1
|
Ribeiro IS, Muniz IPR, Galantini MPL, Gonçalves CV, Lima PHB, Silva NR, de Oliveira SL, Nunes MS, Novaes AKS, de Oliveira MES, Costa DJ, Amaral JG, da Silva RAA. Antimicrobial photodynamic therapy with Brazilian green propolis controls intradermal infection induced by methicillin-resistant Staphylococcus aureus and modulates the inflammatory response in a murine model. Photochem Photobiol Sci 2024; 23:561-573. [PMID: 38372844 DOI: 10.1007/s43630-024-00539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/13/2024] [Indexed: 02/20/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of skin and soft tissue infections worldwide. This microorganism has a wide range of antibiotics resistance, a fact that has made the treatment of infections caused by MRSA difficult. In this sense, antimicrobial photodynamic therapy (aPDT) with natural products has emerged as a good alternative in combating infections caused by antibiotic-resistant microorganisms. The objective of the present study was to evaluate the effects of aPDT with Brazilian green propolis against intradermal MRSA infection in a murine model. Initially, 24 Balb/c mice were infected intradermally in the ears with 1.5 × 108 colony-forming units of MRSA 43300. After infection, they were separated into 4 groups (6 animals per group) and treated with the vehicle, only Brazilian green propolis, only blue LED light or with the aPDT protocol (Brazilian green propolis + blue LED light). It was observed in this study that aPDT with Brazilian green propolis reduced the bacterial load at the site of infection. Furthermore, it was able to inhibit weight loss resulting from the infection, as well as modulate the inflammatory response through greater recruitment of polymorphonuclear cells/neutrophils to the infected tissue. Finally, aPDT induced an increase in the cytokines IL-17A and IL-12p70 in the draining retromaxillary lymph node. Thus, aPDT with Brazilian green propolis proved to be effective against intradermal MRSA infection in mice, reducing bacterial load and modulating the immune response in the animals. However, more studies are needed to assess whether such effects are repeated in humans.
Collapse
Affiliation(s)
- Israel Souza Ribeiro
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
- Universidade Federal Do Sul da Bahia, Campus Paulo Freire, 250 Praça Joana Angélica, Bairro São José, Teixeira de Freitas, Bahia, 45.988-058, Brazil
| | - Igor Pereira Ribeiro Muniz
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Maria Poliana Leite Galantini
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Caroline Vieira Gonçalves
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Paulo Henrique Bispo Lima
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Nathalia Rosa Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Samara Lopes de Oliveira
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Marlon Silva Nunes
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Amanda Kelle Santos Novaes
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Maria Eduarda Santos de Oliveira
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Dirceu Joaquim Costa
- Universidade Estadual Do Sudoeste da Bahia, Campus Vitória da Conquista, Av. Edmundo Silveira Flores, 27-43 - Lot, Alto da Boa Vista, Vitória da Conquista, Bahia, CEP: 45029-066, Brazil
| | - Juliano Geraldo Amaral
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Robson Amaro Augusto da Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil.
