1
|
van Linge CCA, Kullberg RFJ, Chouchane O, Roelofs JJTH, Goessens WHF, van 't Veer C, Sirard JC, de Vos AF, van der Poll T. Topical adjunctive treatment with flagellin augments pulmonary neutrophil responses and reduces bacterial dissemination in multidrug-resistant K. pneumoniae infection. Front Immunol 2024; 15:1450486. [PMID: 39295863 PMCID: PMC11408203 DOI: 10.3389/fimmu.2024.1450486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Objective Antimicrobial resistance is an emerging problem and multi-drug resistant (MDR) Klebsiella pneumoniae (K. pneumoniae) represents an enormous risk of failing therapy in hospital-acquired pneumonia. The current study aimed to determine the immunomodulatory effect of topical flagellin in addition to antibiotic treatment during respiratory infection evoked by hypervirulent antibiotic-susceptible and antibiotic-resistant K. pneumoniae in mice. Methods C57BL6 mice were inoculated intranasally with hypervirulent K. pneumoniae (K2:O1) which was either antibiotic-susceptible or multi-drug resistant. Six hours after infection, mice were treated with antibiotics intraperitoneally and flagellin or vehicle intranasally. Mice were sacrificed 24 hours after infection. Samples were analyzed for bacterial loads and for inflammatory and coagulation markers. Results Flagellin therapy induced neutrophil influx in the lung during antibiotic-treated pneumonia evoked by either antibiotic-susceptible or -resistant K. pneumoniae. The pulmonary neutrophil response was matched by elevated levels of neutrophil-attracting chemokines, neutrophil degranulation products, and local coagulation activation. The combined therapy of effective antibiotics and flagellin did not impact K. pneumoniae outgrowth in the lung, but decreased bacterial counts in distant organs. Neutrophil depletion abrogated the flagellin-mediated effect on bacterial dissemination and local coagulation responses. Conclusion Topical flagellin administration as an adjunctive to antibiotic treatment augments neutrophil responses during pneumonia evoked by MDR-K. pneumoniae, thereby reducing bacterial dissemination to distant organs.
Collapse
Affiliation(s)
- Christine C A van Linge
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Robert F J Kullberg
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Osoul Chouchane
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
- Department of Pathology, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Wil H F Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Jean-Claude Sirard
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, U1019 - UMR9017, centre hospitalier universitaire (CHU) Lille, Centre national de la recherche scientifique (CNRS), L'institut national de la santé et de la recherche médicale (INSERM), University of Lille, Lille, France
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Luo L, Zeng Z, Li T, Liu X, Cui Y, Tao Y, Li Y, Chen Y. TET2 stabilized by deubiquitinase USP21 ameliorates cigarette smoke-induced apoptosis in airway epithelial cells. iScience 2024; 27:109252. [PMID: 38439981 PMCID: PMC10910280 DOI: 10.1016/j.isci.2024.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
DNA demethylase TET2 was related with lung function. However, the precise role of TET2 in cigarette smoke (CS)-induced apoptosis of airway epithelium cells, and the mechanisms involved, have yet to be elucidated. Here, we showed that CS decreased TET2 protein levels but had no significant effect on its mRNA levels in lung tissues of chronic obstructive pulmonary disease (COPD) patients and CS-induced COPD mice model and even in airway epithelial cell lines. TET2 could inhibit CS-induced apoptosis of airway epithelial cell in vivo and in vitro. Moreover, we identified ubiquitin-specific protease 21 (USP21) as a deubiquitinase of TET2 in airway epithelial cells. USP21 interacted with TET2 and inhibited CSE-induced TET2 degradation. USP21 downregulated decreased TET2 abundance and further reduced the anti-apoptosis effect of TET2. Thus, we draw a conclusion that the USP21/TET2 axis is involved in CS-induced apoptosis of airway epithelial cells.
