1
|
Etna MP, Severa M, Licursi V, Pardini M, Cruciani M, Rizzo F, Giacomini E, Macchia G, Palumbo O, Stallone R, Carella M, Livingstone M, Negri R, Pellegrini S, Coccia EM. Genome-Wide Gene Expression Analysis of Mtb-Infected DC Highlights the Rapamycin-Driven Modulation of Regulatory Cytokines via the mTOR/GSK-3β Axis. Front Immunol 2021; 12:649475. [PMID: 33936070 PMCID: PMC8086600 DOI: 10.3389/fimmu.2021.649475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
In human primary dendritic cells (DC) rapamycin-an autophagy inducer and protein synthesis inhibitor-overcomes the autophagy block induced by Mycobacterium tuberculosis (Mtb) and promotes a Th1 response via IL-12 secretion. Here, the immunostimulatory activity of rapamycin in Mtb-infected DC was further investigated by analyzing both transcriptome and translatome gene profiles. Hundreds of differentially expressed genes (DEGs) were identified by transcriptome and translatome analyses of Mtb-infected DC, and some of these genes were found further modulated by rapamycin. The majority of transcriptome-associated DEGs overlapped with those present in the translatome, suggesting that transcriptionally stimulated mRNAs are also actively translated. In silico analysis of DEGs revealed significant changes in intracellular cascades related to cytokine production, cytokine-induced signaling and immune response to pathogens. In particular, rapamycin treatment of Mtb-infected DC caused an enrichment of IFN-β, IFN-λ and IFN-stimulated gene transcripts in the polysome-associated RNA fraction. In addition, rapamycin led to an increase of IL-12, IL-23, IL-1β, IL-6, and TNF-α but to a reduction of IL-10. Interestingly, upon silencing or pharmacological inhibition of GSK-3β, the rapamycin-driven modulation of the pro- and anti-inflammatory cytokine balance was lost, indicating that, in Mtb-infected DC, GSK-3β acts as molecular switch for the regulation of the cytokine milieu. In conclusion, our study sheds light on the molecular mechanism by which autophagy induction contributes to DC activation during Mtb infection and points to rapamycin and GSK-3β modulators as promising compounds for host-directed therapy in the control of Mtb infection.
Collapse
Affiliation(s)
- Marilena P Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology, Sapienza University, Rome, Italy
| | - Manuela Pardini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Melania Cruciani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Raffaella Stallone
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mark Livingstone
- Cytokine Signaling Unit, Inserm, Institut Pasteur, Paris, France
| | - Rodolfo Negri
- Department of Biology and Biotechnology, Sapienza University, Rome, Italy
| | | | - Eliana M Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
2
|
Host-directed kinase inhibitors act as novel therapies against intracellular Staphylococcus aureus. Sci Rep 2019; 9:4876. [PMID: 30890742 PMCID: PMC6425000 DOI: 10.1038/s41598-019-41260-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/05/2019] [Indexed: 01/09/2023] Open
Abstract
Host-directed therapeutics are a promising anti-infective strategy against intracellular bacterial pathogens. Repurposing host-targeted drugs approved by the FDA in the US, the MHRA in the UK and/or regulatory equivalents in other countries, is particularly interesting because these drugs are commercially available, safe doses are documented and they have been already approved for other clinical purposes. In this study, we aimed to identify novel therapies against intracellular Staphylococcus aureus, an opportunistic pathogen that is able to exploit host molecular and metabolic pathways to support its own intracellular survival. We screened 133 host-targeting drugs and found three host-directed tyrosine kinase inhibitors (Ibrutinib, Dasatinib and Crizotinib) that substantially impaired intracellular bacterial survival. We found that Ibrutinib significantly increased host cell viability after S. aureus infection via inhibition of cell invasion and intracellular bacterial proliferation. Using phosphoproteomics data, we propose a putative mechanism of action of Ibrutinib involving several host factors, including EPHA2, C-JUN and NWASP. We confirmed the importance of EPHA2 for staphylococcal infection in an EPHA2-knock-out cell line. Our study serves as an important example of feasibility for identifying host-directed therapeutics as candidates for repurposing.
