1
|
Lee KS, Park JY, Jeong YJ, Lee MS. The Fatal Role of Enterohaemorrhagic Escherichia coli Shiga Toxin-associated Extracellular Vesicles in Host Cells. J Microbiol 2023; 61:715-727. [PMID: 37665555 DOI: 10.1007/s12275-023-00066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a specific subset of Shiga toxin-producing Escherichia coli (STEC) strains that are characterized by their ability to cause bloody diarrhea (hemorrhagic colitis) and potentially life-threatening, extraintestinal complications such as hemolytic uremic syndrome (HUS), which is associated with acute renal failure., contributing to severe clinical outcomes. The Shiga toxins (Stxs), produced by EHEC, are primary virulence factors. These potent cytotoxins are composed of one enzymatically active A subunit (StxA) and five receptor-binding B subunits (StxB). Although the toxins are primarily associated with cytotoxic effects, they also elicit other pathogenic consequences due to their induction of a number of biological processes, including apoptosis through ER-stress, pro-inflammatory responses, autophagy, and post-translational modification (PTM). Moreover, several studies have reported the association between Stxs and extracellular vesicles (EVs), including microvesicles and exosomes, demonstrating that Stx-containing EVs secreted by intoxicated macrophages are taken up by recipient cells, such as toxin-sensitive renal proximal tubular epithelial cells. This mechanism likely contributes to the spreading of Stxs within the host, and may exacerbate gastrointestinal illnesses and kidney dysfunction. In this review, we summarize recent findings relating to the host responses, in different types of cells in vitro and in animal models, mediated by Stxs-containing exosomes. Due to their unique properties, EVs have been explored as therapeutic agents, drug delivery systems, and diagnostic tools. Thus, potential therapeutic applications of EVs in EHEC Stxs-mediated pathogenesis are also briefly reviewed.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yu-Jin Jeong
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Oloomi M, Moazzezy N, Bouzari S. Protein kinase signaling by Shiga Toxin subunits. JOURNAL OF MEDICAL SIGNALS & SENSORS 2022; 12:57-63. [PMID: 35265466 PMCID: PMC8804587 DOI: 10.4103/jmss.jmss_79_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Background: Escherichia coli produces Shiga toxin (Stx), a pentamer composed of one A subunit and four B subunits. The B subunit of Stx (StxB) mediated the attachment of the holotoxin to the cell surface while the A subunit (StxA) has N-glycosidase activity, resulting in protein synthesis and cell death inhibition. Stx-induced cytotoxicity and apoptosis have been observed in various cell lines, although the signaling effectors are not precisely defined. Activated by protein kinases (PK), the signaling pathway in human tumors plays an oncogenic role. Tumor proliferation, survival, and metastasis are promoted by kinase receptors. In this regard, PK regulatory effects on the cellular constituents of the tumor microenvironment can affect immunosuppressive purposes. Methods: In this study, kinase inhibitors were used to evaluate the influence of Stx and its subunits on HeLa and Vero cells. Selective inhibitors of protein kinase C (PKC), CaM kinase (calmodulin kinase), protein kinase A (PKA), and protein kinase G (PKG) were used to compare the signaling activity of each subunit. Results: The ribotoxic activity in the target cells will lead to rapid protein synthesis inhibition and cell death in the mammalian host. The expression of Bcl2 family members was also assessed. Protein kinase signaling by Stx and its A and B subunits was induced by PKA, PKG, and PKC in HeLa cells. CaM kinase induction was significant in Vero cells. StxB significantly induced the pro-apoptotic Bax signaling factor in HeLa cells. Conclusion: The assessment of different signaling pathways utilized by Stx and its subunits could help in a better understanding of various cell death responses. The use of inhibitors can block cell damage and disease progression and create therapeutic compounds for targeted cancer therapy. Inhibition of these pathways is the primary clinical goal.