| |
Collapse
|
2
|
Qin M, Huang L, Li M, Shao T, Zhang J, Jiang X, Shao C, Zhao C, Pan Y, Zhou Q, Wang Y, Liu XM, Qiu J. Immunotoxicity Evaluation of Trihalophenolic Disinfection By-Products in Mouse and Human Mononuclear Macrophage Systems: The Role of RNA Epitranscriptomic Modification in Mammalian Immunity. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127023. [PMID: 38157273 PMCID: PMC10756339 DOI: 10.1289/ehp11329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/15/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND 2,4,6-Trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP) are three widely detected trihalophenolic disinfection by-products (DBPs). Previous studies have mainly focused on the carcinogenic risk and developmental toxicity of 2,4,6-trihalophenols. Very little is known about their immunotoxicity in mammals. OBJECTIVES We investigated the effects of 2,4,6-trihalophenols on mammalian immunity using a mouse macrophage model infected with bacteria or intracellular parasites and aimed to elucidate the underlying mechanisms from an epitranscriptomic perspective. The identified mechanisms were further validated in human peripheral blood mononuclear cells (PBMCs). METHODS The mouse macrophage cell line RAW264.7 and primary mouse peritoneal macrophages were exposed to different concentrations of TCP, TBP, and TIP. The pro-inflammatory marker Ly6C, the survival of the bacterium Escherichia coli (E. coli), and the parasite burden of Toxoplasma gondii (T. gondii) were assessed. Furthermore, the global gene expression profiling of macrophages following exposure to 2,4,6-trihalophenols was obtained through RNA-sequencing (RNA-seq). The effects of 2,4,6-trihalophenols on RNA N 6 -methyladenosine (m 6 A ) methyltransferases and total RNA m 6 A levels were evaluated using Western blotting and dot blot, respectively. Transcriptome-wide m 6 A methylome was analyzed by m 6 A -seq . In addition, expression of m 6 A regulators and total RNA m 6 A levels in human PBMCs exposed to 2,4,6-trihalophenols were detected using quantitative reverse transcriptase polymerase chain reaction and dot blot, respectively. RESULTS Mouse macrophages exposed to TCP, TBP, or TIP had lower expression of the pro-inflammatory marker Ly6C, with a greater difference from control observed for TIP-exposed cells. Consistently, macrophages exposed to such DBPs, especially TIP, were susceptible to infection with the bacterium E. coli and the intracellular parasite T. gondii, indicating a compromised ability of macrophages to defend against pathogens. Intriguingly, macrophages exposed to TIP had significantly greater m 6 A levels, which correlated with the greater expression levels of m 6 A methyltransferases. Macrophages exposed to each of the three 2,4,6-trihalophenols exhibited transcriptome-wide redistribution of m 6 A . In particular, the m 6 A peaks in genes associated with immune-related pathways were altered after exposure. In addition, differences in m 6 A were also observed in human PBMCs after exposure to 2,4,6-trihalophenols. DISCUSSION These findings suggest that 2,4,6-trihalophenol exposure impaired the ability of macrophages to defend against pathogens. This response might be associated with notable differences in m 6 A after exposure. To the best of our knowledge, this study presents the first m 6 A landscape across the transcriptome of immune cells exposed to pollutants. However, significant challenges remain in elucidating the mechanisms by which m 6 A mediates immune dysregulation in infected macrophages after 2,4,6-trihalophenol exposure. https://doi.org/10.1289/EHP11329.
Collapse
Affiliation(s)
- Min Qin
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linyuan Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, China
| | - Meishuang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Tianye Shao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoqin Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Chenlu Shao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengsi Zhao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Yong Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Min Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Galantini MPL, Leal LS, Rodrigues KB, Ribeiro IS, Pereira IS, Gonçalves CV, Calado SPM, Santos DPD, Muniz IPR, Silva RAADA. Physical activity reduces intradermal bacterial load in a murine model submitted to forced swim training - a pilot study. AN ACAD BRAS CIENC 2022; 94:e20200561. [PMID: 35703689 DOI: 10.1590/0001-3765202220200561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022] Open
Abstract
Regular exercise is beneficial to health. This study evaluated the effects of moderate and intense physical exercise modalities on intradermal infection by Staphylococcus aureus in a murine model. Mice that practiced moderate exercise had lower bacterial load on lymph nodes and less inflammatory infiltrate in dermis. They presented greater weight, however, less amount of epididymal fat: the weight was increased while they had fat diminished. A positive correlation was observed between lipid content and bacterial load in mice trained at moderate intensity. Animals that were under high intensity exercises presented superior bacterial load on the lymph nodes, increased neutrophil count and circulating lymphocytes, and had leukocyte recruitment to the dermis augmented, when compared to the ones in moderate exercise. These findings suggest that moderate physical activity modulates the immune response in dermal infection caused by S. aureus in a murine model.