Collapse
|
3
|
BoseDasgupta S, Pieters J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis. Semin Immunopathol 2018; 40:577-591. [PMID: 30306257 DOI: 10.1007/s00281-018-0710-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Macrophages, being the cornerstone of the immune system, have adapted the ancient nutrient acquisition mechanism of phagocytosis to engulf various infectious organisms thereby helping to orchestrate an appropriate host response. Phagocytosis refers to the process of internalization and degradation of particulate material, damaged and senescent cells and microorganisms by specialized cells, after which the vesicle containing the ingested particle, the phagosome, matures into acidic phagolysosomes upon fusion with hydrolytic enzyme-containing lysosomes. The destructive power of the macrophage is further exacerbated through the induction of macrophage activation upon a variety of inflammatory stimuli. Despite being the end-point for many phagocytosed microbes, the macrophage can also serve as an intracellular survival niche for a number of intracellular microorganisms. One microbe that is particularly successful at surviving within macrophages is the pathogen Mycobacterium tuberculosis, which can efficiently manipulate the macrophage at several levels, including modulation of the phagocytic pathway as well as interfering with a number of immune activation pathways that normally would lead to eradication of the internalized bacilli. M. tuberculosis excels at circumventing destruction within macrophages, thus establishing itself successfully for prolonged times within the macrophage. In this contribution, we describe a number of general features of macrophages in the context of their function to clear an infection, and highlight the strategies employed by M. tuberculosis to counter macrophage attack. Interestingly, research on the evasion tactics employed by M. tuberculosis within macrophages not only helps to design strategies to curb tuberculosis, but also allows a better understanding of host cell biology.
Collapse
Affiliation(s)
- Somdeb BoseDasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Jean Pieters
- Department of Biochemistry, Biozentrum, University of Basel, 50-70 Klingelbergstrasse, 4056, Basel, Switzerland.
| |
Collapse
|
4
|
Brutkiewicz RR. Cell Signaling Pathways That Regulate Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2017; 197:2971-2979. [PMID: 27824592 DOI: 10.4049/jimmunol.1600460] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Cell signaling pathways regulate much in the life of a cell: from shuttling cargo through intracellular compartments and onto the cell surface, how it should respond to stress, protecting itself from harm (environmental insults or infections), to ultimately, death by apoptosis. These signaling pathways are important for various aspects of the immune response as well. However, not much is known in terms of the participation of cell signaling pathways in Ag presentation, a necessary first step in the activation of innate and adaptive T cells. In this brief review, I discuss the known signaling molecules (and pathways) that regulate how Ags are presented to T cells and the mechanism(s), if identified. Studies in this area have important implications in vaccine development and new treatment paradigms against infectious diseases, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
5
|
Nicholas DA, Zhang K, Hung C, Glasgow S, Aruni AW, Unternaehrer J, Payne KJ, Langridge WHR, De Leon M. Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. PLoS One 2017; 12:e0176793. [PMID: 28463985 PMCID: PMC5413048 DOI: 10.1371/journal.pone.0176793] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/17/2017] [Indexed: 01/22/2023] Open
Abstract
Palmitic acid (PA) and other saturated fatty acids are known to stimulate pro-inflammatory responses in human immune cells via Toll-like receptor 4 (TLR4). However, the molecular mechanism responsible for fatty acid stimulation of TLR4 remains unknown. Here, we demonstrate that PA functions as a ligand for TLR4 on human monocyte derived dendritic cells (MoDCs). Hydrophobicity protein modeling indicated PA can associate with the hydrophobic binding pocket of TLR4 adaptor protein MD-2. Isothermal titration calorimetry quantified heat absorption that occurred during PA titration into TLR4/MD2, indicating that PA binds to TLR4/MD2. Treatment of human MoDCs with PA resulted in endocytosis of TLR4, further supporting the function of PA as a TLR4 agonist. In addition, PA stimulated DC maturation and activation based on the upregulation of DC costimulatory factors CD86 and CD83. Further experiments showed that PA induced TLR4 dependent secretion of the pro-inflammatory cytokine IL-1β. Lastly, our experimental data show that PA stimulation of NF-κB canonical pathway activation is regulated by TLR4 signaling and that reactive oxygen species may be important in upregulating this pro-inflammatory response. Our experiments demonstrate for the first time that PA activation of TLR4 occurs in response to direct molecular interactions between PA and MD-2. In summary, our findings suggest a likely molecular mechanism for PA induction of pro-inflammatory immune responses in human dendritic cells expressing TLR4.