Collapse
|
3
|
Jeong YJ, Kim HJ, Kim S, Park SY, Kim H, Jeong S, Lee SJ, Lee MS. Enhanced Large-Scale Production of Hahella chejuensis-Derived Prodigiosin and Evaluation of Its Bioactivity. J Microbiol Biotechnol 2021; 31:1624-1631. [PMID: 34675142 PMCID: PMC9705908 DOI: 10.4014/jmb.2109.09039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Prodigiosin as a high-valued compound, which is a microbial secondary metabolite, has the potential for antioxidant and anticancer effects. However, the large-scale production of functionally active Hahella chejuensis-derived prodigiosin by fermentation in a cost-effective manner has yet to be achieved. In the present study, we established carbon source-optimized medium conditions, as well as a procedure for producing prodigiosin by fermentation by culturing H. chejuensis using 10 L and 200 L bioreactors. Our results showed that prodigiosin productivity using 250 ml flasks was higher in the presence of glucose than other carbon sources, including mannose, sucrose, galactose, and fructose, and could be scaled up to 10 L and 200 L batches. Productivity in the glucose (2.5 g/l) culture while maintaining the medium at pH 6.89 during 10 days of cultivation in the 200 L bioreactor was measured and increased more than productivity in the basal culture medium in the absence of glucose. Prodigiosin production from 10 L and 200 L fermentation cultures of H. chejuensis was confirmed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses for more accurate identification. Finally, the anticancer activity of crude extracted prodigiosin against human cancerous leukemia THP-1 cells was evaluated and confirmed at various concentrations. Conclusively, we demonstrate that culture conditions for H. chejuensis using a bioreactor with various parameters and ethanol-based extraction procedures were optimized to mass-produce the marine bacterium-derived high purity prodigiosin associated with anti-cancer activity.
Collapse
Affiliation(s)
- Yu-jin Jeong
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Suran Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Seo-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - HyeRan Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sekyoo Jeong
- Research Division, Incospharm Corp., Daejeon 34036, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,
S.J. Lee Phone: +82-31-670-3356 E-mail:
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea,Corresponding authors M.S. Lee Phone: +82-42-879-8292 E-mail:
| |
Collapse
|
4
|
Shiga Toxins as Antitumor Tools. Toxins (Basel) 2021; 13:toxins13100690. [PMID: 34678982 PMCID: PMC8538568 DOI: 10.3390/toxins13100690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins (Stxs), also known as Shiga-like toxins (SLT) or verotoxins (VT), constitute a family of structurally and functionally related cytotoxic proteins produced by the enteric pathogens Shigella dysenteriae type 1 and Stx-producing Escherichia coli (STEC). Infection with these bacteria causes bloody diarrhea and other pathological manifestations that can lead to HUS (hemolytic and uremic syndrome). At the cellular level, Stxs bind to the cellular receptor Gb3 and inhibit protein synthesis by removing an adenine from the 28S rRNA. This triggers multiple cellular signaling pathways, including the ribotoxic stress response (RSR), unfolded protein response (UPR), autophagy and apoptosis. Stxs cause several pathologies of major public health concern, but their specific targeting of host cells and efficient delivery to the cytosol could potentially be exploited for biomedical purposes. Moreover, high levels of expression have been reported for the Stxs receptor, Gb3/CD77, in Burkitt's lymphoma (BL) cells and on various types of solid tumors. These properties have led to many attempts to develop Stxs as tools for biomedical applications, such as cancer treatment or imaging, and several engineered Stxs are currently being tested. We provide here an overview of these studies.