Collapse
Affiliation(s)
- Lijuan Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Zihang Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Tiao Li
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangming Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Yanan Cui
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yi Li
- Department of Infectious Disease Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan 410011, China
| |
Collapse
|
3
|
Zhang H, Jia T, Che D, Peng B, Chu Z, Song X, Zeng W, Geng S. Decreased TET2/5-hmC reduces the integrity of the epidermal barrier via epigenetic dysregulation of filaggrin in psoriatic lesions. J Dermatol Sci 2024; 113:103-112. [PMID: 38331641 DOI: 10.1016/j.jdermsci.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND TET2 participates in tumor progression and intrinsic immune homeostasis via epigenetic regulation. TET2 has been reported to be involved in maintaining epithelial barrier homeostasis and inflammation. Abnormal epidermal barrier function and TET2 expression have been detected in psoriatic lesions. However, the mechanisms underlying the role of TET2 in psoriasis have not yet been elucidated. OBJECTIVE To define the role of TET2 in maintaining epithelial barrier homeostasis and the exact epigenetic mechanism in the dysfunction of the epidermal barrier in psoriasis. METHODS We analyzed human psoriatic skin lesions and datasets from the GEO database, and detected the expression of TET2/5-hmC together with barrier molecules by immunohistochemistry. We constructed epidermal-specific TET2 knockout mice to observe the effect of TET2 deficiency on epidermal barrier function via toluidine blue penetration assay. Further, we analyzed changes in the expression of epidermal barrier molecules by immunofluorescence in TET2-specific knockout mice and psoriatic model mice. RESULTS We found that decreased expression of TET2/5-hmC correlated with dysregulated barrier molecules in human psoriatic lesions. Epidermal-specific TET2 knockout mice showed elevated transdermal water loss associated with abnormal epidermal barrier molecules. Furthermore, we observed that TET2 knockdown in keratinocytes reduced filaggrin expression via filaggrin promoter methylation. CONCLUSION Aberrant epidermal TET2 affects the integrity of the epidermal barrier through the epigenetic dysregulation of epidermal barrier molecules, particularly filaggrin. Reduced TET2 expression is a critical factor contributing to an abnormal epidermal barrier in psoriasis.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Jia
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Delu Che
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Bin Peng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Zhaowei Chu
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Xiangjin Song
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weihui Zeng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China.
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China.
| |
Collapse
|
4
|
Duan Y, Su P, Gu Y, Lv X, Cao X, Wang S, Yuan Z, Sun W. A Study of the Resistance of Hu Sheep Lambs to Escherichia coli F17 Based on Whole Genome Sequencing. Animals (Basel) 2024; 14:161. [PMID: 38200892 PMCID: PMC10778179 DOI: 10.3390/ani14010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
This study aims to analyze the whole genome sequencing of E. coli F17 in antagonistic and susceptible Hu sheep lambs. The objective is to investigate the critical mutation loci in sheep and understand the genetic mechanism of sheep resistance to E. coli F17 at the genome level. Antagonist and susceptible venous blood samples were collected from Hu sheep lambs for whole genome sequencing and whole genome association analysis. A total of 466 genes with significant SNPs (p < 1.0 × 10-3) were found. GO and KEGG enrichment analysis and protein interaction network analysis were performed on these genes, and preliminary investigations showed that SNPs on CTNNB1, CDH8, APOD, HCLS1, Tet2, MTSS1 and YAP1 genes may be associated with the antagonism and susceptibility of Hu sheep lambs to E. coli F17. There are still some shortcomings that have not been explored via in vivo and in vitro functional experiments of the candidate genes, which will be our next research work. This study provides genetic loci and candidate genes for resistance of Hu sheep lambs to E. coli F17 infection, and provides a genetic basis for breeding disease-resistant sheep.
Collapse
Affiliation(s)
- Yanjun Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Pengwei Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Qin W, Saris A, van ’t Veer C, Roelofs JJTH, Scicluna BP, de Vos AF, van der Poll T. Myeloid miR-155 plays a limited role in antibacterial defense during Klebsiella-derived pneumosepsis and is dispensable for lipopolysaccharide- or Klebsiella-induced inflammation in mice. Pathog Dis 2023; 81:ftad031. [PMID: 37858304 PMCID: PMC10636497 DOI: 10.1093/femspd/ftad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
MicroRNA-155 (miR-155) plays a crucial role in regulating host inflammatory responses during bacterial infection. Previous studies have shown that constitutive miR-155 deficiency alleviates inflammation while having varying effects in different bacterial infection models. However, whether miR-155 in myeloid cells is involved in the regulation of inflammatory and antibacterial responses is largely elusive. Mice with myeloid cell specific miR-155 deficiency were generated to study the in vitro response of bone marrow-derived macrophages (BMDMs), alveolar macrophages (AMs) and peritoneal macrophages (PMs) to lipopolysaccharide (LPS), and the in vivo response after intranasal or intraperitoneal challenge with LPS or infection with Klebsiella (K.) pneumoniae via the airways. MiR-155-deficient macrophages released less inflammatory cytokines than control macrophages upon stimulation with LPS in vitro. However, the in vivo inflammatory cytokine response to LPS or K. pneumoniae was not affected by myeloid miR-155 deficiency. Moreover, bacterial outgrowth in the lungs was not altered in myeloid miR-155-deficient mice, but Klebsiella loads in the liver of these mice were significantly higher than in control mice. These data argue against a major role for myeloid miR-155 in host inflammatory responses during LPS-induced inflammation and K. pneumoniae-induced pneumosepsis but suggest that myeloid miR-155 contributes to host defense against Klebsiella infection in the liver.
