
Collapse
Affiliation(s)
- Marcos H Rostagno
- Livestock Behavior Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 125 S. Russell St., West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|