1
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
2
|
Steingard CH, Pinochet-Barros A, Wendel BM, Helmann JD. Iron homeostasis in Bacillus subtilis relies on three differentially expressed efflux systems. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001289. [PMID: 36748638 PMCID: PMC9993123 DOI: 10.1099/mic.0.001289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In Bacillus subtilis, iron homeostasis is maintained by the ferric uptake regulator (Fur) and manganese homeostasis relies on the manganese transport regulator (MntR). Both Fur and MntR function as bi-functional metalloregulators that repress import and activate metal ion efflux systems. The ferrous iron efflux ATPase, PfeT, is derepressed by hydrogen peroxide (H2O2) as sensed by PerR and induced by iron as sensed by Fur. Mutants lacking PfeT are sensitive to iron intoxication. Here, we show that mntR mutants are also iron-sensitive, largely due to decreased expression of the MntR-activated MneP and MneS cation diffusion facilitator (CDF) proteins previously defined for their role in Mn2+ export. The ability of MneP and MneS to export iron is apparent even when their expression is not induced by Mn2+. Our results demonstrate that PfeT, MneP and MneS each contribute to iron homeostasis, and a triple mutant lacking all three is more iron-sensitive than any single mutant. We further show that sensitivity to H2O2 does not correlate with iron sensitivity. For example, an mntR mutant is H2O2-sensitive due to elevated Mn(II) that increases PerR-mediated repression of peroxide resistance genes, and this repression is antagonized by elevated Fe2+ in an mntR pfeT mutant. Thus, H2O2-sensitivity reflects the relative levels of Mn2+ and Fe2+ as sensed by the PerR regulatory protein. These results underscore the complex interplay between manganese, iron and oxidative stress in B. subtilis.
Collapse
Affiliation(s)
- Caroline H Steingard
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | - Azul Pinochet-Barros
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | - Brian M Wendel
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| |
Collapse
|
3
|
Abstract
Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.
Collapse
|
4
|
Powers TR, Haeberle AL, Predeus AV, Hammarlöf DL, Cundiff JA, Saldaña-Ahuactzi Z, Hokamp K, Hinton JCD, Knodler LA. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog 2021; 17:e1009280. [PMID: 34460873 PMCID: PMC8432900 DOI: 10.1371/journal.ppat.1009280] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.
Collapse
Affiliation(s)
- TuShun R. Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
5
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
6
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
7
|
Radin JN, Zhu J, Brazel EB, McDevitt CA, Kehl-Fie TE. Synergy between Nutritional Immunity and Independent Host Defenses Contributes to the Importance of the MntABC Manganese Transporter during Staphylococcus aureus Infection. Infect Immun 2019; 87:e00642-18. [PMID: 30348827 PMCID: PMC6300641 DOI: 10.1128/iai.00642-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
During infection, the host utilizes a diverse array of processes to combat invaders, including the restriction of availability of essential nutrients such as manganese. Similarly to many other pathogens, Staphylococcus aureus possesses two manganese importers, MntH and MntABC. Several infection models have revealed a critical role for MntABC during staphylococcal infection. However, culture-based studies have suggested parity between the two transporters when cells are resisting manganese starvation imposed by the manganese binding immune effector calprotectin. In this investigation, initial elemental analysis revealed that MntABC is the primary transporter responsible for obtaining manganese in culture in the presence of calprotectin. MntABC was also necessary to maintain wild-type levels of manganese-dependent superoxide dismutase activity in the presence of calprotectin. Building on this framework, we investigated if MntABC enabled S. aureus to resist the synergistic actions of nutritional immunity and other host defenses. This analysis revealed that MntABC critically contributes to staphylococcal growth when S. aureus is subjected to manganese limitations and exposed to oxidative stress. This transporter was also important for growth in manganese-limited environments when S. aureus was forced to consume glucose as an energy source, which occurs when it encounters nitric oxide. MntABC also expanded the pH range conducive for S. aureus growth under conditions of manganese scarcity. Collectively, the data presented in this work provide a robust molecular basis for the crucial role of MntABC in staphylococcal virulence. Further, this work highlights the importance of synergy between host defenses and the necessity of evaluating the contribution of virulence factors to pathogenesis in the presence of multiple stressors.
Collapse
Affiliation(s)
- Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jamie Zhu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Erin B Brazel
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Genome-Wide Identification of Fitness Factors in Mastitis-Associated Escherichia coli. Appl Environ Microbiol 2018; 84:AEM.02190-17. [PMID: 29101196 DOI: 10.1128/aem.02190-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
Virulence factors of mammary pathogenic Escherichia coli (MPEC) have not been identified, and it is not known how bacterial gene content influences the severity of mastitis. Here, we report a genome-wide identification of genes that contribute to fitness of MPEC under conditions relevant to the natural history of the disease. A highly virulent clinical isolate (M12) was identified that killed Galleria mellonella at low infectious doses and that replicated to high numbers in mouse mammary glands and spread to spleens. Genome sequencing was combined with transposon insertion site sequencing to identify MPEC genes that contribute to growth in unpasteurized whole milk, as well as during G. mellonella and mouse mastitis infections. These analyses show that strain M12 possesses a unique genomic island encoding a group III polysaccharide capsule that greatly enhances virulence in G. mellonella Several genes appear critical for MPEC survival in both G. mellonella and in mice, including those for nutrient-scavenging systems and resistance to cellular stress. Insertions in the ferric dicitrate receptor gene fecA caused significant fitness defects under all conditions (in milk, G. mellonella, and mice). This gene was highly expressed during growth in milk. Targeted deletion of fecA from strain M12 caused attenuation in G. mellonella larvae and reduced growth in unpasteurized cow's milk and lactating mouse mammary glands. Our results confirm that iron scavenging by the ferric dicitrate receptor, which is strongly associated with MPEC strains, is required for MPEC growth and may influence disease severity in mastitis infections.IMPORTANCE Mastitis caused by E. coli inflicts substantial burdens on the health and productivity of dairy animals. Strains causing mastitis may express genes that distinguish them from other E. coli strains and promote infection of mammary glands, but these have not been identified. Using a highly virulent strain, we employed genome-wide mutagenesis and sequencing to discover genes that contribute to mastitis. This extensive data set represents a screen for mastitis-associated E. coli fitness factors and provides the following contributions to the field: (i) global comparison of genes required for different aspects of mastitis infection, (ii) discovery of a unique capsule that contributes to virulence, and (iii) conclusive evidence for the crucial role of iron-scavenging systems in mastitis, particularly the ferric dicitrate transport system. Similar approaches applied to other mastitis-associated strains will uncover conserved targets for prevention or treatment and provide a better understanding of their relationship to other E. coli pathogens.