Collapse
Affiliation(s)
- Dequina A. Nicholas
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christopher Hung
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Shane Glasgow
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Aruni Wilson Aruni
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Juli Unternaehrer
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Kimberly J. Payne
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Anatomy and Physiology, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School Medicine, Loma Linda, California, United States of America
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Basic Sciences, Division of Physiology, Loma Linda University School Medicine, Loma Linda, California, United States of America
| |
Collapse
|
6
|
Balboa L, Kviatcovsky D, Schierloh P, García M, de la Barrera S, Sasiain MDC. Monocyte-derived dendritic cells early exposed to Mycobacterium tuberculosis induce an enhanced T helper 17 response and transfer mycobacterial antigens. Int J Med Microbiol 2016; 306:541-553. [DOI: 10.1016/j.ijmm.2016.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 06/03/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022] Open
|
7
|
Wen Q, Zhou C, Xiong W, Su J, He J, Zhang S, Du X, Liu S, Wang J, Ma L. MiR-381-3p Regulates the Antigen-Presenting Capability of Dendritic Cells and Represses Antituberculosis Cellular Immune Responses by Targeting CD1c. THE JOURNAL OF IMMUNOLOGY 2016; 197:580-9. [PMID: 27296666 DOI: 10.4049/jimmunol.1500481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/15/2016] [Indexed: 11/19/2022]
Abstract
Tuberculosis is still the widest spread infectious disease in the world, and more in-depth studies are needed on the interaction between the pathogen and the host. Due to the highest lipid components in Mycobacterium tuberculosis, the CD1 family that specifically presents antigenic lipids plays important roles in the antituberculosis immunity, especially CD1c, which functions as the intracellular Ag inspector at the full intracellular range. However, downregulation of the CD1c mRNA level has been observed in M. tuberculosis-infected cells, which is consistent with the regulatory mechanism of miRNA on gene expression. In this study, through combinatory analysis of previous miRNA transcriptomic assays and bioinformatic predictions by web-based algorithms, miR-381-3p was predicted to bind the 3'-untranslated region of CD1c gene. In vivo expression of miR-381-3p in dendritic cells (DCs) of TB patients is higher than in DCs of healthy individuals, inversely related to CD1c. Suppression of CD1c expression in bacillus Calmette-Guérin (BCG)-infected DCs was accompanied with upregulation of miR-381-3p, whereas inhibition of miR-381-3p could reverse suppression of CD1c expression and promote T cell responses against BCG infection. Further study indicated that miR-381-3p is also one of the mediators of the immune suppressor IL-10. Collectively, these results demonstrated the mechanism that suppression of CD1c by BCG infection is mediated by miR-381-3p. This finding may provide a novel approach to boost immune responses to M. tuberculosis.
Collapse
Affiliation(s)
- Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China; and
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China; and
| | - Wenjing Xiong
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China; and
| | - Jing Su
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianchun He
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China; and
| | - Shimeng Zhang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China; and
| | - Xialin Du
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China; and
| | - Sudong Liu
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China; and
| | - Juanjuan Wang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China; and
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, China; and
| |
Collapse
|
8
|
Mahiddine K, Mallavialle A, Bziouech H, Larbret F, Bernard A, Bernard G. CD99 isoforms regulate CD1a expression in human monocyte-derived DCs through ATF-2/CREB-1 phosphorylation. Eur J Immunol 2016; 46:1460-71. [PMID: 27094031 DOI: 10.1002/eji.201546143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/18/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022]
Abstract
CD1a expression is considered one of the major characteristics qualifying in vitro human dendritic cells (DCs) during their generation process. Here, we report that CD1A transcription is regulated by a mechanism involving the long and short isoforms of CD99. Using a lentiviral construct encoding for a CD99 short hairpin RNA, we were able to inhibit CD99 expression in human primary DCs. In such cells, CD1a membrane expression increased and CD1A transcripts were much higher in abundance compared to cells expressing CD99 long form (CD99LF). We also show that CD1A transcription is accompanied by a switch in expression from CD99LF to expression at comparable levels of both CD99 isoforms during immature DCs generation in vitro. We demonstrate that CD99LF maintains a lower level of CD1A transcription by up-regulating the phosphorylated form of the ATF-2 transcription factor and that CD99 short form (SF) is required to counteract this regulatory mechanism. Elucidation of the molecular mechanisms related to CD99 alternative splicing will be very helpful to better understand the transcriptional regulatory mechanism of CD1a molecules during DCs differentiation and its involvement in the immune response.
