1
|
Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. African Trypanosomiasis-Associated Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System. Front Immunol 2018; 9:218. [PMID: 29497418 PMCID: PMC5818406 DOI: 10.3389/fimmu.2018.00218] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and economic importance for the development of sub-Saharan Africa. The trypanosomes that cause this disease are extracellular protozoan parasites that have developed efficient immune escape mechanisms to manipulate the entire host immune response to allow parasite survival and transmission. During the early stage of infection, a profound pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involving classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, the persistence of this M1-type MPS activation in trypanosusceptible animals causes immunopathology with anemia as the most prominent pathological feature. By contrast, in trypanotolerant animals, there is an induction of IL-10 that promotes the induction of alternatively activated macrophages (M2) and collectively dampens tissue damage. A comparative gene expression analysis between M1 and M2 cells identified galectin-3 (Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, possibly acting synergistically and in concert with TNF-α during anemia development. While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a thorough investigation using MIF-deficient mice revealed that the underlying mechanisms in AT-associated anemia development in trypanosusceptible and tolerant animals are quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, while in trypanotolerant animals’ hemodilution, mainly caused by hepatosplenomegaly, is an additional factor contributing to anemia. In this review, we give an overview of how trypanosome- and host-derived factors can contribute to trypanosomosis-associated anemia development with a focus on the MPS system. Finally, we will discuss potential intervention strategies to alleviate AT-associated anemia that might also have therapeutic potential.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
2
|
Goyal VK, Pandey SK, Kakade S, Nirogi R. Evaluation of clinical chemistry analytes from a single mouse using diluted plasma: effective way to reduce the number of animals in toxicity studies. Lab Anim 2016; 50:354-61. [DOI: 10.1177/0023677215620969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinical chemistry is an essential analytical tool in many areas of research, drug assessment and development, and in the evaluation of general health. A certain amount of blood is required to evaluate all blood analytes. Experiments where mice are used, it is difficult to measure all analytes due to the small amount of blood that can be obtained from a single animal. To overcome this problem, separate cohorts of animals are used in toxicity studies for hematology and biochemistry analysis. This requires the use of extra animals and additional resources. Hence interpretation of results derived from using these different animals can be unreliable. This study was undertaken to explore the possibility of using diluted plasma for measuring various biochemistry analytes. Plasma from mice was diluted to 3, 5 and 10-fold with Water for Injection, and various biochemistry analytes were analyzed using an automated analyzer. Results of diluted and undiluted plasma from the same mouse were compared. Most of the analytes from the diluted plasma were found to be well within the ranges of the undiluted plasma except for sodium, potassium and chloride. Diluting plasma to analyze some analytes also freed up undiluted plasma for analyzing electrolytes. In conclusion, in order to obtain reliable and interpretable data from a single mouse it is worthwhile considering diluting the plasma, which should reduce the number of animals used in an experiment.
Collapse
Affiliation(s)
| | | | - Somesh Kakade
- Discovery Research, Suven Life Sciences Limited, Hyderabad, India
| | | |
Collapse
|
3
|
Ruan J, Liu XG, Zheng HL, Li JB, Xiong XD, Zhang CL, Luo CY, Zhou ZJ, Shi Q, Weng YG. Deletion of the lmna gene induces growth delay and serum biochemical changes in C57BL/6 mice. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:123-30. [PMID: 25049934 PMCID: PMC4093278 DOI: 10.5713/ajas.2013.13246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/28/2013] [Accepted: 07/27/2013] [Indexed: 01/03/2023]
Abstract
The A-type lamin deficient mouse line (Lmna−/−) has become one of the most frequently used models for providing insights into many different aspects of A-type lamin function. To elucidate the function of Lmna in the growth and metabolism of mice, tissue growth and blood biochemistry were monitored in Lmna-deficient mice, heterozygous (Lmna+/−) and wide-type (Lmna+/+) backcrossed to C57BL/6 background. At 4 weeks after birth, the weight of various organs of the Lmna−/−, Lmna+/− and Lmna+/+ mice was measured. A panel of biochemical analyses consisting of 15 serological tests was examined. The results showed that Lmna deficient mice had significantly decreased body weight and increased the ratio of organ to body weight in most of tissues. Compared with Lmna+/+ and Lmna+/− mice, Lmna−/− mice exhibited lower levels of ALP (alkaline phosphatase), Chol (cholesterol), CR (creatinine), GLU (glucose), HDL (high-density lipoprotein cholesterol) and higher levels of ALT (alanine aminotransferase) (p<0.05). Lmna−/− mice displayed higher AST (aspartate aminotransferase) values and lower LDL (lowdensity lipoprotein cholesterol), CK-MB (creatine kinase-MB) levels than Lmna+/+ mice (p<0.05). There were no significant differences among the three groups of mice with respect to BUN (blood urea nitrogen), CK (creatine kinase), Cyc C (cystatin C), TP (total protein), TG (triacylglycerols) and UA (uric acid) levels (p>0.05). These changes of serological parameters may provide an experimental basis for the elucidation of Lmna gene functions.