Collapse
|
9
|
Sprenger M, Kasper L, Hensel M, Hube B. Metabolic adaptation of intracellular bacteria and fungi to macrophages. Int J Med Microbiol 2017; 308:215-227. [PMID: 29150190 DOI: 10.1016/j.ijmm.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
The mature phagosome of macrophages is a hostile environment for the vast majority of phagocytosed microbes. In addition to active destruction of the engulfed microbes by antimicrobial compounds, restriction of essential nutrients in the phagosomal compartment contributes to microbial growth inhibition and killing. However, some pathogenic microorganisms have not only developed various strategies to efficiently withstand or counteract antimicrobial activities, but also to acquire nutrients within macrophages for intracellular replication. Successful intracellular pathogens are able to utilize host-derived amino acids, carbohydrates and lipids as well as trace metals and vitamins during intracellular growth. This requires sophisticated strategies such as phagosome modification or escape, efficient nutrient transporters and metabolic adaptation. In this review, we discuss the metabolic adaptation of facultative intracellular bacteria and fungi to the intracellular lifestyle inside macrophages.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Michael Hensel
- Division of Microbiology, University Osnabrück, Osnabrück, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany.
| |
Collapse
|
10
|
Identification and Characterization of a Putative Manganese Export Protein in Vibrio cholerae. J Bacteriol 2016; 198:2810-7. [PMID: 27481926 DOI: 10.1128/jb.00215-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/23/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Manganese plays an important role in the cellular physiology and metabolism of bacterial species, including the human pathogen Vibrio cholerae The intracellular level of manganese ions is controlled through coordinated regulation of the import and export of this element. We have identified a putative manganese exporter (VC0022), named mneA (manganese exporter A), which is highly conserved among Vibrio spp. An mneA mutant exhibited sensitivity to manganese but not to other cations. Under high-manganese conditions, the mneA mutant showed an almost 50-fold increase in intracellular manganese levels and reduced intracellular iron relative to those of its wild-type parent, suggesting that the mutant's manganese sensitivity is due to the accumulation of toxic levels of manganese and reduced iron. Expression of mneA suppressed the manganese-sensitive phenotype of an Escherichia coli strain carrying a mutation in the nonhomologous manganese export gene, mntP, further supporting a manganese export function for V. cholerae MneA. The level of mneA mRNA was induced approximately 2.5-fold after addition of manganese to the medium, indicating regulation of this gene by manganese. This study offers the first insights into understanding manganese homeostasis in this important pathogen. IMPORTANCE Bacterial cells control intracellular metal concentrations by coordinating acquisition in metal-limited environments with export in metal-excess environments. We identified a putative manganese export protein, MneA, in Vibrio cholerae An mneA mutant was sensitive to manganese, and this effect was specific to manganese. The mneA mutant accumulated high levels of intracellular manganese with a concomitant decrease in intracellular iron levels when grown in manganese-supplemented medium. Expression of mneA in trans suppressed the manganese sensitivity of an E. coli mntP mutant. This study is the first to investigate manganese export in V. cholerae.
Collapse
|
11
|
Competition for Manganese at the Host-Pathogen Interface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:1-25. [PMID: 27571690 DOI: 10.1016/bs.pmbts.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.
Collapse
|
12
|
Perry RD, Bobrov AG, Fetherston JD. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis. Metallomics 2016; 7:965-78. [PMID: 25891079 DOI: 10.1039/c4mt00332b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
13
|
Nonredundant Roles of Iron Acquisition Systems in Vibrio cholerae. Infect Immun 2015; 84:511-23. [PMID: 26644383 DOI: 10.1128/iai.01301-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in both marine environments and the human host. To do so, it must encode the tools necessary to acquire essential nutrients, including iron, under these vastly different conditions. A number of V. cholerae iron acquisition systems have been identified; however, the precise role of each system is not fully understood. To test the roles of individual systems, we generated a series of mutants in which only one of the four systems that support iron acquisition on unsupplemented LB agar, Feo, Fbp, Vct, and Vib, remains functional. Analysis of these mutants under different growth conditions showed that these systems are not redundant. The strain carrying only the ferrous iron transporter Feo grew well at acidic, but not alkaline, pH, whereas the ferric iron transporter Fbp promoted better growth at alkaline than at acidic pH. A strain defective in all four systems (null mutant) had a severe growth defect under aerobic conditions but accumulated iron and grew as well as the wild type in the absence of oxygen, suggesting the presence of an additional, unidentified iron transporter in V. cholerae. In support of this, the null mutant was only moderately attenuated in an infant mouse model of infection. While the null mutant used heme as an iron source in vitro, we demonstrate that heme is not available to V. cholerae in the infant mouse intestine.
Collapse
|
14
|
Abstract
The ancestors of Escherichia coli and Salmonella ultimately evolved to thrive in air-saturated liquids, in which oxygen levels reach 210 μM at 37°C. However, in 1976 Brown and colleagues reported that some sensitivity persists: growth defects still become apparent when hyperoxia is imposed on cultures of E. coli. This residual vulnerability was important in that it raised the prospect that normal levels of oxygen might also injure bacteria, albeit at reduced rates that are not overtly toxic. The intent of this article is both to describe the threat that molecular oxygen poses for bacteria and to detail what we currently understand about the strategies by which E. coli and Salmonella defend themselves against it. E. coli mutants that lack either superoxide dismutases or catalases and peroxidases exhibit a variety of growth defects. These phenotypes constitute the best evidence that aerobic cells continually generate intracellular superoxide and hydrogen peroxide at potentially lethal doses. Superoxide has reduction potentials that allow it to serve in vitro as either a weak univalent reductant or a stronger univalent oxidant. The addition of micromolar hydrogen peroxide to lab media will immediately block the growth of most cells, and protracted exposure will result in the loss of viability. The need for inducible antioxidant systems seems especially obvious for enteric bacteria, which move quickly from the anaerobic gut to fully aerobic surface waters or even to ROS-perfused phagolysosomes. E. coli and Salmonella have provided two paradigmatic models of oxidative-stress responses: the SoxRS and OxyR systems.