Collapse
Affiliation(s)
- Wanhai Qin
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis van ’t Veer
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, University of Malta, MSD 2080, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080, Msida, Malta
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Myeloid cell tet methylcytosine dioxygenase 2 does not affect the host response during gram-negative bacterial pneumonia and sepsis. Cytokine 2022; 154:155876. [DOI: 10.1016/j.cyto.2022.155876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/20/2022]
|
7
|
Ferreira BL, Ramirez-Moral I, Otto NA, Salomão R, de Vos AF, van der Poll T. The PPAR-γ agonist pioglitazone exerts proinflammatory effects in bronchial epithelial cells during acute Pseudomonas aeruginosa pneumonia. Clin Exp Immunol 2022; 207:370-377. [PMID: 35553637 PMCID: PMC9113127 DOI: 10.1093/cei/uxab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/28/2021] [Accepted: 01/02/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is a common respiratory pathogen that causes injurious airway inflammation during acute pneumonia. Peroxisome proliferator-activated receptor (PPAR)-γ is involved in the regulation of metabolic and inflammatory responses in different cell types and synthetic agonists of PPAR-γ exert anti-inflammatory effects on myeloid cells in vitro and in models of inflammation in vivo. We sought to determine the effect of the PPAR-γ agonist pioglitazone on airway inflammation induced by acute P. aeruginosa pneumonia, focusing on bronchial epithelial cells. Mice pretreated with pioglitazone or vehicle (24 and 1 h) were infected with P. aeruginosa via the airways. Pioglitazone treatment was associated with increased expression of chemokine (Cxcl1, Cxcl2, and Ccl20) and cytokine genes (Tnfa, Il6, and Cfs3) in bronchial brushes obtained 6 h after infection. This pro-inflammatory effect was accompanied by increased expression of Hk2 and Pfkfb3 genes encoding rate-limiting enzymes of glycolysis; concurrently, the expression of Sdha, important for maintaining metabolite flux in the tricarboxylic acid cycle, was reduced in bronchial epithelial cells of pioglitazone treated-mice. Pioglitazone inhibited bronchoalveolar inflammatory responses measured in lavage fluid. These results suggest that pioglitazone exerts a selective proinflammatory effect on bronchial epithelial cells during acute P. aeruginosa pneumonia, possibly by enhancing intracellular glycolysis.
Collapse
Affiliation(s)
- Bianca L Ferreira
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Natasja A Otto
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Reinaldo Salomão
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Qin W, Brands X, van’t Veer C, de Vos AF, Scicluna BP, van der Poll T. DNA Methyltransferase 3b in Myeloid Cells Does Not Affect the Acute Immune Response in the Airways during Pseudomonas Pneumonia. Cells 2022; 11:787. [PMID: 35269409 PMCID: PMC8909799 DOI: 10.3390/cells11050787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
DNA methyltransferase 3b (Dnmt3b) has been suggested to play a role in the host immune response during bacterial infection. Neutrophils and other myeloid cells are crucial for lung defense against Pseudomonas (P.) aeruginosa infection. This study aimed to investigate the role of Dnmt3b in neutrophils and myeloid cells during acute pneumonia caused by P. aeruginosa. Neutrophil-specific (Dnmt3bfl/flMrp8Cre) or myeloid cell-specific (Dnmt3bfl/flLysMCre) Dnmt3b-deficient mice and littermate control mice were infected with P. aeruginosa PAK via the airways. Bacteria burdens, neutrophil recruitment, and activation (CD11b expression, myeloperoxidase, and elastase levels), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) were measured in bronchoalveolar lavage fluid (BALF) at 6 and 24 h after infection. Our data showed that the bacterial loads and neutrophil recruitment and activation did not differ in BALF obtained from neutrophil-specific Dnmt3b-deficient and control mice, whilst BALF IL-6 and TNF levels were lower in the former group at 24 but not at 6 h after infection. None of the host response parameters measured differed between myeloid cell-specific Dnmt3b-deficient and control mice. In conclusion, dnmt3b deficiency in neutrophils or myeloid cells does not affect acute immune responses in the airways during Pseudomonas pneumonia.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
| | - Xanthe Brands
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
| | - Cornelis van’t Veer
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
| | - Alex F. de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
| | - Brendon P. Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.B.); (C.v.V.); (A.F.d.V.); (B.P.S.); (T.v.d.P.)