Collapse
Affiliation(s)
- Maria P L Galantini
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Lorena S Leal
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Karine B Rodrigues
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Israel S Ribeiro
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Italo S Pereira
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Departamento de Bioquímica e Imunologia, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Caroline V Gonçalves
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Stéfano P M Calado
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Denisar P Dos Santos
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Igor P R Muniz
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| | - Robson A A DA Silva
- Universidade Federal da Bahia (UFBA), Instituto Multidisciplinar em Saúde (IMS), Campus Anísio Teixeira (CAT), Rua Hormindo Barros, 58, 45029-094 Vitória da Conquista, BA, Brazil
| |
Collapse
|
4
|
Monteith AJ, Miller JM, Maxwell CN, Chazin WJ, Skaar EP. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. SCIENCE ADVANCES 2021; 7:eabj2101. [PMID: 34516771 PMCID: PMC8442908 DOI: 10.1126/sciadv.abj2101] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/20/2021] [Indexed: 05/16/2023]
Abstract
Neutrophils and macrophages are critical to the innate immune response, but cooperative mechanisms used by these cells to combat extracellular pathogens are not well understood. This study reveals that S100A9-deficient neutrophils produce higher levels of mitochondrial superoxide in response to Staphylococcus aureus and, as a result, form neutrophil extracellular traps (suicidal NETosis). Increased suicidal NETosis does not improve neutrophil killing of S. aureus in isolation but augments macrophage killing. NET formation enhances antibacterial activity by increasing phagocytosis by macrophages and by transferring neutrophil-specific antimicrobial peptides to them. Similar results were observed in response to other phylogenetically distinct bacterial pathogens including Streptococcus pneumoniae and Pseudomonas aeruginosa, implicating this as an immune defense mechanism that broadly enhances antibacterial activity. These results demonstrate that achieving maximal bactericidal activity through NET formation requires macrophages and that accelerated and more robust suicidal NETosis makes neutrophils adept at increasing antibacterial activity, especially when A9 deficient.
Collapse
Affiliation(s)
- Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeanette M. Miller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C. Noel Maxwell
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Okamoto N, Ohama H, Matsui M, Fukunishi S, Higuchi K, Asai A. Hepatic F4/80 + CD11b + CD68 - cells influence the antibacterial response in irradiated mice with sepsis by Enterococcus faecalis. J Leukoc Biol 2021; 109:943-952. [PMID: 33899953 DOI: 10.1002/jlb.4a0820-550rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Gut-associated sepsis is a major problem in patients undergoing abdominal radiation therapy; the majority of pathogens causing this type of sepsis are translocated from the gut microbiota. While treating sepsis, bacterial clearance must be achieved to ensure patient survival, and the hepatic immune response is responsible for this process. In particular, Kupffer cells play a crucial role in the hepatic immune response against infectious agents. Recently, two populations of Kupffer cells have been described: liver-resident macrophages (Mϕ) (F4/80+ CD11b- CD68+ cells) and hepatic Mϕ derived from circulating monocytes (F4/80+ CD11b+ CD68- cells). We examined the properties of both types of hepatic Mϕ obtained from irradiated and normal mice and their role in sepsis. Hepatic F4/80+ CD11b- CD68+ cells from both normal and irradiated mice did not show any antibacterial activity. However, F4/80+ CD11b+ CD68- cells from normal mice behaved as effector cells against sepsis by Enterococcus faecalis, although those from irradiated mice lost this ability. Moreover, hepatic F4/80+ CD11b+ CD68- cells from normal infected mice were shown to be IL-12+ IL-10- CD206- CCL1- (considered M1Mϕ), and hepatic F4/80+ CD11b- CD68+ cells from the same mice were shown to be IL-12- IL-10+ CD206+ CCL1- (considered M2aMϕ). When normal mice were exposed to radiation, hepatic F4/80+ CD11b+ CD68- cells altered their phenotype to IL-12- IL-10+ CD206- CCL1+ (considered M2bMϕ), independent of infection, but hepatic F4/80+ CD11b- CD68+ cells remained IL-12- IL-10+ CD206+ CCL1- (M2aMϕ). In addition, hepatic F4/80+ CD11b+ CD68- cells from irradiated mice acquired antibacterial activity upon treatment with CCL1 antisense oligodeoxynucleotides. Therefore, the characteristics of hepatic F4/80+ CD11b+ CD68- cells play a key role in the antibacterial response against gut-associated sepsis.