Collapse
|
15
|
Juttukonda LJ, Skaar EP. Manganese homeostasis and utilization in pathogenic bacteria. Mol Microbiol 2015; 97:216-28. [PMID: 25898914 DOI: 10.1111/mmi.13034] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 01/08/2023]
Abstract
Manganese (Mn) is a required cofactor for all forms of life. Given the importance of Mn to bacteria, the host has devised strategies to sequester Mn from invaders. In the macrophage phagosome, NRAMP1 removes Mn and other essential metals to starve intracellular pathogens; in the extracellular space, calprotectin chelates Mn and Zn. Calprotectin-mediated Mn sequestration is a newly appreciated host defense mechanism, and recent findings are highlighted herein. In order to acquire Mn when extracellular concentrations are low, bacteria have evolved efficient Mn acquisition systems that are under elegant transcriptional control. To counteract Mn overload, some bacteria possess Mn-specific export systems that are important in vivo, presumably for control of intracellular Mn levels. Mn transporters, their transcriptional regulators and some Mn-requiring enzymes are necessary for virulence of certain bacterial pathogens, as revealed by animal models of infection. Furthermore, Mn is an important facet of the cellular response to oxidative stress, a host antibacterial strategy. The battle for Mn between host and pathogen is now appreciated to be a major determinant of the outcome of infection. In this MicroReview, the contribution of Mn to the host-pathogen interaction is reviewed, and key questions are proposed for future study.
Collapse
Affiliation(s)
- Lillian J Juttukonda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
16
|
Abstract
ABSTRACT
Plasmids confer genetic information that benefits the bacterial cells containing them. In pathogenic bacteria, plasmids often harbor virulence determinants that enhance the pathogenicity of the bacterium. The ability to acquire iron in environments where it is limited, for instance the eukaryotic host, is a critical factor for bacterial growth. To acquire iron, bacteria have evolved specific iron uptake mechanisms. These systems are often chromosomally encoded, while those that are plasmid-encoded are rare. Two main plasmid types, ColV and pJM1, have been shown to harbor determinants that increase virulence by providing the cell with essential iron for growth. It is clear that these two plasmid groups evolved independently from each other since they do not share similarities either in the plasmid backbones or in the iron uptake systems they harbor. The siderophores aerobactin and salmochelin that are found on ColV plasmids fall in the hydroxamate and catechol group, respectively, whereas both functional groups are present in the anguibactin siderophore, the only iron uptake system found on pJM1-type plasmids. Besides siderophore-mediated iron uptake, ColV plasmids carry additional genes involved in iron metabolism. These systems include ABC transporters, hemolysins, and a hemoglobin protease. ColV- and pJM1-like plasmids have been shown to confer virulence to their bacterial host, and this trait can be completely ascribed to their encoded iron uptake systems.
Collapse
|
17
|
NtrBC and Nac contribute to efficient Shigella flexneri intracellular replication. J Bacteriol 2014; 196:2578-86. [PMID: 24794563 DOI: 10.1128/jb.01613-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri two-component regulatory systems (TCRS) are responsible for sensing changes in environmental conditions and regulating gene expression accordingly. We examined 12 TCRS that were previously uncharacterized for potential roles in S. flexneri growth within the eukaryotic intracellular environment. We demonstrate that the TCRS EvgSA, NtrBC, and RstBA systems are required for wild-type plaque formation in cultured epithelial cells. The phenotype of the NtrBC mutant depended in part on the Nac transcriptional regulator. Microarray analysis was performed to identify S. flexneri genes differentially regulated by the NtrBC system or Nac in the intracellular environment. This study contributes to our understanding of the transcriptional regulation necessary for Shigella to effectively adapt to the mammalian host cell.
Collapse
|
18
|
Carpenter C, Payne SM. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. J Inorg Biochem 2014; 133:110-7. [PMID: 24485010 DOI: 10.1016/j.jinorgbio.2014.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Iron is an essential nutrient for most bacteria. Depending on the oxygen available in the surrounding environment, iron is found in two distinct forms: ferrous (Fe(II)) or ferric (Fe(III)). Bacteria utilize different transport systems for the uptake of the two different forms of iron. In oxic growth conditions, iron is found in its insoluble, ferric form, and in anoxic growth conditions iron is found in its soluble, ferrous form. Enterobacteriaceae have adapted to transporting the two forms of iron by utilizing the global, oxygen-sensing regulators, ArcA and Fnr to regulate iron transport genes in response to oxygen.
Collapse
Affiliation(s)
- Chandra Carpenter
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Shelley M Payne
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
19
|
Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013; 3:90. [PMID: 24367764 PMCID: PMC3852070 DOI: 10.3389/fcimb.2013.00090] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/18/2013] [Indexed: 02/05/2023] Open
Abstract
For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Amélie Garénaux
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Julie Proulx
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Mourad Sabri
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Charles M Dozois
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada ; Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| |
Collapse
|
20
|
Troxell B, Hassan HM. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 2013; 3:59. [PMID: 24106689 PMCID: PMC3788343 DOI: 10.3389/fcimb.2013.00059] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 12/16/2022] Open
Abstract
In the ancient anaerobic environment, ferrous iron (Fe2+) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe3+) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe3+, bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe3+. However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe2+ as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Immunology and Microbiology, Indiana University School of Medicine Indianapolis, IN, USA
| | | |
Collapse
|
21
|
Small-molecule inhibitor of the Shigella flexneri master virulence regulator VirF. Infect Immun 2013; 81:4220-31. [PMID: 24002059 DOI: 10.1128/iai.00919-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VirF is an AraC family transcriptional activator that is required for the expression of virulence genes associated with invasion and cell-to-cell spread by Shigella flexneri, including multiple components of the type three secretion system (T3SS) machinery and effectors. We tested a small-molecule compound, SE-1 (formerly designated OSSL_051168), which we had identified as an effective inhibitor of the AraC family proteins RhaS and RhaR, for its ability to inhibit VirF. Cell-based reporter gene assays with Escherichia coli and Shigella, as well as in vitro DNA binding assays with purified VirF, demonstrated that SE-1 inhibited DNA binding and transcription activation (likely by blocking DNA binding) by VirF. Analysis of mRNA levels using real-time quantitative reverse transcription-PCR (qRT-PCR) further demonstrated that SE-1 reduced the expression of the VirF-dependent virulence genes icsA, virB, icsB, and ipaB in Shigella. We also performed eukaryotic cell invasion assays and found that SE-1 reduced invasion by Shigella. The effect of SE-1 on invasion required preincubation of Shigella with SE-1, in agreement with the hypothesis that SE-1 inhibited the expression of VirF-activated genes required for the formation of the T3SS apparatus and invasion. We found that the same concentrations of SE-1 had no detectable effects on the growth or metabolism of the bacterial cells or the eukaryotic host cells, respectively, indicating that the inhibition of invasion was not due to general toxicity. Overall, SE-1 appears to inhibit transcription activation by VirF, exhibits selectivity toward AraC family proteins, and has the potential to be developed into a novel antibacterial agent.