Collapse
Affiliation(s)
- J Ruan
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - X G Liu
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - H L Zheng
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - J B Li
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - X D Xiong
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - C L Zhang
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - C Y Luo
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Z J Zhou
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Q Shi
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Y G Weng
- Department of Clinical Laboratory, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Sohrabi Y, Havelková H, Kobets T, Šíma M, Volkova V, Grekov I, Jarošíková T, Kurey I, Vojtíšková J, Svobodová M, Demant P, Lipoldová M. Mapping the genes for susceptibility and response to Leishmania tropica in mouse. PLoS Negl Trop Dis 2013; 7:e2282. [PMID: 23875032 PMCID: PMC3708836 DOI: 10.1371/journal.pntd.0002282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/09/2013] [Indexed: 12/04/2022] Open
Abstract
Background L. tropica can cause both cutaneous and visceral leishmaniasis in humans. Although the L. tropica-induced cutaneous disease has been long known, its potential to visceralize in humans was recognized only recently. As nothing is known about the genetics of host responses to this infection and their clinical impact, we developed an informative animal model. We described previously that the recombinant congenic strain CcS-16 carrying 12.5% genes from the resistant parental strain STS/A and 87.5% genes from the susceptible strain BALB/c is more susceptible to L. tropica than BALB/c. We used these strains to map and functionally characterize the gene-loci regulating the immune responses and pathology. Methods We analyzed genetics of response to L. tropica in infected F2 hybrids between BALB/c×CcS-16. CcS-16 strain carries STS-derived segments on nine chromosomes. We genotyped these segments in the F2 hybrid mice and tested their linkage with pathological changes and systemic immune responses. Principal Findings We mapped 8 Ltr (Leishmania tropica response) loci. Four loci (Ltr2, Ltr3, Ltr6 and Ltr8) exhibit independent responses to L. tropica, while Ltr1, Ltr4, Ltr5 and Ltr7 were detected only in gene-gene interactions with other Ltr loci. Ltr3 exhibits the recently discovered phenomenon of transgenerational parental effect on parasite numbers in spleen. The most precise mapping (4.07 Mb) was achieved for Ltr1 (chr.2), which controls parasite numbers in lymph nodes. Five Ltr loci co-localize with loci controlling susceptibility to L. major, three are likely L. tropica specific. Individual Ltr loci affect different subsets of responses, exhibit organ specific effects and a separate control of parasite load and organ pathology. Conclusion We present the first identification of genetic loci controlling susceptibility to L. tropica. The different combinations of alleles controlling various symptoms of the disease likely co-determine different manifestations of disease induced by the same pathogen in individual mice. Leishmaniasis, a disease caused by Leishmania ssp. is among the most neglected infectious diseases. In humans, L. tropica causes cutaneous form of leishmaniasis, but can damage internal organs too. The reasons for this variability are not known, and its genetic basis was never investigated. Therefore, analysis of genes affecting host's responses to this infection can elucidate the characteristics of individual host-parasite interactions. Recombinant congenic strain CcS-16 carries 12.5% genes from the mouse strain STS/A on genetic background of the strain BALB/c, and it is more susceptible than BALB/c. In F2 hybrids between BALB/c and CcS-16 we detected and mapped eight gene-loci, Ltr1-8 (Leishmania tropica response 1-8) that control various manifestations of disease: skin lesions, splenomegaly, hepatomegaly, parasite numbers in spleen, liver, and inguinal lymph nodes, and serum level of CCL3, CCL5, and CCL7 after L. tropica infection. These loci are functionally heterogeneous - each influences a different set of responses to the pathogen. Five loci co-localize with the previously described loci that control susceptibility to L. major, three are species-specific. Ltr2 co-localizes not only with Lmr14 (Leishmania major response 14), but also with Ir2 influencing susceptibility to L. donovani and might therefore carry a common gene controlling susceptibility to leishmaniasis.