Collapse
Affiliation(s)
- Norio Okamoto
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Hideko Ohama
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Masahiro Matsui
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Shinya Fukunishi
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Kazuhide Higuchi
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Akira Asai
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
6
|
Zhang J, Conly J, McClure J, Wu K, Petri B, Barber D, Elsayed S, Armstrong G, Zhang K. A Murine Skin Infection Model Capable of Differentiating the Dermatopathology of Community-Associated MRSA Strain USA300 from Other MRSA Strains. Microorganisms 2021; 9:microorganisms9020287. [PMID: 33573328 PMCID: PMC7912111 DOI: 10.3390/microorganisms9020287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
USA300 is a predominant and highly virulent community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain that is a leading cause of skin and soft tissue infections. We established a murine intradermal infection model capable of demonstrating dermatopathological differences between USA300 and other MRSA strains. In this model, USA300 induced dermonecrosis, uniformly presenting as extensive open lesions with a histologically documented profound inflammatory cell infiltrate extending below the subcutis. In contrast, USA400 and a colonizing control strain M92 caused only localized non-ulcerated skin infections associated with a mild focal inflammatory infiltrate. It was also determined that the dermonecrosis induced by USA300 was associated with significantly increased neutrophil recruitment, inhibition of an antibacterial response, and increased production of cytokines/chemokines associated with disease severity. These results suggest that induction of severe skin lesions by USA300 is related to over-activation of neutrophils, inhibition of host antibacterial responses, and selective alteration of host cytokine/chemokine profiles.
Collapse
Affiliation(s)
- Jack Zhang
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - John Conly
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
| | - JoAnn McClure
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Kaiyu Wu
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - Bjӧrn Petri
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Duane Barber
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
| | - Sameer Elsayed
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Western Ontario, London, ON N6A5C1, Canada
| | - Glen Armstrong
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - Kunyan Zhang
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
- Correspondence: ; Tel.: +1-403-210-8484
| |
Collapse
|
7
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Research Techniques Made Simple: Mouse Bacterial Skin Infection Models for Immunity Research. J Invest Dermatol 2020; 140:1488-1497.e1. [PMID: 32407714 DOI: 10.1016/j.jid.2020.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/11/2023]
Abstract
Bacterial skin infections are a major societal health burden and are increasingly difficult to treat owing to the emergence of antibiotic-resistant strains such as community-acquired methicillin-resistant Staphylococcus aureus. Understanding the immunologic mechanisms that provide durable protection against skin infections has the potential to guide the development of immunotherapies and vaccines to engage the host immune response to combat these antibiotic-resistant strains. To this end, mouse skin infection models allow researchers to examine host immunity by investigating the timing, inoculum, route of infection and the causative bacterial species in different wild-type mouse backgrounds as well as in knockout, transgenic, and other types of genetically engineered mouse strains. To recapitulate the various types of human skin infections, many different mouse models have been developed. For example, four models frequently used in dermatological research are based on the route of infection, including (i) subcutaneous infection models, (ii) intradermal infection models, (iii) wound infection models, and (iv) epicutaneous infection models. In this article, we will describe these skin infection models in detail along with their advantages and limitations. In addition, we will discuss how humanized mouse models such as the human skin xenograft on immunocompromised mice might be used in bacterial skin infection research.