Collapse
|
22
|
Liu M, Bouhsira E, Boulouis HJ, Biville F. The Bartonella henselae SitABCD transporter is required for confronting oxidative stress during cell and flea invasion. Res Microbiol 2013; 164:827-37. [PMID: 23811032 DOI: 10.1016/j.resmic.2013.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
Abstract
Bartonella henselae is a zoonotic pathogen that possesses a flea-cat-flea transmission cycle and causes cat scratch disease in humans via cat scratches and bites. In order to establish infection, B. henselae must overcome oxidative stress damage produced by the mammalian host and arthropod vector. B. henselae encodes for putative Fe²⁺ and Mn²⁺ transporter SitABCD. In B. henselae, SitAB knockdown increases sensitivity to hydrogen peroxide. We consistently show that SitAB knockdown decreases the ability of B. henselae to survive in both human endothelial cells and cat fleas, thus demonstrating that the SitABCD transporter plays an important role during the B. henselae infection cycle.
Collapse
Affiliation(s)
- MaFeng Liu
- Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu-611130/Ya'an-625014, Sichuan, PR China; Université Paris-Est, Ecole nationale vétérinaire d'Alfort, UMR BIPAR INRA-Anses-UPEC-ENVA, F-94700 Maisons-Alfort, France.
| | | | | | | |
Collapse
|
23
|
Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness. PLoS One 2012; 7:e50588. [PMID: 23226321 PMCID: PMC3511568 DOI: 10.1371/journal.pone.0050588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/23/2012] [Indexed: 12/27/2022] Open
Abstract
To prevent damage by reactive oxygen species, many bacteria have evolved rapid detection and response systems, including the OxyR regulon. The OxyR system detects reactive oxygen and coordinates the expression of numerous defensive antioxidants. In many bacterial species the coordinated OxyR-regulated response is crucial for in vivo survival. Regulation of the OxyR regulon of Haemophilus influenzae was examined in vitro, and significant variation in the regulated genes of the OxyR regulon among strains of H. influenzae was observed. Quantitative PCR studies demonstrated a role for the OxyR-regulated peroxiredoxin/glutaredoxin as a mediator of the OxyR response, and also indicated OxyR self-regulation through a negative feedback loop. Analysis of transcript levels in H. influenzae samples derived from an animal model of otitis media demonstrated that the members of the OxyR regulon were actively upregulated within the chinchilla middle ear. H. influenzae mutants lacking the oxyR gene exhibited increased sensitivity to challenge with various peroxides. The impact of mutations in oxyR was assessed in various animal models of H. influenzae disease. In paired comparisons with the corresponding wild-type strains, the oxyR mutants were unaffected in both the chinchilla model of otitis media and an infant model of bacteremia. However, in weanling rats the oxyR mutant was significantly impaired compared to the wild-type strain. In contrast, in all three animal models when infected with a mixture of equal numbers of both wild-type and mutant strains the mutant strain was significantly out competed by the wild-type strain. These findings clearly establish a crucial role for OxyR in bacterial fitness.
Collapse
|
24
|
Perry RD, Craig SK, Abney J, Bobrov AG, Kirillina O, Mier I, Truszczynska H, Fetherston JD. Manganese transporters Yfe and MntH are Fur-regulated and important for the virulence of Yersinia pestis. MICROBIOLOGY-SGM 2012; 158:804-815. [PMID: 22222497 DOI: 10.1099/mic.0.053710-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Yersinia pestis has a flea-mammal-flea transmission cycle, and is a zoonotic pathogen that causes the systemic diseases bubonic and septicaemic plague in rodents and humans, as well as pneumonic plague in humans and non-human primates. Bubonic and pneumonic plague are quite different diseases that result from different routes of infection. Manganese (Mn) acquisition is critical for the growth and pathogenesis of a number of bacteria. The Yfe/Sit and/or MntH systems are the two prominent Mn transporters in Gram-negative bacteria. Previously we showed that the Y. pestis Yfe system transports Fe and Mn. Here we demonstrate that a mutation in yfe or mntH did not significantly affect in vitro aerobic growth under Mn-deficient conditions. A yfe mntH double mutant did exhibit a moderate growth defect which was alleviated by supplementation with Mn. No short-term energy-dependent uptake of (54)Mn was observed in this double mutant. Like the yfeA promoter, the mntH promoter was repressed by both Mn and Fe via Fur. Sequences upstream of the Fur binding sequence in the yfeA promoter converted an iron-repressible promoter to one that is also repressed by Mn and Fe. To our knowledge, this is the first report identifying cis promoter elements needed to alter cation specificities involved in transcriptional repression. Finally, the Y. pestis yfe mntH double mutant had an ~133-fold loss of virulence in a mouse model of bubonic plague but no virulence loss in the pneumonic plague model. This suggests that Mn availability, bacterial Mn requirements or Mn transporters used by Y. pestis are different in the lungs (pneumonic plague) compared with systemic disease.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Susannah K Craig
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Jennifer Abney
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Ildefonso Mier
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Helena Truszczynska
- Department of Institutional Research Planning and Effectiveness, University of Kentucky, Lexington, KY 40536, USA
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| |
Collapse
|
25
|
|
26
|
Troxell B, Fink RC, Porwollik S, McClelland M, Hassan HM. The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: identification of new Fur targets. BMC Microbiol 2011; 11:236. [PMID: 22017966 PMCID: PMC3212961 DOI: 10.1186/1471-2180-11-236] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/21/2011] [Indexed: 01/17/2023] Open
Abstract