Collapse
Affiliation(s)
- Karim Mahiddine
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,INSERM U1043, CNRS, UMR5282 Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Aude Mallavialle
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,INSERM, U1065 Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Hanen Bziouech
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Frédéric Larbret
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,EA 6302, Tolérance Immunitaire Université de Nice Hôpital de l'Archet, Nice cedex 3, France
| | - Alain Bernard
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,Laboratoire d'Immunologie CHU de Nice, Nice, France
| | - Ghislaine Bernard
- INSERM U 576-Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,Laboratoire d'Immunologie CHU de Nice, Nice, France
| |
Collapse
|
9
|
Kuo CP, Chang KS, Hsu JL, Tsai IF, Lin AB, Wei TY, Wu CL, Lu YT. Analysis of the immune response of human dendritic cells to Mycobacterium tuberculosis by quantitative proteomics. Proteome Sci 2016; 14:5. [PMID: 26957948 PMCID: PMC4782377 DOI: 10.1186/s12953-016-0095-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 03/01/2016] [Indexed: 12/27/2022] Open
Abstract
Background The cellular immune response for Mycobacterium tuberculosis (M. tuberculosis) infection remained incompletely understood. To uncover membrane proteins involved in this infection mechanism, an integrated approach consisting of an organic solvent-assisted membrane protein digestion, stable-isotope dimethyl labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to comparatively profile the membrane protein expression of human dendritic cells upon heat-killed M. tuberculosis (HKTB) treatment. Results Organic solvent-assisted trypsin digestion coupled with stable-isotope labeling and LC-MS/MS analysis was applied to quantitatively analyze the membrane protein expression of THP-1 derived dendritic cells. We evaluated proteins that were upregulated in response to HKTB treatment, and applied STRING website database to analyze the correlations between these proteins. Of the investigated proteins, aminopeptidase N (CD13) was found to be largely expressed after HKTB treatment. By using confocal microscopy and flow cytometry, we found that membranous CD13 expression was upregulated and was capable of binding to live mycobacteria. Treatment dendritic cell with anti-CD13 antibody during M. tuberculosis infection enhanced the ability of T cell activation. Conclusions Via proteomics data and STRING analysis, we demonstrated that the highly-expressed CD13 is also associated with proteins involved in the antigen presenting process, especially with CD1 proteins. Increasing expression of CD13 on dendritic cells while M. tuberculosis infection and enhancement of T cell activation after CD13 treated with anti-CD13 antibody indicates CD13 positively involved in the pathogenesis of M. tuberculosis. Electronic supplementary material The online version of this article (doi:10.1186/s12953-016-0095-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiu-Ping Kuo
- Division of Chest Medicine, Department of Internal Medicine, Mackay Memorial Hospital, 92, Sec 2, Chungshan North Road, Taipei, Taiwan
| | - Kuo-Song Chang
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Jue-Liang Hsu
- Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - I-Fang Tsai
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Andrew Boyd Lin
- Biology Department, Case Western Reserve University, Cleveland, OH USA
| | - Tsai-Yin Wei
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chien-Liang Wu
- Division of Chest Medicine, Department of Internal Medicine, Mackay Memorial Hospital, 92, Sec 2, Chungshan North Road, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yen-Ta Lu
- Division of Chest Medicine, Department of Internal Medicine, Mackay Memorial Hospital, 92, Sec 2, Chungshan North Road, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
10
|
Rana A, Ahmed M, Rub A, Akhter Y. A tug-of-war between the host and the pathogen generates strategic hotspots for the development of novel therapeutic interventions against infectious diseases. Virulence 2015; 6:566-80. [PMID: 26107578 PMCID: PMC4720223 DOI: 10.1080/21505594.2015.1062211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 12/30/2022] Open
Abstract
Microbial pathogens are known to express an array of specific signaling molecules referred as Pathogen Associated Molecular Patterns (PAMPs), which are recognized by Pattern Recognition Receptors (PRRs), present on the surface of the host cells. Interactions between PAMPs and PRRs on the surface of the host cells lead to signaling events which could culminate into either successful infection or clearance of the pathogens. Here, we summarize how these events may generate novel host based as well as pathogen based molecular targets for designing effective therapeutic strategies against infections.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra, Himachal Pradesh, India