Collapse
Affiliation(s)
- Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tetyana Kobets
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Matyáš Šíma
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Valeriya Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Igor Grekov
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Taťána Jarošíková
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Iryna Kurey
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jarmila Vojtíšková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - Peter Demant
- Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
5
|
Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver. PLoS Negl Trop Dis 2012; 6:e1667. [PMID: 22679519 PMCID: PMC3367980 DOI: 10.1371/journal.pntd.0001667] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/17/2012] [Indexed: 01/12/2023] Open
Abstract
Background Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models. Methods We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured. Principal Findings Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain. Conclusion Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes. Several hundred million people are exposed to the risk of leishmaniasis, a disease caused by intracellular protozoan parasites of several Leishmania species and transmitted by phlebotomine sand flies. In humans, L. tropica causes cutaneous form of leishmaniasis with painful and long-persisting lesions in the site of the insect bite, but the parasites can also penetrate to internal organs. The relationship between the host genes and development of the disease was demonstrated for numerous infectious diseases. However, the search for susceptibility genes in the human population could be a difficult task. In such cases, animal models may help to discover the role of different genes in interactions between the parasite and the host. Unfortunately, the literature contains only a few publications about the use of animals for L. tropica studies. Here, we report an animal model suitable for genetic, pathological and drug studies in L. tropica infection. We show how the host genotype influences different disease symptoms: skin lesions, parasite dissemination to the lymph nodes, spleen and liver, and increase of levels of chemokines CCL2, CCL3 and CCL5 in serum.
Collapse
|
6
|
Goodhead I, Archibald A, Amwayi P, Brass A, Gibson J, Hall N, Hughes MA, Limo M, Iraqi F, Kemp SJ, Noyes HA. A comprehensive genetic analysis of candidate genes regulating response to Trypanosoma congolense infection in mice. PLoS Negl Trop Dis 2010; 4:e880. [PMID: 21085469 PMCID: PMC2976683 DOI: 10.1371/journal.pntd.0000880] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/12/2010] [Indexed: 02/04/2023] Open
Abstract
Background African trypanosomes are protozoan parasites that cause “sleeping sickness” in humans and a similar disease in livestock. Trypanosomes also infect laboratory mice and three major quantitative trait loci (QTL) that regulate survival time after infection with T. congolense have been identified in two independent crosses between susceptible A/J and BALB/c mice, and the resistant C57BL/6. These were designated Tir1, Tir2 and Tir3 for Trypanosoma infection response, and range in size from 0.9–12 cM. Principal Findings Mapping loci regulating survival time after T. congolense infection in an additional cross revealed that susceptible C3H/HeJ mice have alleles that reduce survival time after infection at Tir1 and Tir3 QTL, but not at Tir2. Next-generation resequencing of a 6.2 Mbp region of mouse chromosome 17, which includes Tir1, identified 1,632 common single nucleotide polymorphisms (SNP) including a probably damaging non-synonymous SNP in Pram1 (PML-RAR alpha-regulated adaptor molecule 1), which was the most plausible candidate QTL gene in Tir1. Genome-wide comparative genomic hybridisation identified 12 loci with copy number variants (CNV) that correlate with differential gene expression, including Cd244 (natural killer cell receptor 2B4), which lies close to the peak of Tir3c and has gene expression that correlates with CNV and phenotype, making it a strong candidate QTL gene at this locus. Conclusions By systematically combining next-generation DNA capture and sequencing, array-based comparative genomic hybridisation (aCGH), gene expression data and SNP annotation we have developed a strategy that can generate a short list of polymorphisms in candidate QTL genes that can be functionally tested. About one-third of cattle in sub-Saharan Africa are at risk of contracting “Nagana”—a