Background The Ferric uptake regulator (Fur) is a transcriptional regulator that controls iron homeostasis in bacteria. Although the regulatory role of Fur in Escherichia coli is well characterized, most of the studies were conducted under routine culture conditions, i.e., in ambient oxygen concentration. To reveal potentially novel aspects of the Fur regulon in Salmonella enterica serovar Typhimurium under oxygen conditions similar to that encountered in the host, we compared the transcriptional profiles of the virulent wild-type strain (ATCC 14028s) and its isogenic Δfur strain under anaerobic conditions. Results Microarray analysis of anaerobically grown Δfur S. Typhimurium identified 298 differentially expressed genes. Expression of several genes controlled by Fnr and NsrR appeared to be also dependent on Fur. Furthermore, Fur was required for the activity of the cytoplasmic superoxide disumutases (MnSOD and FeSOD). The regulation of FeSOD gene, sodB, occurred via small RNAs (i.e., the ryhB homologs, rfrA and rfrB) with the aid of the RNA chaperone Hfq. The transcription of sodA was increased in Δfur; however, the enzyme was inactive due to the incorporation of iron instead of manganese in SodA. Additionally, in Δfur, the expression of the gene coding for the ferritin-like protein (ftnB) was down-regulated, while the transcription of the gene coding for the nitric oxide (NO·) detoxifying flavohemoglobin (hmpA) was up-regulated. The promoters of ftnB and hmpA do not contain recognized Fur binding motifs, which indicated their probable indirect regulation by Fur. However, Fur activation of ftnB was independent of Fnr. In addition, the expression of the gene coding for the histone-like protein, H-NS (hns) was increased in Δfur. This may explain the observed down-regulation of the tdc operon, responsible for the anaerobic degradation of threonine, and ftnB in Δfur. Conclusions This study determined that Fur is a positive factor in ftnB regulation, while serving to repress the expression of hmpA. Furthermore, Fur is required for the proper expression and activation of the antioxidant enzymes, FeSOD and MnSOD. Finally, this work identified twenty-six new targets of Fur regulation, and demonstrates that H-NS repressed genes are down-regulated in Δfur.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | | | | | | | |
Collapse
|
27
|
The iron-responsive Fur/RyhB regulatory cascade modulates the Shigella outer membrane protease IcsP. Infect Immun 2011; 79:4543-9. [PMID: 21859852 DOI: 10.1128/iai.05340-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin-based motility is central to the pathogenicity of the intracellular bacterial pathogen Shigella. Two Shigella outer membrane proteins, IcsA and IcsP, are required for efficient actin-based motility in the host cell cytoplasm, and the genes encoding both proteins are carried on the large virulence plasmid. IcsA triggers actin polymerization on the surface of the bacterium, leading to the formation of an actin tail that allows both intra- and intercellular spread. IcsP, an outer membrane protease, modulates the amount and distribution of the IcsA protein on the bacterial surface through proteolytic cleavage of IcsA. Transcription of icsP is increased in the presence of VirB, a DNA-binding protein that positively regulates many genes carried on the large virulence plasmid. In Shigella dysenteriae, the small regulatory RNA RyhB, which is a member of the iron-responsive Fur regulon, suppresses several virulence-associated phenotypes by downregulating levels of virB in response to iron limitation. Here we show that the Fur/RyhB regulatory pathway downregulates IcsP levels in response to low iron concentrations in Shigella flexneri and that this occurs at the level of transcription through the RyhB-dependent regulation of VirB. These observations demonstrate that in Shigella species the Fur/RyhB regulatory pathway provides a mechanism to finely tune the expression of icsP in response to the low concentrations of free iron predicted to be encountered within colonic epithelial cells.
Collapse
|
28
|
Abstract
Exposure to hydrogen peroxide (H(2)O(2)) and other reactive oxygen species is a universal feature of life in an aerobic environment. Bacteria express enzymes to detoxify H(2)O(2) and to repair the resulting damage, and their synthesis is typically regulated by redox-sensing transcription factors. The best characterized bacterial peroxide-sensors are Escherichia coli OxyR and Bacillus subtilis PerR. Analysis of their regulons has revealed that, in addition to inducible detoxification enzymes, adaptation to H(2)O(2) is mediated by modifications of metal ion homeostasis. Analogous adaptations appear to be present in other bacteria as here reviewed for Deinococcus radiodurans, Neisseria gonorrhoeae, Streptococcus pyogenes, and Bradyrhizobium japonicum. As a general theme, peroxide stress elicits changes in cytosolic metal distribution with the net effect of reducing the damage caused by reactive ferrous iron. Iron levels are reduced by repression of uptake, sequestration in storage proteins, and incorporation into metalloenzymes. In addition, peroxide-inducible transporters elevate cytosolic levels of Mn(II) and/or Zn(II) that can displace ferrous iron from sensitive targets. Although bacteria differ significantly in the detailed mechanisms employed to modulate cytosolic metal levels, a high Mn:Fe ratio has emerged as one key correlate of reactive oxygen species resistance.
Collapse
Affiliation(s)
- Melinda J Faulkner
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | |
Collapse
|
29
|
Sobota JM, Imlay JA. Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc Natl Acad Sci U S A 2011; 108:5402-7. [PMID: 21402925 PMCID: PMC3069151 DOI: 10.1073/pnas.1100410108] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
H(2)O(2) is commonly generated in biological habitats by environmental chemistry and by cellular immune responses. H(2)O(2) penetrates cells, disrupts metabolism, and blocks growth; it therefore is of interest to identify the major cellular molecules that H(2)O(2) damages and the strategies by which cells protect themselves from it. We used a strain of Escherichia coli that lacks catalases and peroxidases to impose protracted low-grade H(2)O(2) stress. Physiological analysis indicated that the pentose-phosphate pathway, in particular, was poisoned by submicromolar intracellular H(2)O(2). Assays determined that ribulose-5-phosphate 3-epimerase (Rpe) was specifically inactivated. In vitro studies demonstrated that Rpe employs a ferrous iron atom as a solvent-exposed cofactor and that H(2)O(2) rapidly oxidizes this metal in a Fenton reaction. The oxidized iron is released immediately, causing a loss of activity. Most Rpe proteins could be reactivated by remetallation; however, a small fraction of proteins were irreversibly damaged by each oxidation cycle, and so repeated cycles of oxidation and remetallation progressively led to permanent inactivation of the entire Rpe pool. Manganese import and iron sequestration are key elements of the H(2)O(2) stress response, and we found that manganese can activate Rpe in vitro in place of iron, converting the enzyme to a form that is unaffected by H(2)O(2). Indeed, the provision of manganese to H(2)O(2)-stressed cells protected Rpe and enabled the pentose-phosphate pathway to retain function. These data indicate that mononuclear iron enzymes can be primary targets of H(2)O(2) stress and that cells adapt by shifting from iron- to manganese-centered metabolism.