| | - Mushtaq Ahmed
- School of Earth and Environmental Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra, Himachal Pradesh, India
| | - Abdur Rub
- Infection and Immunity Lab; Department of Biotechnology; Jamia Millia Islamia (A Central University); New Delhi, India
| | - Yusuf Akhter
- School of Life Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra, Himachal Pradesh, India
| |
Collapse
|
11
|
Mohanty S, Jagannathan L, Ganguli G, Padhi A, Roy D, Alaridah N, Saha P, Nongthomba U, Godaly G, Gopal RK, Banerjee S, Sonawane A. A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish. J Biol Chem 2015; 290:13321-43. [PMID: 25825498 DOI: 10.1074/jbc.m114.598482] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.
Collapse
Affiliation(s)
- Soumitra Mohanty
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Lakshmanan Jagannathan
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India, the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Geetanjali Ganguli
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Avinash Padhi
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Debasish Roy
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Nader Alaridah
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Pratip Saha
- the Bioinformatics Center, Indian Institute of Science, Bangalore, Karnataka 560012, India, and
| | - Upendra Nongthomba
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Gabriela Godaly
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Ramesh Kumar Gopal
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Sulagna Banerjee
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India, the Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455
| | - Avinash Sonawane
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India,
| |
Collapse
|
12
|
Zhou H, Gao S, Nguyen NN, Fan M, Jin J, Liu B, Zhao L, Xiong G, Tan M, Li S, Wong L. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions. Biol Direct 2014; 9:5. [PMID: 24708540 PMCID: PMC4022245 DOI: 10.1186/1745-6150-9-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/26/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are essential for understanding the infection mechanism of the formidable pathogen M. tuberculosis H37Rv. Computational prediction is an important strategy to fill the gap in experimental H. sapiens-M. tuberculosis H37Rv PPI data. Homology-based prediction is frequently used in predicting both intra-species and inter-species PPIs. However, some limitations are not properly resolved in several published works that predict eukaryote-prokaryote inter-species PPIs using intra-species template PPIs. RESULTS We develop a stringent homology-based prediction approach by taking into account (i) differences between eukaryotic and prokaryotic proteins and (ii) differences between inter-species and intra-species PPI interfaces. We compare our stringent homology-based approach to a conventional homology-based approach for predicting host-pathogen PPIs, based on cellular compartment distribution analysis, disease gene list enrichment analysis, pathway enrichment analysis and functional category enrichment analysis. These analyses support the validity of our prediction result, and clearly show that our approach has better performance in predicting H. sapiens-M. tuberculosis H37Rv PPIs. Using our stringent homology-based approach, we have predicted a set of highly plausible H. sapiens-M. tuberculosis H37Rv PPIs which might be useful for many of related studies. Based on our analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent homology-based approach, we have discovered several interesting properties which are reported here for the first time. We find that both host proteins and pathogen proteins involved in the host-pathogen PPIs tend to be hubs in their own intra-species PPI network. Also, both host and pathogen proteins involved in host-pathogen PPIs tend to have longer primary sequence, tend to have more domains, tend to be more hydrophilic, etc. And the protein domains from both host and pathogen proteins involved in host-pathogen PPIs tend to have lower charge, and tend to be more hydrophilic. CONCLUSIONS Our stringent homology-based prediction approach provides a better strategy in predicting PPIs between eukaryotic hosts and prokaryotic pathogens than a conventional homology-based approach. The properties we have observed from the predicted H. sapiens-M. tuberculosis H37Rv PPI network are useful for understanding inter-species host-pathogen PPI networks and provide novel insights for host-pathogen interaction studies.