Collapse
|
9
|
Hill PB, Imai A. The immunopathogenesis of staphylococcal skin infections - A review. Comp Immunol Microbiol Infect Dis 2016; 49:8-28. [PMID: 27865269 DOI: 10.1016/j.cimid.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/22/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus and S. pseudintermedius are the major causes of bacterial skin disease in humans and dogs. These organisms can exist as commensals on the skin, but they can also cause severe or even devastating infections. The immune system has evolved mechanisms to deal with pathogenic microorganisms and has strategies to combat bacteria of this type. What emerges is a delicate "peace" between the opposing sides, but this balance can be disrupted leading to a full blown "war". In the ferocious battle that ensues, both sides attempt to get the upper hand, using strategies that are comparable to those used by modern day armies. In this review article, the complex interactions between the immune system and the organisms are described using such military analogies. The process is described in a sequential manner, starting with the invasion itself, and progressing to the eventual battlezone in which there are heavy casualties on both sides. By the end, the appearance of a simple pustule on the skin surface will take on a whole new meaning.
Collapse
Affiliation(s)
- P B Hill
- Companion Animal Health Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy SA 5371, Australia.
| | - A Imai
- Dermatology resident, Synergy Animal General Hospital, 815 Kishigami Kawaguchi, Saitama, 333-0823, Japan
| |
Collapse
|
10
|
Li W, Chen S, Wang X, Li H, Wang S, He X, Bao B, Wu W. The recovery effects of Perinereis aibuhitensis Grube added to enteral immune-enhancing nutrition in severely burned mice. RSC Adv 2016. [DOI: 10.1039/c6ra16775f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The recovery effects ofPerinereis aibuhitensisGrube added to early enteral nutrition (EEN) were investigated.
Collapse
Affiliation(s)
- Wei Li
- Department of Marine Pharmacology
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai 201306
- China
| | - Shanqiao Chen
- Department of Marine Pharmacology
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai 201306
- China
| | - Xu Wang
- Department of Marine Pharmacology
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai 201306
- China
| | - Huiting Li
- Department of Marine Pharmacology
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai 201306
- China
| | - Shujun Wang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
- Huaihai Institute of Technology
- Lianyungang
- China
| | - Xiaofeng He
- Yancheng Fengyueyuan Baiting Co. Ltd
- Yancheng
- China
| | - Bin Bao
- Department of Marine Pharmacology
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai 201306
- China
| | - Wenhui Wu
- Department of Marine Pharmacology
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai 201306
- China
| |
Collapse
|
11
|
Pozzi C, Lofano G, Mancini F, Soldaini E, Speziale P, De Gregorio E, Rappuoli R, Bertholet S, Grandi G, Bagnoli F. Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to Staphylococcus aureus. FEMS Microbiol Rev 2015; 39:750-63. [PMID: 25994610 DOI: 10.1093/femsre/fuv024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 01/14/2023] Open
Abstract
Lack of known mechanisms of protection against Staphylococcus aureus in humans is hindering development of efficacious vaccines. Preclinical as well as clinical data suggest that antibodies play an important role against S. aureus. For instance, certain hypogammaglobulinaemic patients are at increased risk of staphylococcal infections. However, development of effective humoral response may be dampened by converging immune-evasion mechanisms of S. aureus. We hypothesize that B-cell proliferation induced by staphylococcal protein A (SpA) and continuous antigen exposure, without the proper T-cell help and cytokine stimuli, leads to antigen-activated B-cell deletion and anergy. Recent findings suggest an important role of type I neutrophils (PMN-I) and conventionally activated macrophages (M1) against S. aureus, while alternatively activated macrophages (M2) favour biofilm persistence and sepsis. In addition, neutrophil-macrophage cooperation promotes extravasation and activation of neutrophils as well as clearance of bacteria ensnared in neutrophil extracellular traps. Activation of these processes is modulated by cytokines and T cells. Indeed, low CD4(+) T-cell counts represent an important risk factor for skin infections and bacteraemia in patients. Altogether, these observations could lead to the identification of predictive correlates of protection and ways for shifting the balance of the response to the benefit of the host through vaccination.