Collapse
Affiliation(s)
- Jason M Sobota
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
30
|
Transcriptome analysis of avian pathogenic Escherichia coli O1 in chicken serum reveals adaptive responses to systemic infection. Infect Immun 2011; 79:1951-60. [PMID: 21357721 DOI: 10.1128/iai.01230-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections of avian pathogenic Escherichia coli (APEC) result in annual multimillion-dollar losses to the poultry industry. Despite this, little is known about the mechanisms by which APEC survives and grows in the bloodstream. Thus, the aim of this study was to identify molecular mechanisms enabling APEC to survive and grow in this critical host environment. To do so, we compared the transcriptome of APEC O1 during growth in Luria-Bertani broth and chicken serum. Several categories of genes, predicted to contribute to adaptation and growth in the avian host, were identified. These included several known virulence genes and genes involved in adaptive metabolism, protein transport, biosynthesis pathways, stress resistance, and virulence regulation. Several genes with unknown function, which were localized to pathogenicity islands or APEC O1's large virulence plasmid, pAPEC-O1-ColBM, were also identified, suggesting that they too contribute to survival in serum. The significantly upregulated genes dnaK, dnaJ, phoP, and ybtA were subsequently subjected to mutational analysis to confirm their role in conferring a competitive advantage during infection. This genome-wide analysis provides novel insight into processes that are important to the pathogenesis of APEC O1.
Collapse
|
31
|
Watson RJ, Millichap P, Joyce SA, Reynolds S, Clarke DJ. The role of iron uptake in pathogenicity and symbiosis in Photorhabdus luminescens TT01. BMC Microbiol 2010; 10:177. [PMID: 20569430 PMCID: PMC2905363 DOI: 10.1186/1471-2180-10-177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 06/22/2010] [Indexed: 12/30/2022] Open
Abstract
Background Photorhabdus are Gram negative bacteria that are pathogenic to insect larvae whilst also having a mutualistic interaction with nematodes from the family Heterorhabditis. Iron is an essential nutrient and bacteria have different mechanisms for obtaining both the ferrous (Fe2+) and ferric (Fe3+) forms of this metal from their environments. In this study we were interested in analyzing the role of Fe3+ and Fe2+ iron uptake systems in the ability of Photorhabdus to interact with its invertebrate hosts. Results We constructed targeted deletion mutants of exbD, feoABC and yfeABCD in P. luminescens TT01. The exbD mutant was predicted to be crippled in its ability to obtain Fe3+ and we show that this mutant does not grow well in iron-limited media. We also show that this mutant was avirulent to the insect but was unaffected in its symbiotic interaction with Heterorhabditis. Furthermore we show that a mutation in feoABC (encoding a predicted Fe2+ permease) was unaffected in both virulence and symbiosis whilst the divalent cation transporter encoded by yfeABCD is required for virulence in the Tobacco Hornworm, Manduca sexta (Lepidoptera) but not in the Greater Wax Moth, Galleria mellonella (Lepidoptera). Moreover the Yfe transporter also appears to have a role during colonization of the IJ stage of the nematode. Conclusion In this study we show that iron uptake (via the TonB complex and the Yfe transporter) is important for the virulence of P. luminescens to insect larvae. Moreover this study also reveals that the Yfe transporter appears to be involved in Mn2+-uptake during growth in the gut lumen of the IJ nematode. Therefore, the Yfe transporter in P. luminescens TT01 is important during colonization of both the insect and nematode and, moreover, the metal ion transported by this pathway is host-dependent.
Collapse
Affiliation(s)
- Robert J Watson
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | | | | | | | |
Collapse
|
32
|
Regulation of high-affinity iron acquisition homologues in the tsetse fly symbiont Sodalis glossinidius. J Bacteriol 2010; 192:3780-7. [PMID: 20494987 DOI: 10.1128/jb.00161-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sodalis glossinidius is a facultative intracellular bacterium that is a secondary symbiont of the tsetse fly (Diptera: Glossinidae). Since studies with other facultative intracellular bacteria have shown that high-affinity iron acquisition genes are upregulated in vivo, we investigated the regulation of several Sodalis genes that encode putative iron acquisition systems. These genes, SG1538 (hemT) and SG1516 (sitA), are homologous to genes encoding periplasmic heme and iron/manganese transporters, respectively. hemT promoter- and sitA promoter-gfp fusions were constructed, and in both Escherichia coli and Sodalis backgrounds, expression levels of these fusions were higher when the bacteria were grown in iron-limiting media than when the bacteria were grown in iron-replete media. The Sodalis promoters were tested for iron regulation in an E. coli strain that lacks the fur gene, which encodes the iron-responsive transcriptional repressor Fur. Expression of the promoter-gfp fusions in the E. coli fur mutant was constitutively high in both iron-replete and iron-deplete media, and addition of either Shigella flexneri fur or Sodalis fur to a plasmid restored normal regulation. A Sodalis fur mutant was constructed by intron mutagenesis, and semiquantitative reverse transcription-PCR (RT-PCR) showed that iron repression of sitA expression was also abolished in this strain. In vivo expression analysis showed that hemT and sitA are expressed when Sodalis is within tsetse fly hosts, suggesting a biological role for these genes when Sodalis is within the tsetse fly.