Collapse
|
5
|
Vind AC, Genzor AV, Bekker-Jensen S. Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Res 2020; 48:10648-10661. [PMID: 32941609 PMCID: PMC7641731 DOI: 10.1093/nar/gkaa757] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cells rely on stress response pathways to uphold cellular homeostasis and limit the negative effects of harmful environmental stimuli. The stress- and mitogen-activated protein (MAP) kinases, p38 and JNK, are at the nexus of numerous stress responses, among these the ribotoxic stress response (RSR). Ribosomal impairment is detrimental to cell function as it disrupts protein synthesis, increase inflammatory signaling and, if unresolved, lead to cell death. In this review, we offer a general overview of the three main translation surveillance pathways; the RSR, Ribosome-associated Quality Control (RQC) and the Integrated Stress Response (ISR). We highlight recent advances made in defining activation mechanisms for these pathways and discuss their commonalities and differences. Finally, we reflect on the physiological role of the RSR and consider the therapeutic potential of targeting the sensing kinase ZAKα for treatment of ribotoxin exposure.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Molecular Biology of Escherichia Coli Shiga Toxins' Effects on Mammalian Cells. Toxins (Basel) 2020; 12:toxins12050345. [PMID: 32456125 PMCID: PMC7290813 DOI: 10.3390/toxins12050345] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Shiga toxins (Stxs), syn. Vero(cyto)toxins, are potent bacterial exotoxins and the principal virulence factor of enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin-producing E. coli (STEC). EHEC strains, e.g., strains of serovars O157:H7 and O104:H4, may cause individual cases as well as large outbreaks of life-threatening diseases in humans. Stxs primarily exert a ribotoxic activity in the eukaryotic target cells of the mammalian host resulting in rapid protein synthesis inhibition and cell death. Damage of endothelial cells in the kidneys and the central nervous system by Stxs is central in the pathogenesis of hemolytic uremic syndrome (HUS) in humans and edema disease in pigs. Probably even more important, the toxins also are capable of modulating a plethora of essential cellular functions, which eventually disturb intercellular communication. The review aims at providing a comprehensive overview of the current knowledge of the time course and the consecutive steps of Stx/cell interactions at the molecular level. Intervention measures deduced from an in-depth understanding of this molecular interplay may foster our basic understanding of cellular biology and microbial pathogenesis and pave the way to the creation of host-directed active compounds to mitigate the pathological conditions of STEC infections in the mammalian body.
Collapse
|
7
|
Choi JA, Song CH. Insights Into the Role of Endoplasmic Reticulum Stress in Infectious Diseases. Front Immunol 2020; 10:3147. [PMID: 32082307 PMCID: PMC7005066 DOI: 10.3389/fimmu.2019.03147] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is the major organelle in the cell for protein folding and plays an important role in cellular functions. The unfolded protein response (UPR) is activated in response to misfolded or unfolded protein accumulation in the ER. However, the UPR successfully alleviates the ER stress. If UPR fails to restore ER homeostasis, apoptosis is induced. ER stress plays an important role in innate immune signaling in response to microorganisms. Dysregulation of UPR signaling contributes to the pathogenesis of a variety of infectious diseases. In this review, we summarize the contribution of ER stress to the innate immune response to invading microorganisms and its role in the pathogenesis of infectious diseases.
Collapse
Affiliation(s)
- Ji-Ae Choi
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Hwa Song
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
8
|
Hu H, Tian M, Ding C, Yu S. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol 2019; 9:3083. [PMID: 30662442 PMCID: PMC6328441 DOI: 10.3389/fimmu.2018.03083] [Citation(s) in RCA: 644] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cell death by which the body maintains the homeostasis of the internal environment. Apoptosis is an initiative cell death process that is controlled by genes and is mainly divided into endogenous pathways (mitochondrial pathway), exogenous pathways (death receptor pathway), and apoptotic pathways induced by endoplasmic reticulum (ER) stress. The homeostasis imbalance in ER results in ER stress. Under specific conditions, ER stress can be beneficial to the body; however, if ER protein homeostasis is not restored, the prolonged activation of the unfolded protein response may initiate apoptotic cell death via the up-regulation of the C/EBP homologous protein (CHOP). CHOP plays an important role in ER stress-induced apoptosis and this review focuses on its multifunctional roles in that process, as well as its role in apoptosis during microbial infection. We summarize the upstream and downstream pathways of CHOP in ER stress induced apoptosis. We also focus on the newest discoveries in the functions of CHOP-induced apoptosis during microbial infection, including DNA and RNA viruses and some species of bacteria. Understanding how CHOP functions during microbial infection will assist with the development of antimicrobial therapies.