Collapse
Affiliation(s)
- Clarissa Pozzi
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Giuseppe Lofano
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Mancini
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | | | - Pietro Speziale
- Department of Molecular Medicine, Institute of Biochemistry, 27100 Pavia, Italy
| | - Ennio De Gregorio
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Rino Rappuoli
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Sylvie Bertholet
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Guido Grandi
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Fabio Bagnoli
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
12
|
Cardile AP, Sanchez CJ, Hardy SK, Romano DR, Hurtgen BJ, Wenke JC, Murray CK, Akers KS. Dakin solution alters macrophage viability and function. J Surg Res 2014; 192:692-9. [DOI: 10.1016/j.jss.2014.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/02/2014] [Accepted: 07/10/2014] [Indexed: 01/31/2023]
|
13
|
Kim HK, Missiakas D, Schneewind O. Mouse models for infectious diseases caused by Staphylococcus aureus. J Immunol Methods 2014; 410:88-99. [PMID: 24769066 PMCID: PMC6211302 DOI: 10.1016/j.jim.2014.04.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus - a commensal of the human skin, nares and gastrointestinal tract - is also a leading cause of bacterial skin and soft tissue infection (SSTIs), bacteremia, sepsis, peritonitis, pneumonia and endocarditis. Antibiotic-resistant strains, designated MRSA (methicillin-resistant S. aureus), are common and represent a therapeutic challenge. Current research and development efforts seek to address the challenge of MRSA infections through vaccines and immune therapeutics. Mice have been used as experimental models for S. aureus SSTI, bacteremia, sepsis, peritonitis and endocarditis. This work led to the identification of key virulence factors, candidate vaccine antigens or immune-therapeutics that still require human clinical testing to establish efficacy. Past failures of human clinical trials raised skepticism whether the mouse is an appropriate model for S. aureus disease in humans. S. aureus causes chronic-persistent infections that, even with antibiotic or surgical intervention, reoccur in humans and in mice. Determinants of S. aureus evasion from human innate and adaptive immune responses have been identified, however only some of these are relevant in mice. Future research must integrate these insights and refine the experimental mouse models for specific S. aureus diseases to accurately predict the failure or success for candidate vaccines and immune-therapeutics.
Collapse
Affiliation(s)
- Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States
| |
Collapse
|
14
|
Abstract
Burn is one of the most common and devastating forms of trauma. Major burn injury disturbs the immune system, resulting in marked alterations in bone marrow hematopoiesis and a progressive suppression of the immune response, which are thought to contribute to increased susceptibility to secondary infections and the development of sepsis. Immunosuppression in patients with severe burn and sepsis leads to high morbidity and mortality in these patients. mononuclear phagocytes system (MPS) is a critical component of the innate immune response and plays key roles in burn immunity. These phagocytes are the first cellular responders to severe burn injury after acute disruption of the skin barrier. They are not only able to internalize and digest bacteria and dead cells and scavenge toxic compounds produced by metabolism, but also able to initiate an adaptive immune response. Severe burn and sepsis profoundly inhibit the functions of dendritic cells, monocytes, and macrophages. Adoptive transfer of MPS or stem cells to patients with severe burn and sepsis that aim to restore MPS function is promising. A better understanding of the roles played by MPS in the pathophysiology of severe burn and sepsis will guarantee a more rational and effective immunotherapy of patients with severe burn and sepsis.
Collapse
|
15
|
Scherr TD, Heim CE, Morrison JM, Kielian T. Hiding in Plain Sight: Interplay between Staphylococcal Biofilms and Host Immunity. Front Immunol 2014; 5:37. [PMID: 24550921 PMCID: PMC3913997 DOI: 10.3389/fimmu.2014.00037] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/22/2014] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are notable for their propensity to form biofilms on implanted medical devices. Staphylococcal biofilm infections are typified by their recalcitrance to antibiotics and ability to circumvent host immune-mediated clearance, resulting in the establishment of chronic infections that are often recurrent in nature. Indeed, the immunomodulatory lifestyle of biofilms seemingly shapes the host immune response to ensure biofilm engraftment and persistence in an immune competent host. Here, we provide a brief review of the mechanisms whereby S. aureus and S. epidermidis biofilms manipulate host–pathogen interactions and discuss the concept of microenvironment maintenance in infectious outcomes, as well as speculate how these findings pertain to the challenges of staphylococcal vaccine development.