disease caused by Trypanosoma parasites similar to those that cause human “Sleeping Sickness.” Laboratory mice can also be infected by trypanosomes, and different mouse breeds show varying levels of susceptibility to infection, similar to what is seen between different breeds of cattle. Survival time after infection is controlled by the underlying genetics of the mouse breed, and previous studies have localised three genomic regions that regulate this trait. These three “Quantitative Trait Loci” (QTL), which have been called Tir1, Tir2 and Tir3 (for Trypanosoma Infection Response 1–3) are well defined, but nevertheless still contain over one thousand genes, any number of which may be influencing survival. This study has aimed to identify the specific differences associated with genes that are controlling mouse survival after T. congolense infection. We have applied a series of analyses to existing datasets, and combined them with novel sequencing, and other genetic data to create short lists of genes that share polymorphisms across susceptible mouse breeds, including two promising “candidate genes”: Pram1 at Tir1 and Cd244 at Tir3. These genes can now be tested to confirm their effect on response to trypanosome infection.
Collapse
Affiliation(s)
- Ian Goodhead
- Centre for Genomic Research, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Alan Archibald
- The Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Peris Amwayi
- International Livestock Research Institute, Nairobi, Kenya
| | - Andy Brass
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - John Gibson
- International Livestock Research Institute, Nairobi, Kenya
| | - Neil Hall
- Centre for Genomic Research, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Margaret A. Hughes
- Centre for Genomic Research, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Moses Limo
- Egerton University, Njoro, Nakuru, Kenya
| | - Fuad Iraqi
- International Livestock Research Institute, Nairobi, Kenya
| | - Stephen J. Kemp
- Centre for Genomic Research, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | - Harry A. Noyes
- Centre for Genomic Research, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Noyes HA, Agaba M, Anderson S, Archibald AL, Brass A, Gibson J, Hall L, Hulme H, Oh SJ, Kemp S. Genotype and expression analysis of two inbred mouse strains and two derived congenic strains suggest that most gene expression is trans regulated and sensitive to genetic background. BMC Genomics 2010; 11:361. [PMID: 20529291 PMCID: PMC2896378 DOI: 10.1186/1471-2164-11-361] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 06/07/2010] [Indexed: 11/24/2022] Open
Abstract
Background Differences in gene expression may be caused by nearby DNA polymorphisms (cis regulation) or by interactions of gene control regions with polymorphic transcription factors (trans regulation). Trans acting loci are much harder to detect than cis acting loci and their effects are much more sensitive to genetic background. Results To quantify cis and trans regulation we correlated haplotype data with gene expression in two inbred mouse strains and two derived congenic lines. Upstream haplotype differences between the parental strains suggested that 30-43% of differentially expressed genes were differentially expressed because of cis haplotype differences. These cis regulated genes displayed consistent and relatively tissue-independent differential expression. We independently estimated from the congenic mice that 71-85% of genes were trans regulated. Cis regulated genes were associated with low p values (p < 0.005) for differential expression, whereas trans regulated genes were associated with values 0.005 < p < 0.05. The genes differentially expressed between congenics and controls were not a subset of those that were differentially expressed between the founder lines, showing that these were dependent on genetic background. For example, the cholesterol synthesis pathway was strongly differentially expressed in the congenic mice by indirect trans regulation but this was not observable in the parental mice. Conclusions The evidence that most gene regulation is trans and strongly influenced by genetic background, suggests that pathways that are modified by an allelic variant, may only exhibit differential expression in the specific genetic backgrounds in which they were identified. This has significant implications for the interpretation of any QTL mapping study.
Collapse
Affiliation(s)
- Harry A Noyes
- School of Biological Sciences, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|