Collapse
Affiliation(s)
- Hai Hu
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mingxing Tian
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shengqing Yu
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
9
|
Park JY, Jeong YJ, Park SK, Yoon SJ, Choi S, Jeong DG, Chung SW, Lee BJ, Kim JH, Tesh VL, Lee MS, Park YJ. Shiga Toxins Induce Apoptosis and ER Stress in Human Retinal Pigment Epithelial Cells. Toxins (Basel) 2017; 9:toxins9100319. [PMID: 29027919 PMCID: PMC5666366 DOI: 10.3390/toxins9100319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are the most potent known virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications such as acute renal failure, blindness and neurological abnormalities. Although numerous studies have defined apoptotic responses to Shiga toxin type 1 (Stx1) or Shiga toxin type 2 (Stx2) in a variety of cell types, the potential significance of Stx-induced apoptosis of photoreceptor and pigmented cells of the eye following intoxication is unknown. We explored the use of immortalized human retinal pigment epithelial (RPE) cells as an in vitro model of Stx-induced retinal damage. To the best of our knowledge, this study is the first report that intoxication of RPE cells with Stxs activates both apoptotic cell death signaling and the endoplasmic reticulum (ER) stress response. Using live-cell imaging analysis, fluorescently labeled Stx1 or Stx2 were internalized and routed to the RPE cell endoplasmic reticulum. RPE cells were significantly sensitive to wild type Stxs by 72 h, while the cells survived challenge with enzymatically deficient mutant toxins (Stx1A− or Stx2A−). Upon exposure to purified Stxs, RPE cells showed activation of a caspase-dependent apoptotic program involving a reduction of mitochondrial transmembrane potential (Δψm), increased activation of ER stress sensors IRE1, PERK and ATF6, and overexpression CHOP and DR5. Finally, we demonstrated that treatment of RPE cells with Stxs resulted in the activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), suggesting that the ribotoxic stress response may be triggered. Collectively, these data support the involvement of Stx-induced apoptosis in ocular complications of intoxication. The evaluation of apoptotic responses to Stxs by cells isolated from multiple organs may reveal unique functional patterns of the cytotoxic actions of these toxins in the systemic complications that follow ingestion of toxin-producing bacteria.
Collapse
Affiliation(s)
- Jun-Young Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea.
| | - Yu-Jin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
- Department of Biochemistry, College of Medicine, Konyang University, 158 Gwanjeo-ro, Daejeon 35365, South Korea.
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
| | - Sung-Jin Yoon
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
| | - Song Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
| | - Su Wol Chung
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, 93 Daehak-ro, Ulsan 44610, South Korea.
| | - Byung Joo Lee
- Fight Against Angiogenesis-Related Blindness Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea.
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - Moo-Seung Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea.
| | - Young-Jun Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, South Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea.
| |
Collapse
|
10
|
Goleij Z, Mahmoodzadeh Hosseini H, Amin M, Halabian R, Imani Fooladi AA. Prokaryotic toxins provoke different types of cell deaths in the eukaryotic cells. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1294180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zoleikha Goleij
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | | | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| |
Collapse
|
11
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications. Toxins (Basel) 2016; 8:toxins8030077. [PMID: 26999205 PMCID: PMC4810222 DOI: 10.3390/toxins8030077] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.
Collapse
|
13
|
Diverse roles of endoplasmic reticulum stress sensors in bacterial infection. Mol Cell Pediatr 2016; 3:9. [PMID: 26883353 PMCID: PMC4755955 DOI: 10.1186/s40348-016-0037-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/04/2016] [Indexed: 02/06/2023] Open
Abstract
Bacterial infection often leads to cellular damage, primarily marked by loss of cellular integrity and cell death. However, in recent years, it is being increasingly recognized that, in individual cells, there are graded responses collectively termed cell-autonomous defense mechanisms that induce cellular processes designed to limit cell damage, enable repair, and eliminate bacteria. Many of these responses are triggered not by detection of a particular bacterial effector or ligand but rather by their effects on key cellular processes and changes in homeostasis induced by microbial effectors when recognized. These in turn lead to a decrease in essential cellular functions such as protein translation or mitochondrial respiration and the induction of innate immune responses that may be specific to the cellular deficit induced. These processes are often associated with specific cell compartments, e.g., the endoplasmic reticulum (ER). Under non-infection conditions, these systems are generally involved in sensing cellular stress and in inducing and orchestrating the subsequent cellular response. Thus, perturbations of ER homeostasis result in accumulation of unfolded proteins which are detected by ER stress sensors in order to restore the normal condition. The ER is also important during bacterial infection, and bacterial effectors that activate the ER stress sensors have been discovered. Increasing evidence now indicate that bacteria have evolved strategies to differentially activate different arms of ER stress sensors resulting in specific host cell response. In this review, we will describe the mechanisms used by bacteria to activate the ER stress sensors and discuss their role during infection.