Collapse
Affiliation(s)
- Tyler D Scherr
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Cortney E Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - John M Morrison
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| |
Collapse
|
16
|
Xu F, Kang Y, Zhang H, Piao Z, Yin H, Diao R, Xia J, Shi L. Akt1-Mediated Regulation of Macrophage Polarization in a Murine Model of Staphylococcus aureus Pulmonary Infection. J Infect Dis 2013; 208:528-38. [DOI: 10.1093/infdis/jit177] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
17
|
Mascarenhas D, Routt S, Singh BK. Mammalian target of rapamycin complex 2 regulates inflammatory response to stress. Inflamm Res 2012; 61:1395-404. [PMID: 22899279 PMCID: PMC3496474 DOI: 10.1007/s00011-012-0542-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 07/25/2012] [Accepted: 07/31/2012] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE AND DESIGN To explore the role of mammalian target of rapamycin 2 (mTORC2) in the activation of inflammatory and oxidative responses in rodent models of acute injury and metabolic stress. MATERIAL The impact of nephrilin, an inhibitor of mTORC2 complex, was assessed in three CD-1 mouse models of acute xenobiotic stress and in a hypertensive Dahl rat model of metabolic stress. METHODS Animals received daily subcutaneous bolus injections of saline or 4 mg/kg nephrilin. Tissues were assayed by ELISA, gene arrays and immunohistochemical staining. RESULTS Nephrilin significantly inhibited elevations in plasma tumor necrosis factor-alpha, kidney substance P, and CX3CR1, and urinary lipocalin-2 [urinary neutrophil gelatinase-associated lipocalin (uNGAL)] in models of acute xenobiotic stress. UCHL1 gene expression levels dropped and plasma HMGB1 levels rose in the rhabdomyolysis model. Both effects were reversed by nephrilin. The inhibitor also blocked diet-induced elevations of uNGAL and albumin-creatinine ratio (UACR) as well as kidney tissue phosphorylation of PKC-beta-2-T641 and p66shc-S36, and reduced dark ring-like staining of nuclei by anti-phos-p66shc-S36 antibody in frozen sections of diseased kidneys from hypertensive Dahl rats fed an 8 % NaCl diet for 4 weeks. CONCLUSIONS Taken together, our results suggest a role for mTORC2 in the inflammatory-oxidative responses to stress.
Collapse
Affiliation(s)
- Desmond Mascarenhas
- Mayflower Organization for Research and Education, 525 Del Rey Avenue, Suite B, Sunnyvale, CA 94085, USA.
| | | | | |
Collapse
|
18
|
Development of animal model for studying deep second-degree thermal burns. J Biomed Biotechnol 2012; 2012:460841. [PMID: 22736951 PMCID: PMC3379528 DOI: 10.1155/2012/460841] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 12/14/2022] Open
Abstract
Thermal lesions were produced in 12 male Wistar rats, positioning a massive aluminum bar 10 mm in diameter (51 g), preheated to 99°C ± 2°C/10 min. on the back of each animal for 15 sec. After 7, 14, 21, and 28 days, animals were euthanized. The edema intensity was mild, with no bubble and formation of a thick and dry crust from the 3rd day. The percentage of tissue shrinkage at 28 days was 66.67 ± 1.66%. There was no sign of infection, bleeding, or secretion. Within 28 days reepithelialization was incomplete, with fibroblastic proliferation and moderate fibrosis and presence of modeled dense collagen fibers. It is concluded that the model established is applicable in obtaining deep second-degree thermal burns in order to evaluate the healing action of therapeutic agents of topical use.