Collapse
Affiliation(s)
- Hufeng Zhou
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
- Department of Medicine, Brigham and Women’s Hospital, Boston, USA
- Department of Microbiology and Immunobiology, Harvard University, Cambridge, USA
| | - Shangzhi Gao
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Cambridge, USA
| | - Nam Ninh Nguyen
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Mengyuan Fan
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Jingjing Jin
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Bing Liu
- Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Liang Zhao
- Bioinformatics Research Center, & School of Computer Engineering, Nanyang Technological University, Singapore, Singapore
| | - Geng Xiong
- Department of Medicine, Brigham and Women’s Hospital, Boston, USA
| | - Min Tan
- Department of Medicine, Brigham and Women’s Hospital, Boston, USA
- Department of Microbiology and Immunobiology, Harvard University, Cambridge, USA
| | - Shijun Li
- Department of Medicine, Brigham and Women’s Hospital, Boston, USA
- Department of Microbiology and Immunobiology, Harvard University, Cambridge, USA
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Pirson C, Jones GJ, Steinbach S, Besra GS, Vordermeier HM. Differential effects of Mycobacterium bovis--derived polar and apolar lipid fractions on bovine innate immune cells. Vet Res 2012; 43:54. [PMID: 22738036 PMCID: PMC3407013 DOI: 10.1186/1297-9716-43-54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/27/2012] [Indexed: 11/24/2022] Open
Abstract
Mycobacterial lipids have long been known to modulate the function of a variety of cells of the innate immune system. Here, we report the extraction and characterisation of polar and apolar free lipids from Mycobacterium bovis AF 2122/97 and identify the major lipids present in these fractions. Lipids found included trehalose dimycolate (TDM) and trehalose monomycolate (TMM), the apolar phthiocerol dimycocersates (PDIMs), triacyl glycerol (TAG), pentacyl trehalose (PAT), phenolic glycolipid (PGL), and mono-mycolyl glycerol (MMG). Polar lipids identified included glucose monomycolate (GMM), diphosphatidyl glycerol (DPG), phenylethanolamine (PE) and a range of mono- and di-acylated phosphatidyl inositol mannosides (PIMs). These lipid fractions are capable of altering the cytokine profile produced by fresh and cultured bovine monocytes as well as monocyte derived dendritic cells. Significant increases in the production of IL-10, IL-12, MIP-1β, TNFα and IL-6 were seen after exposure of antigen presenting cells to the polar lipid fraction. Phenotypic characterisation of the cells was performed by flow cytometry and significant decreases in the expression of MHCII, CD86 and CD1b were found after exposure to the polar lipid fraction. Polar lipids also significantly increased the levels of CD40 expressed by monocytes and cultured monocytes but no effect was seen on the constitutively high expression of CD40 on MDDC or on the levels of CD80 expressed by any of the cells. Finally, the capacity of polar fraction treated cells to stimulate alloreactive lymphocytes was assessed. Significant reduction in proliferative activity was seen after stimulation of PBMC by polar fraction treated cultured monocytes whilst no effect was seen after lipid treatment of MDDC. These data demonstrate that pathogenic mycobacterial polar lipids may significantly hamper the ability of the host APCs to induce an appropriate immune response to an invading pathogen.