Collapse
|
14
|
Hattori T, Watanabe-Takahashi M, Ohoka N, Hamabata T, Furukawa K, Nishikawa K, Naito M. Proteasome inhibitors prevent cell death and prolong survival of mice challenged by Shiga toxin. FEBS Open Bio 2015; 5:605-14. [PMID: 26273560 PMCID: PMC4534485 DOI: 10.1016/j.fob.2015.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Shiga toxin (Stx) rapidly reduces the level of short-lived anti-apoptotic proteins. Stx induces activation of caspase 9 and apoptosis. Proteasome inhibitors prevent the reduction of anti-apoptotic proteins. Proteasome inhibitors suppress Stx-induced apoptosis. Bortezomib prolongs the survival of mice challenged with a lethal dose of Stx.
Shiga toxin (Stx) causes fatal systemic complications. Stx induces apoptosis, but the mechanism of which is unclear. We report that Stx induced rapid reduction of short-lived anti-apoptotic proteins followed by activation of caspase 9 and the progression of apoptosis. Proteasome inhibitors prevented the reduction of anti-apoptotic proteins, and inhibited caspase activation and apoptosis, suggesting that the reduction of anti-apoptotic proteins is a prerequisite for Stx-induced apoptosis. A clinically approved proteasome inhibitor, bortezomib, prolonged the survival of mice challenged by Stx. These results imply that proteasome inhibition may be a novel approach to prevent the fatal effects of Stx.
Collapse
Key Words
- Apoptosis
- Apoptosis inhibitory proteins
- BRZ, bortezomib
- CHX, cycloheximide
- ER, endoplasmic reticulum
- FLIP, FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein
- Mcl-1, myeloid cell leukemia 1
- PARP, Poly(ADP-ribose) polymerase
- PI, propidium iodide
- Proteasome
- Proteasome inhibitor
- STEC, Shiga toxin-producing Escherichia coli
- Shiga toxin
- Stx, Shiga toxin
- c-IAP1, cellular inhibitor of apoptosis protein 1
Collapse
Affiliation(s)
- Takayuki Hattori
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Takashi Hamabata
- Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Kiyotaka Nishikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
15
|
Ge S, Hertel B, Emden SH, Beneke J, Menne J, Haller H, von Vietinghoff S. Microparticle generation and leucocyte death in Shiga toxin-mediated HUS. Nephrol Dial Transplant 2012; 27:2768-75. [PMID: 22234918 DOI: 10.1093/ndt/gfr748] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Shiga toxin-induced haemolytic uraemic syndrome (STEC-HUS) is an acute multisystem disorder characterized by renal failure, neurological dysfunction, haemolysis and intravascular thrombosis. Circulating microparticles originating from a number of cell types including thrombocytes and leucocytes are elevated in paediatric patients. In vitro data also suggest modification of leucocyte death by Shiga toxin. Here, we investigated microparticle generation and leucocyte cell death in vivo in adult STEC-HUS patients during acute disease and recovery. METHODS Multi-colour flow cytometry and immunofluorescence were used to assess microparticle concentration and provenience thrombocyte microparticle seeding to leucocytes and leucocyte cell death in adult STEC-HUS patients treated at a tertiary care centre during the STEC-HUS outbreak in Germany in 2011. RESULTS Plasma microparticle concentrations of both platelet and leucocyte origin were elevated during acute STEC-HUS. Platelet microparticles (MP) were detected on a high proportion of monocytes and granulocytes. Among therapeutic interventions, plasma exchange reduced platelet marker expression on leucocytes, inhibition of complement had only moderate impact on the number of circulating MP and did not alter platelet microparticle binding to leucocytes. Numbers of apoptotic and necrotic monocytes and granulocytes were significantly increased in patients with STEC-HUS compared to healthy controls. Complement inhibition significantly increased the number of circulating apoptotic cells. Monocyte apoptosis on admission was significantly higher in patients subsequently assigned to plasma exchange or admitted to the intensive care unit. CONCLUSIONS In STEC-HUS, elevated numbers of circulating MP and dead leucocytes were detected. Monocyte and granulocyte deaths are novel markers of acute STEC-HUS that may actively contribute to tissue destruction by liberation of pro-inflammatory enzymes and cytokines.