Collapse
|
33
|
Anderson ES, Paulley JT, Gaines JM, Valderas MW, Martin DW, Menscher E, Brown TD, Burns CS, Roop RM. The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 2009; 77:3466-74. [PMID: 19487482 PMCID: PMC2715675 DOI: 10.1128/iai.00444-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/03/2009] [Accepted: 05/20/2009] [Indexed: 11/20/2022] Open
Abstract
The gene designated BAB1_1460 in the Brucella abortus 2308 genome sequence is predicted to encode the manganese transporter MntH. Phenotypic analysis of an isogenic mntH mutant indicates that MntH is the sole high-affinity manganese transporter in this bacterium but that MntH does not play a detectable role in the transport of Fe(2+), Zn(2+), Co(2+), or Ni(2+). Consistent with the apparent selectivity of the corresponding gene product, the expression of the mntH gene in B. abortus 2308 is repressed by Mn(2+), but not Fe(2+), and this Mn-responsive expression is mediated by a Mur-like repressor. The B. abortus mntH mutant MWV15 exhibits increased susceptibility to oxidative killing in vitro compared to strain 2308, and a comparative analysis of the superoxide dismutase activities present in these two strains indicates that the parental strain requires MntH in order to make wild-type levels of its manganese superoxide dismutase SodA. The B. abortus mntH mutant also exhibits extreme attenuation in both cultured murine macrophages and experimentally infected C57BL/6 mice. These experimental findings indicate that Mn(2+) transport mediated by MntH plays an important role in the physiology of B. abortus 2308, particularly during its intracellular survival and replication in the host.
Collapse
Affiliation(s)
- Eric S Anderson
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Anjem A, Varghese S, Imlay JA. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol 2009; 72:844-58. [PMID: 19400769 DOI: 10.1111/j.1365-2958.2009.06699.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Very little manganese is imported into Escherichia coli under routine growth conditions: the import system is weakly expressed, the manganese content is low, and a manganese-dependent enzyme is not correctly metallated. Mutants that lack MntH, the importer, grow at wild-type rates, indicating that manganese plays no critical role. However, MntH supports the growth of iron-deficient cells, suggesting that manganese can substitute for iron in activating at least some metalloenzymes. MntH is also strongly induced when cells are stressed by hydrogen peroxide. This adaptation is essential, as E. coli cannot tolerate peroxide stress if mntH is deleted. Other workers have observed that manganese improves the ability of a variety of microbes to tolerate oxidative stress, and the prevailing hypothesis is that manganese does so by chemically scavenging hydrogen peroxide and/or superoxide. We found that manganese does not protect peroxide-stressed cells by scavenging peroxide. Instead, the beneficial effects of manganese correlate with its ability to metallate mononuclear enzymes. Because iron-loaded enzymes are vulnerable to the Fenton reaction, the substitution of manganese may prevent protein damage. Accordingly, during H2O2 stress, mutants that cannot import manganese and/or are unable to sequester iron suffer high rates of protein oxidation.
Collapse
Affiliation(s)
- Adil Anjem
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
35
|
Genetics and virulence association of the Shigella flexneri sit iron transport system. Infect Immun 2009; 77:1992-9. [PMID: 19289511 DOI: 10.1128/iai.00064-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The sit-encoded iron transport system is present within pathogenicity islands in all Shigella spp. and some pathogenic Escherichia coli strains. The islands contain numerous insertion elements and sequences with homology to bacteriophage genes. The Shigella flexneri sit genes can be lost as a result of deletion within the island. The formation of deletions was dependent upon RecA and occurred at relatively high frequency. This suggests that the sit region is inherently unstable, yet sit genes are maintained in all of the clinical isolates tested. Characterization of the sitABCD genes in S. flexneri indicates that they encode a ferrous iron transport system, although the genes are induced aerobically. The sit genes provide a competitive advantage to S. flexneri growing within epithelial cells, and a sitA mutant is outcompeted by the wild type in cultured epithelial cells. The Sit system is also required for virulence in a mouse lung model. The sitA mutant was able to infect the mice and induce a protective immune response but was avirulent compared to its wild-type parent strain.
Collapse
|
36
|
Nicoletti M, Santino I, Petrucca A, Del Chierico F, Cannavacciuolo S, Casalino M, Sessa R, Cipriani P. Evaluation by Real-Time PCR of the Expression of S. Flexneri Virulence-Associated Genes ospB and phoN2 under Different Genetical Backgrounds. Int J Immunopathol Pharmacol 2008; 21:707-14. [DOI: 10.1177/039463200802100325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Under conditions of activated type III secretion Shigella flexneri up-regulates the expression of numerous genes, including the virulence plasmid (pINV)-encoded ospB and phoN2 genes. ospB and phoN2 are virulence-associated genes which are part of a bicistronic transcriptional unit encoding OspB, a protein (effector) of unknown function secreted by the type III secretion (TTS) apparatus, and PhoN2 (apyrase or ATP-diphosphohydrolase), a periplasmic protein involved in polar IcsA localization on the surface of S. flexneri. In this work we used real-time PCR to measure transcription of ospB and phoN2 of wild-type S. flexneri strain M90T as well as of derivative mutants impaired in definite virulence traits. The results obtained confirmed and extended previous reports indicating that the expression of ospB and phoN2 genes is modulated in a virB-dependent, mxiE-independent manner under conditions of non-activated secretion, while their expression is considerably induced in a mxiE-dependent manner under conditions of activated secretion. That the expression of the ospB-phoN2 operon is up-regulated in condition of activated secretion, indicates that probably the expression of these two genes might be important, especially during the later stages of infection of S. flexneri.
Collapse
Affiliation(s)
- M. Nicoletti
- Dipartimento di Scienze Biomediche, University “G. d'Annunzio”, Chieti
| | - I. Santino
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
| | - A. Petrucca
- Dipartimento di Scienze Biomediche, University “G. d'Annunzio”, Chieti
- Laboratorio di Microbiologia Clinica, II Facoltà di Medicina e Chirurgia, Ospedale “Sant'Andrea”, Rome
| | - F. Del Chierico
- Dipartimento di Scienze Biomediche, University “G. d'Annunzio”, Chieti
| | - S. Cannavacciuolo
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
| | - M. Casalino
- Dipartimento di Biologia, Università di “Roma Tre”, Rome, Italy
| | - R. Sessa
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
| | - P. Cipriani
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
- Laboratorio di Microbiologia Clinica, II Facoltà di Medicina e Chirurgia, Ospedale “Sant'Andrea”, Rome
| |
Collapse
|
37
|
Abstract
The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.