Collapse
Affiliation(s)
- Chris Pirson
- TB Research Group, Animal Health and Veterinary Laboratories Agency - Weybridge, New Haw, Surrey, Addlestone, KT15 3NB, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
Samten B, Wang X, Barnes PF. Immune regulatory activities of early secreted antigenic target of 6-kD protein of Mycobacterium tuberculosis and implications for tuberculosis vaccine design. Tuberculosis (Edinb) 2011; 91 Suppl 1:S114-8. [PMID: 22169731 DOI: 10.1016/j.tube.2011.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although ESAT-6 was originally identified as a strong T cell immunogen in short-term culture filtrate of Mtb, and has therefore been a candidate vaccine antigen for many years, recent work has demonstrated that ESAT-6 is also a virulence factor that mediates pathogenicity of Mtb. The studies described in this review suggest that ESAT-6 secreted by Mtb subverts host immunity by manipulating intracellular signaling pathways in macrophages and T cells, which are critical in protection against Mtb. Furthermore, ESAT-6 elicits pro-inflammatory responses that can be detrimental to the host. Understanding the molecular mechanisms through which ESAT-6 inhibits immunity will permit design of ESAT-6-based vaccine constructs that elicit protective immune responses with minimal negative effects.
Collapse
Affiliation(s)
- Buka Samten
- Center for Pulmonary and Infectious Disease Control, The University of Texas Health Science Center, Tyler, TX 75708, USA.
| | | | | |
Collapse
|
15
|
Krachler AM, Woolery AR, Orth K. Manipulation of kinase signaling by bacterial pathogens. ACTA ACUST UNITED AC 2011; 195:1083-92. [PMID: 22123833 PMCID: PMC3246894 DOI: 10.1083/jcb.201107132] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial pathogens use effector proteins to manipulate their hosts to propagate infection. These effectors divert host cell signaling pathways to the benefit of the pathogen and frequently target kinase signaling cascades. Notable pathways that are usurped include the nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and p21-activated kinase (PAK) pathways. Analyzing the functions of pathogenic effectors and their intersection with host kinase pathways has provided interesting insights into both the mechanisms of virulence and eukaryotic signaling.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
16
|
Mishra AK, Driessen NN, Appelmelk BJ, Besra GS. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol Rev 2011; 35:1126-57. [PMID: 21521247 PMCID: PMC3229680 DOI: 10.1111/j.1574-6976.2011.00276.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Approximately one third of the world's population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. This bacterium has an unusual lipid-rich cell wall containing a vast repertoire of antigens, providing a hydrophobic impermeable barrier against chemical drugs, thus representing an attractive target for vaccine and drug development. Apart from the mycolyl–arabinogalactan–peptidoglycan complex, mycobacteria possess several immunomodulatory constituents, notably lipomannan and lipoarabinomannan. The availability of whole-genome sequences of M. tuberculosis and related bacilli over the past decade has led to the identification and functional characterization of various enzymes and the potential drug targets involved in the biosynthesis of these glycoconjugates. Both lipomannan and lipoarabinomannan possess highly variable chemical structures, which interact with different receptors of the immune system during host–pathogen interactions, such as Toll-like receptors-2 and C-type lectins. Recently, the availability of mutants defective in the synthesis of these glycoconjugates in mycobacteria and the closely related bacterium, Corynebacterium glutamicum, has paved the way for host–pathogen interaction studies, as well as, providing attenuated strains of mycobacteria for the development of new vaccine candidates. This review provides a comprehensive account of the structure, biosynthesis and immunomodulatory properties of these important glycoconjugates.
Collapse
Affiliation(s)
- Arun K Mishra
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
17
|
Peng H, Wang X, Barnes PF, Tang H, Townsend JC, Samten B. The Mycobacterium tuberculosis early secreted antigenic target of 6 kDa inhibits T cell interferon-γ production through the p38 mitogen-activated protein kinase pathway. J Biol Chem 2011; 286:24508-18. [PMID: 21586573 DOI: 10.1074/jbc.m111.234062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We reported previously that the early secreted antigenic target of 6 kDa (ESAT-6) from Mycobacterium tuberculosis directly inhibits human T cell IFN-γ production and proliferation in response to stimulation with anti-CD3 and anti-CD28. To determine the mechanism of this effect, we treated T cells with kinase inhibitors before stimulation with ESAT-6. Only the p38 MAPK inhibitor, SB203580, abrogated ESAT-6-mediated inhibition of IFN-γ production in a dose-dependent manner. SB203580 did not reverse ESAT-6-mediated inhibition of IL-17 and IL-10 production, suggesting a specific effect of SB203580 on IFN-γ production. SB203580 did not act through inhibition of AKT (PKB) as an AKT inhibitor did not affect ESAT-6 inhibition of T cell IFN-γ production and proliferation. ESAT-6 did not reduce IFN-γ production by expanding FoxP3(+) T regulatory cells. Incubation of T cells with ESAT-6 induced phosphorylation and increased functional p38 MAPK activity, but not activation of ERK or JNK. Incubation of peripheral blood mononuclear cells with ESAT-6 induced activation of p38 MAPK, and inhibition of p38 MAPK with SB203580 reversed ESAT-6 inhibition of M. tuberculosis-stimulated IFN-γ production by peripheral blood mononuclear cells from subjects with latent tuberculosis infection. Silencing of p38α MAPK with siRNA rendered T cells resistant to ESAT-6 inhibition of IFN-γ production. Taken together, our results demonstrate that ESAT-6 inhibits T cell IFN-γ production in a p38 MAPK-dependent manner.