Collapse
Affiliation(s)
- Shuwang Ge
- Department of Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Shiga toxin-producing bacteria cause widespread outbreaks of bloody diarrhoea that may progress to life-threatening systemic complications. Shiga toxins (Stxs), the main virulence factors expressed by the pathogens, are ribosome-inactivating proteins which inhibit protein synthesis by removing an adenine residue from 28S rRNA. Recently, Stxs were shown to activate multiple stress-associated signalling pathways in mammalian cells. The ribotoxic stress response is activated following the depurination reaction localized to the α-sarcin/ricin loop of eukaryotic ribosomes. The unfolded protein response (UPR) may be initiated by toxin unfolding within the endoplasmic reticulum, and maintained by production of truncated, misfolded proteins following intoxication. Activation of the ribotoxic stress response leads to signalling through MAPK cascades, which appears to be critical for activation of innate immunity and regulation of apoptosis. Precise mechanisms linking ribosomal damage with MAPK activation require clarification but may involve recognition of ribosomal conformational changes and binding of protein kinases to ribosomes, which activate MAP3Ks and MAP2Ks. Stxs appear capable of activating all ER membrane localized UPR sensors. Prolonged signalling through the UPR induces apoptosis in some cell types. The characterization of stress responses activated by Stxs may identify targets for the development of interventional therapies to block cell damage and disease progression.
Collapse
Affiliation(s)
- Vernon L Tesh
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
17
|
Thin-layer chromatography, overlay technique and mass spectrometry: A versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:875-96. [DOI: 10.1016/j.bbalip.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/18/2011] [Accepted: 04/10/2011] [Indexed: 12/16/2022]
|
18
|
Lentz EK, Leyva-Illades D, Lee MS, Cherla RP, Tesh VL. Differential response of the human renal proximal tubular epithelial cell line HK-2 to Shiga toxin types 1 and 2. Infect Immun 2011; 79:3527-40. [PMID: 21708996 PMCID: PMC3165488 DOI: 10.1128/iai.05139-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/04/2011] [Indexed: 11/20/2022] Open
Abstract
Shiga toxins (Stxs) are expressed by the enteric pathogens Shigella dysenteriae serotype 1 and certain serotypes of Escherichia coli. Stx-producing bacteria cause bloody diarrhea with the potential to progress to acute renal failure. Stxs are potent protein synthesis inhibitors and are the primary virulence factors responsible for renal damage that may follow diarrheal disease. We explored the use of the immortalized human proximal tubule epithelial cell line HK-2 as an in vitro model of Stx-induced renal damage. We showed that these cells express abundant membrane Gb(3) and are differentially susceptible to the cytotoxic action of Stxs, being more sensitive to Shiga toxin type 1 (Stx1) than to Stx2. At early time points (24 h), HK-2 cells were significantly more sensitive to Stxs than Vero cells; however, by 72 h, Vero cell monolayers were completely destroyed while some HK-2 cells survived toxin challenge, suggesting that a subpopulation of HK-2 cells are relatively toxin resistant. Fluorescently labeled Stx1 B subunits localized to both lysosomal and endoplasmic reticulum (ER) compartments in HK-2 cells, suggesting that differences in intracellular trafficking may play a role in susceptibility to Stx-mediated cytotoxicity. Although proinflammatory cytokines were not upregulated by toxin challenge, Stx2 selectively induced the expression of two chemokines, macrophage inflammatory protein-1α (MIP-1α) and MIP-1β. Stx1 and Stx2 differentially activated components of the ER stress response in HK-2 cells. Finally, we demonstrated significant poly(ADP-ribose) polymerase (PARP) cleavage after exposure to Stx1 or Stx2. However, procaspase 3 cleavage was undetectable, suggesting that HK-2 cells may undergo apoptosis in response to Stxs in a caspase 3-independent manner.