- Division of Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Qin W, Liu Z, van der Poll T, de Vos AF. Induction of Acute or Disseminating Bacterial Pneumonia in Mice and Sampling of Infected Organs for Studying the Host Response to Bacterial Pneumonia. Bio Protoc 2022; 12:e4287. [PMID: 35118178 PMCID: PMC8769758 DOI: 10.21769/bioprotoc.4287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 03/10/2024] Open
Abstract
Experimental pneumonia models are important tools to study the pathophysiology of lung inflammation caused by microbial infections and the efficacy of (novel) drugs. We have applied a murine model of pneumonia induced by Pseudomonas (P.) aeruginosa infection to study acute host antibacterial defense in lungs, and assess epithelial cell specific responses as well as leukocyte recruitment to the alveolar space. To study host responses during disseminating pneumonia, we also applied a model of infecting mice with hypermucoviscous Klebsiella (K.) pneumoniae. In the latter model, K. pneumoniae is restricted to lung during the early phase of infection and at the later time points disseminates to the circulation and distal organs resulting in sepsis. Detailed procedures for induction of pneumonia in mice by Pseudomonas and Klebsiella and for isolation and analysis of infected organs, bronchoalveolar fluid, and bronchial brushes are provided in this article.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Zhe Liu
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Alex F de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| |
Collapse
|
10
|
Role of Myeloid Tet Methylcytosine Dioxygenase 2 in Pulmonary and Peritoneal Inflammation Induced by Lipopolysaccharide and Peritonitis Induced by Escherichia coli. Cells 2021; 11:cells11010082. [PMID: 35011643 PMCID: PMC8750455 DOI: 10.3390/cells11010082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Tet methylcytosine dioxygenase 2 (Tet2) mediates demethylation of DNA. We here sought to determine the expression and function of Tet2 in macrophages upon exposure to lipopolysaccharide (LPS), and in the host response to LPS induced lung and peritoneal inflammation, and during Escherichia (E.) coli induced peritonitis. LPS induced Tet2 expression in mouse macrophages and human monocytes in vitro, as well as in human alveolar macrophages after bronchial instillation in vivo. Bone marrow-derived macrophages from myeloid Tet2 deficient (Tet2fl/flLysMCre) mice displayed enhanced production of IL-1β, IL-6 and CXCL1 upon stimulation with several Toll-like receptor agonists; similar results were obtained with LPS stimulated alveolar and peritoneal macrophages. Histone deacetylation was involved in the effect of Tet2 on IL-6 production, whilst methylation at the Il6 promoter was not altered by Tet2 deficiency. Tet2fl/flLysMCre mice showed higher IL-6 and TNF levels in bronchoalveolar and peritoneal lavage fluid after intranasal and intraperitoneal LPS administration, respectively, whilst other inflammatory responses were unaltered. E. coli induced stronger production of IL-1β and IL-6 by Tet2 deficient peritoneal macrophages but not in peritoneal lavage fluid of Tet2fl/flLysMCre mice after in vivo intraperitoneal infection. Tet2fl/flLysMCre mice displayed enhanced bacterial growth during E. coli peritonitis, which was associated with a reduced capacity of Tet2fl/flLysMCre peritoneal macrophages to inhibit the growth of E. coli in vitro. Collectively, these data suggest that Tet2 is involved in the regulation of macrophage functions triggered by LPS and during E. coli infection.