Collapse
Affiliation(s)
- Hui Peng
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, Texas 75708, USA
| | | | | | | | | | | |
Collapse
|
18
|
Exogenous control of the expression of Group I CD1 molecules competent for presentation of microbial nonpeptide antigens to human T lymphocytes. Clin Dev Immunol 2011; 2011:790460. [PMID: 21603161 PMCID: PMC3095450 DOI: 10.1155/2011/790460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/12/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
Abstract
Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis.
Collapse
|
19
|
Expression of proinflammatory and regulatory cytokines via NF-κB and MAPK-dependent and IFN regulatory factor-3-independent mechanisms in human primary monocytes infected by Mycobacterium tuberculosis. Clin Dev Immunol 2010; 2011:841346. [PMID: 21197399 PMCID: PMC3010679 DOI: 10.1155/2011/841346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/26/2010] [Indexed: 12/24/2022]
Abstract
Knowledge of the molecular events regulating the innate response to Mycobacterium tuberculosis (Mtb) is critical for understanding immunological pathogenesis and protection from tuberculosis. To this aim, the regulation and the expression of regulatory and proinflammatory cytokines were investigated in human primary monocytes upon Mtb infection. We found that Mtb-infected monocytes preferentially express a proinflammatory cytokine profile, including IL-6, TNF-α, and IL-1β. Conversely, among the regulatory cytokines, Mtb elicited IL-10 and IL-23 release while no expression of IL-12p70, IL-27, and IFN-β was observed. The analysis of the signalling pathways leading to this selective cytokine expression showed that in monocytes Mtb activates MAPK and NF-κB but is unable to stimulate IRF-3 phosphorylation, a transcription factor required for IL-12p35 and IFN-β gene expression. Thus, by inducing a specific cytokine profile, Mtb can influence the immunoregulatory properties of monocytes, which represent important target of novel vaccinal strategies against Mtb infection.
Collapse
|
20
|
Bystander inhibition of dendritic cell differentiation by
Mycobacterium tuberculosis
‐induced IL‐10. Immunol Cell Biol 2010; 89:437-46. [DOI: 10.1038/icb.2010.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Salio M, Silk JD, Cerundolo V. Recent advances in processing and presentation of CD1 bound lipid antigens. Curr Opin Immunol 2010; 22:81-8. [PMID: 20080041 DOI: 10.1016/j.coi.2009.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 12/18/2022]
Abstract
It is well established that different populations of alphabeta T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules, but also foreign and self-lipids in association with CD1 proteins, which share structural similarities with MHC class I molecules. CD1 molecules are comprised of five isoforms, known as group 1 (CD1a, b, c, e) and group 2 (CD1d) CD1, presenting lipid antigens to conventional T lymphocytes or innate-like T cells bearing an invariant T cell receptor (TCR) and known as invariant NKT (iNKT) cells. During the last couple of years, several papers have been published describing important aspects of the mechanisms controlling the processing and presentation of endogenous and exogenous CD1 lipid antigens, which will be the main focus of this review.
Collapse
Affiliation(s)
- Mariolina Salio
- Nuffield Department of Clinical Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
| | | | | |
Collapse
|