Collapse
|
19
|
Asai A, Kogiso M, Kobayashi M, Herndon DN, Suzuki F. Effect of IL-10 antisense gene therapy in severely burned mice intradermally infected with MRSA. Immunobiology 2011; 217:711-8. [PMID: 22209112 DOI: 10.1016/j.imbio.2011.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/01/2011] [Accepted: 12/01/2011] [Indexed: 01/18/2023]
Abstract
The effect of IL-10 antisense oligodeoxynucleotides (ODN) on the susceptibility of burned mice to intradermal (i.d.) infection of methicillin-resistant Staphylococcus aureus (MRSA) was studied. Abscesses formed and sepsis did not develop in normal mice infected i.d. with 10(8)CFU/mouse of MRSA. Similarly, sepsis caused by MRSA i.d. infection did not develop and abscesses formed in burned mice treated with IL-10 antisense ODN. However, all of the burned mice treated with scrambled ODN (control group) died by infectious complications stemming from MRSA i.d. infection, and an MRSA-abscess did not form in these mice. Macrophages (Mϕ) isolated from the infection site tissue of burned mice that were treated with IL-10 antisense ODN were identified as M1Mϕ, while Mϕ isolated from burned mice that were treated with scrambled ODN were shown to be M2Mϕ. MRSA-abscesses formed in burned mice inoculated with M1Mϕ, and these mice resisted a lethal dose of MRSA i.d. infection. However, an abscess did not form, and sepsis caused by MRSA i.d. infection developed in burned mice that were inoculated with M2Mϕ. These results indicate that severely burned mice treated with IL-10 antisense ODN are resistant against i.d. infection with MRSA. M1Mϕ appeared in the infection site tissues of severely burned mice that were treated with IL-10 antisense ODN may play a role on the abscess formation and inhibiting sepsis caused by MRSA i.d. infection.
Collapse
Affiliation(s)
- Akira Asai
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | | | | | | | | |
Collapse
|
20
|
Shigematsu K, Kogiso M, Kobayashi M, Herndon DN, Suzuki F. Effect of CCL2 antisense oligodeoxynucleotides on bacterial translocation and subsequent sepsis in severely burned mice orally infected with Enterococcus faecalis. Eur J Immunol 2011; 42:158-64. [PMID: 22002847 DOI: 10.1002/eji.201141572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/22/2011] [Accepted: 10/11/2011] [Indexed: 11/07/2022]
Abstract
Severely burned mice are susceptible to sepsis stemming from Enterococcus faecalis translocation due to the impaired generation of M1 macrophages (M1MΦs) in local translocation sites. In our previous studies, CCL2 has been characterized as a major effector molecule on the burn-associated generation of M2MΦs, an inhibitor cell type for resident MΦ conversion into M1MΦs. In this study, we tried to protect burned mice orally infected with E. faecalis utilizing CCL2 antisense oligodeoxynucleotides (ODNs). We show that M2MΦs in mesenteric lymph nodes (MLNs) were not demonstrated in burned mice treated with CCL2 antisense ODNs. M1MΦs were not induced by heat-killed E. faecalis from resident MΦs transwell-cultured with mesenteric lymph node macrophages (MLN-MΦs) from burned mice, while M1MΦs were induced by the same antigen from resident MΦs transwell-cultured with MΦs which were isolated from burned mice treated with CCL2 antisense ODNs. Bacterial growth in MLNs was shown in burned mice orally infected with a lethal dose of E. faecalis. However, after the same infection, sepsis did not develop in burned mice treated with CCL2 antisense ODNs. These results indicate that bacterial translocation and subsequent sepsis are controlled in burned mice orally infected with a lethal dose of E. faecalis by gene therapy utilizing CCL2 antisense ODNs.
Collapse
Affiliation(s)
- Kenji Shigematsu
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | | | | | | | | |
Collapse
|