Collapse
Affiliation(s)
- Erin K. Lentz
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Dinorah Leyva-Illades
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Moo-Seung Lee
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Rama P. Cherla
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| | - Vernon L. Tesh
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas 77807
| |
Collapse
|
19
|
Baronetti JL, Villegas NA, Paraje MG, Albesa I. Nitric oxide-mediated apoptosis in rat macrophages subjected to Shiga toxin 2 from Escherichia coli. Microbiol Immunol 2011; 55:231-8. [PMID: 21244469 DOI: 10.1111/j.1348-0421.2011.00310.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shiga toxin-producing Escherichia coli are important food-borne pathogens. The main factor conferring virulence on this bacterium is its capacity to secrete Shiga toxins (Stxs), which have been reported to induce apoptosis in several cell types. However, the mechanisms of this apoptosis have not yet been fully elucidated. In addition, Stxs have been shown to stimulate macrophages to produce nitric oxide (NO), a well-known apoptosis inductor.The aim of this study was to investigate the participation of NO in apoptosis of rat peritoneal macrophages induced by culture supernatants or Stx2 from E. coli. Peritoneal macrophages incubated in the presence of E. coli supernatants showed an increase in the amounts of apoptosis and NO production. Furthermore, inhibition of NO synthesis induced by addition of aminoguanidine (AG) was correlated with a reduction in the percentage of apoptotic cells, indicating participation of this metabolite in the apoptotic process. Similarly, treatment of cells with Stx2 induced an increase in NO production and amount of apoptosis, these changes being reversed by addition of AG. In summary, these data show that treatment with E. coli supernatants or Stx2 induces NO-mediated apoptosis of macrophages.
Collapse
Affiliation(s)
- José Luis Baronetti
- Department of Pharmacy, Faculty of Chemical Sciences, National University of Córdoba, Haya de la Torre y Medina Allende, University Campus, 500 Córdoba, Argentina.
| | | | | | | |
Collapse
|
20
|
Lee MS, Cherla RP, Jenson MH, Leyva-Illades D, Martinez-Moczygemba M, Tesh VL. Shiga toxins induce autophagy leading to differential signalling pathways in toxin-sensitive and toxin-resistant human cells. Cell Microbiol 2011; 13:1479-96. [PMID: 21722286 DOI: 10.1111/j.1462-5822.2011.01634.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial virulence factors Shiga toxins (Stxs) are expressed by Shigella dysenteriae serotype 1 and certain Escherichia coli strains. Stxs are protein synthesis inhibitors and induce apoptosis in many cell types. Stxs induce apoptosis via prolonged endoplasmic reticulum stress signalling to activate both extrinsic and intrinsic pathways in human myeloid cells. Studies have shown that autophagy, a lysosome-dependent catabolic process, may be associated with activation of pro-survival or death processes. It is currently unknown if autophagy contributes to apoptosis or protects cells from Stxs. To study cellular responses to Stxs, we intoxicated toxin-sensitive cells (THP-1 and HK-2 cells), and toxin-resistant cells (primary human monocyte-derived macrophages) and examined toxin intracellular trafficking and autophagosome formation. Stxs translocated to different cell compartments in toxin-resistant versus toxin-sensitive cells. Confocal microscopy revealed autophagosome formation in both toxin-resistant and toxin-sensitive cells. Proteolytic cleavage of Atg5 and Beclin-1 plays pivotal roles in switching non-cytotoxic autophagy to cell death signalling. We detected cleaved forms of Atg5 and Beclin-1 in Stx-treated toxin-sensitive cells, while cleaved caspases, calpains, Atg5 and Beclin-1 were not detected in toxin-resistant primary human monocytes and macrophages. These findings suggest that toxin sensitivity correlates with caspase and calpain activation, leading to Atg5 and Beclin-1 cleavage.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | | | | | | | | | | |
Collapse
|
21
|