Collapse
|
38
|
A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans. PLoS One 2008; 3:e1602. [PMID: 18270589 PMCID: PMC2225504 DOI: 10.1371/journal.pone.0001602] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 01/18/2008] [Indexed: 01/14/2023] Open
Abstract
In bacteria, OxyR is a peroxide sensor and transcription regulator, which can sense the presence of reactive oxygen species and induce antioxidant system. When the cells are exposed to H2O2, OxyR protein is activated via the formation of a disulfide bond between the two conserved cysteine residues (C199 and C208). In Deinococcus radiodurans, a previously unreported special characteristic of DrOxyR (DR0615) is found with only one conserved cysteine. dr0615 gene mutant is hypersensitive to H2O2, but only a little to ionizing radiation. Site-directed mutagenesis and subsequent in vivo functional analyses revealed that the conserved cysteine (C210) is necessary for sensing H2O2, but its mutation did not alter the binding characteristics of OxyR on DNA. Under oxidant stress, DrOxyR is oxidized to sulfenic acid form, which can be reduced by reducing reagents. In addition, quantitative real-time PCR and global transcription profile results showed that OxyR is not only a transcriptional activator (e.g., katE, drb0125), but also a transcriptional repressor (e.g., dps, mntH). Because OxyR regulates Mn and Fe ion transporter genes, Mn/Fe ion ratio is changed in dr0615 mutant, suggesting that the genes involved in Mn/Fe ion homeostasis, and the genes involved in antioxidant mechanism are highly cooperative under extremely oxidant stress. In conclusion, these findings expand the OxyR family, which could be divided into two classes: typical 2-Cys OxyR and 1-Cys OxyR.
Collapse
|
39
|
Role and regulation of iron-sulfur cluster biosynthesis genes in Shigella flexneri virulence. Infect Immun 2008; 76:1083-92. [PMID: 18195027 DOI: 10.1128/iai.01211-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri, a causative agent of bacterial dysentery, possesses two predicted iron-sulfur cluster biosynthesis systems called Suf and Isc. S. flexneri strains containing deletion mutations in the entire suf operon (UR011) or the iscSUA genes (UR022) were constructed. Both mutants were defective in surviving exposure to oxidative stress. The suf mutant showed growth that was comparable to that of the parental strain in both iron-replete and iron-limiting media; however, the isc mutant showed reduced growth, relative to the parental strain, in both media. Although the suf mutant formed wild-type plaques on Henle cell monolayers, the isc mutant was unable to form plaques on Henle cell monolayers because the strain was noninvasive. Expression from both the suf and isc promoters increased in iron-limiting media and in the presence of hydrogen peroxide. Iron repression of the suf promoter was mediated by Fur, and increased suf expression in iron-limiting media was enhanced by the presence of IscR. Iron repression of the isc promoter was mediated by IscR. Hydrogen peroxide-dependent induction of suf expression, but not isc expression, was mediated by OxyR. Furthermore, IscR was a positive regulator of suf expression in the presence of hydrogen peroxide and a negative regulator of isc expression in the absence of hydrogen peroxide. Expression from the S. flexneri suf and isc promoters increased when Shigella was within Henle cells, and our data suggest that the intracellular signal mediating this increased expression is reduced iron levels.
Collapse
|
40
|
Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic Escherichia coli O78 strain chi7122. Infect Immun 2007; 76:601-11. [PMID: 18025097 DOI: 10.1128/iai.00789-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of SitABCD, MntH, and FeoB metal transporters in the virulence of avian pathogenic Escherichia coli (APEC) O78 strain chi7122 were assessed using isogenic mutants in chicken infection models. In a single-strain infection model, compared to chi7122, the Deltasit strain demonstrated reduced colonization of the lungs, liver, and spleen. Complementation of the Deltasit strain restored virulence. In a coinfection model, compared to the virulent APEC strain, the Deltasit strain demonstrated mean 50-fold, 126-fold, and 25-fold decreases in colonization of the lungs, liver, and spleen, respectively. A DeltamntH Deltasit strain was further attenuated, demonstrating reduced persistence in blood and mean 1,400-fold, 954-fold, and 83-fold reduced colonization in the lungs, liver, and spleen, respectively. In coinfections, the DeltafeoB Deltasit strain demonstrated reduced persistence in blood but increased colonization of the liver. The DeltamntH, DeltafeoB, and DeltafeoB DeltamntH strains were as virulent as the wild type in either of the infection models. Strains were also tested for sensitivity to oxidative stress-generating agents. The DeltamntH Deltasit strain was the most sensitive strain and was significantly more sensitive than the other strains to hydrogen peroxide, plumbagin, and paraquat. sit sequences were highly associated with APEC and human extraintestinal pathogenic E. coli compared to commensal isolates and diarrheagenic E. coli. Comparative genomic analyses also demonstrated that sit sequences are carried on conjugative plasmids or associated with phage elements and were likely acquired by distinct genetic events among pathogenic E. coli and Shigella sp. strains. Overall, the results demonstrate that SitABCD contributes to virulence and, together with MntH, to increased resistance to oxidative stress.
Collapse
|
41
|
Boulette ML, Payne SM. Anaerobic regulation of Shigella flexneri virulence: ArcA regulates Fur and iron acquisition genes. J Bacteriol 2007; 189:6957-67. [PMID: 17660284 PMCID: PMC2045222 DOI: 10.1128/jb.00621-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasion and plaque formation in epithelial monolayers are routinely used to assess the virulence of Shigella flexneri, a causative agent of dysentery. A modified plaque assay was developed to identify factors contributing to the virulence of S. flexneri under the anaerobic conditions present in the colon. This assay demonstrated the importance of the ferrous iron transport system Feo, as well as the global transcription factors Fur, ArcA, and Fnr, for Shigella plaque formation in anoxic environments. Transcriptional analyses of S. flexneri iron transport genes indicated that anaerobic conditions activated feoABC while repressing genes encoding two other iron transport systems, the ABC transporter Sit and the Iuc/Iut aerobactin siderophore synthesis and transport system. The anaerobic transcription factors ArcA and Fnr activated expression of feoABC, while ArcA repressed iucABCD iutA. Transcription of fur, encoding the iron-responsive transcriptional repressor of bacterial iron acquisition, was also repressed anaerobically in an ArcA-dependent manner.
Collapse
|