Collapse
|
11
|
Qin W, Scicluna BP, van der Poll T. The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection. Front Immunol 2021; 12:696280. [PMID: 34394088 PMCID: PMC8358789 DOI: 10.3389/fimmu.2021.696280] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic changes play a key role in the immune response to bacteria, among which DNA modifications that include methylation have received much attention in recent years. The extent of DNA methylation is well known to regulate gene expression. Whilst historically DNA methylation was considered to be a stable epigenetic modification, accumulating evidence indicates that DNA methylation patterns can be altered rapidly upon exposure of cells to changing environments and pathogens. Furthermore, the action of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by bacteria. This review discusses the principles of DNA methylation, and recent insights about the regulation of host DNA methylation during bacterial infection.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Qin W, Crestani B, Spek CA, Scicluna BP, van der Poll T, Duitman J. Alveolar epithelial TET2 is not involved in the development of bleomycin-induced pulmonary fibrosis. FASEB J 2021; 35:e21599. [PMID: 33913570 DOI: 10.1096/fj.202002686rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown etiology with minimal treatment options. Repetitive alveolar epithelial injury has been suggested as one of the causative mechanisms of this disease. Type 2 alveolar epithelial cells (AEC2) play a crucial role during fibrosis by functioning as stem cells able to repair epithelial damage. The DNA demethylase Tet methylcytosine dioxygenase 2 (TET2) regulates the stemness of multiple types of stem cells, but whether it also affects the stemness of AEC2 during fibrosis remains elusive. To study the role of TET2 in AEC2 during fibrosis, we first determined TET2 protein levels in the lungs of IPF patients and compared TET2 expression in AEC2 of IPF patients and controls using publicly available data sets. Subsequently, pulmonary fibrosis was induced by the intranasal administration of bleomycin to wild-type and AEC2-specific TET2 knockout mice to determine the role of TET2 in vivo. Fibrosis was assessed by hydroxyproline analysis and fibrotic gene expression. Additionally, macrophage recruitment and activation, and epithelial injury were analyzed. TET2 protein levels and gene expression were downregulated in IPF lungs and AEC2, respectively. Bleomycin inoculation induced a robust fibrotic response as indicated by increased hydroxyproline levels and increased expression of pro-fibrotic genes. Additionally, increased macrophage recruitment and both M1 and M2 activation were observed. None of these parameters were, however, affected by AEC2-specific TET2 deficiency. TET2 expression is reduced in IPF, but the absence of TET2 in AEC2 cells does not affect the development of bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wanhai Qin
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Bruno Crestani
- INSERM UMR1152, Medical School Xavier Bichat, Paris, France.,Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - JanWillem Duitman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Qin W, Brands X, van 't Veer C, de Vos AF, Scicluna BP, van der Poll T. Flagellin induces innate immune genes in bronchial epithelial cells in vivo: Role of TET2. Scand J Immunol 2021; 94:e13046. [PMID: 33904193 DOI: 10.1111/sji.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wanhai Qin
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Xanthe Brands
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis van 't Veer
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Qin W, Brands X, van’t Veer C, F. de Vos A, Sirard JC, J. T. H. Roelofs J, P. Scicluna B, van der Poll T. Bronchial epithelial DNA methyltransferase 3b dampens pulmonary immune responses during Pseudomonas aeruginosa infection. PLoS Pathog 2021; 17:e1009491. [PMID: 33793661 PMCID: PMC8043394 DOI: 10.1371/journal.ppat.1009491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/13/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methyltransferase (Dnmt)3b mediates de novo DNA methylation and modulation of Dnmt3b in respiratory epithelial cells has been shown to affect the expression of multiple genes. Respiratory epithelial cells provide a first line of defense against pulmonary pathogens and play a crucial role in the immune response during pneumonia caused by Pseudomonas (P.) aeruginosa, a gram-negative bacterium that expresses flagellin as an important virulence factor. We here sought to determine the role of Dntm3b in respiratory epithelial cells in immune responses elicited by P. aeruginosa. DNMT3B expression was reduced in human bronchial epithelial (BEAS-2B) cells as well as in primary human and mouse bronchial epithelial cells grown in air liquid interface upon exposure to P. aeruginosa (PAK). Dnmt3b deficient human bronchial epithelial (BEAS-2B) cells produced more CXCL1, CXCL8 and CCL20 than control cells when stimulated with PAK, flagellin-deficient PAK (PAKflic) or flagellin. Dnmt3b deficiency reduced DNA methylation at exon 1 of CXCL1 and enhanced NF-ĸB p65 binding to the CXCL1 promoter. Mice with bronchial epithelial Dntm3b deficiency showed increased Cxcl1 mRNA expression in bronchial epithelium and CXCL1 protein release in the airways during pneumonia caused by PAK, which was associated with enhanced neutrophil recruitment and accelerated bacterial clearance; bronchial epithelial Dnmt3b deficiency did not modify responses during pneumonia caused by PAKflic or Klebsiella pneumoniae (an un-flagellated gram-negative bacterium). Dnmt3b deficiency in type II alveolar epithelial cells did not affect mouse pulmonary defense against PAK infection. These results suggest that bronchial epithelial Dnmt3b impairs host defense during Pseudomonas induced pneumonia, at least in part, by dampening mucosal responses to flagellin.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xanthe Brands
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van’t Veer
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex F. de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Claude Sirard
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Joris J. T. H. Roelofs
- Department of Pathology, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Brendon P. Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|