Horrix C, Raviv Z, Flescher E, Voss C, Berger MR. Plant ribosome-inactivating proteins type II induce the unfolded protein response in human cancer cells. Cell Mol Life Sci 2011; 68:1269-81. [PMID: 20844919 PMCID: PMC11114844 DOI: 10.1007/s00018-010-0524-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/09/2010] [Accepted: 08/30/2010] [Indexed: 10/19/2022]
Abstract
Cytotoxic ribosome-inactivating proteins (RIPs) of type II such as ricin were investigated as anti-cancer agents, but also pose a threat as biological weapons. The molecular mechanism leading to their toxic effects is, however, not yet clear. The current paradigm, which states that the irreversible depurination of 28S rRNA results in a general translational arrest eventually leading to cell death, has been questioned. Using micro-array, qRT-PCR and Western blot, we identified the unfolded protein response (UPR), a cellular mechanism activated in response to endoplasmic reticulum stress, that is induced in HCT116 and MDA-MB-231 cells exposed to the plant type II RIPs ricin, riproximin and volkensin. Apoptosis was induced by concentrations at which translation of UPR-related genes still occurred, despite concomitant ribosomal depurination. We conclude that UPR induction represents a model that better describes the cellular effects of RIP exposure at concentrations at which selected proteins are translated despite ribosomal depurination.
Collapse
Affiliation(s)
- C Horrix
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Shiga toxins and ricin are ribosome-inactivating proteins which share the property of inhibiting protein synthesis by catalytic inactivation of eukaryotic ribosomes. There is now abundant evidence that Shiga toxins and ricin induce apoptosis in epithelial, endothelial, lymphoid and myeloid cells in vitro, and in multiple organs in animals when administered these toxins. Many studies suggest that protein synthesis inhibition and apoptosis induction mediated by Shiga toxins and ricin may be dissociated. In some cells, non-enzymatic toxin components (Shiga toxin B-subunits, ricin B-chain) appear capable of inducing apoptosis. The toxins appear capable of activating components of both the extrinsic or death receptor-mediated and intrinsic or mitochondrial-mediated pathways of apoptosis induction. Although the toxins have been shown to be capable of activating several cell stress response pathways, the precise signaling mechanisms by which Shiga toxins and ricin induce apoptosis remain to be fully characterized. This chapter provides an overview of studies describing Shiga toxin- and ricin-induced apoptosis and reviews evidence that signaling through the ribotoxic stress response and the unfolded protein response may be involved in apoptosis induction in some cell types.
Collapse
|
23
|
Hoffmann P, Hülsewig M, Duvar S, Ziehr H, Mormann M, Peter-Katalinić J, Friedrich AW, Karch H, Müthing J. On the structural diversity of Shiga toxin glycosphingolipid receptors in lymphoid and myeloid cells determined by nanoelectrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2295-2304. [PMID: 20623712 DOI: 10.1002/rcm.4636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Shiga toxin (Stx, synonymous to verotoxin, VT) binds with high and low affinity to the globo-series neutral glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer or Galalpha4Galbeta4Glcbeta1Cer, also known as CD77) and globotetraosylceramide (Gb4Cer or GalNAcbeta3Galalpha4Galbeta4Glcbeta1Cer), respectively, which represent the targets of Stxs on many different cell types. B-cell-derived Raji cells and THP-1 cells of monocytic origin are widely used for the investigation of Stx-mediated cellular response, because Stx is known to cause cell death in both cell lines. Despite their functional importance, the Stx receptors of Raji and THP-1 cells have so far not been investigated. This prompted us to explore the structures of their GSL receptors in detail by means of nanoelectrospray ionization quadrupole time-of-flight mass spectrometry (nanoESI-QTOF-MS) with collision-induced dissociation (CID) in conjunction with Stx1 as well as anti-Gb3Cer and anti-Gb4Cer antibodies. Using the combination of a thin-layer chromatography (TLC) overlay assay and MS(1) and MS(2) analysis we identified Gb3Cer (d18:1, C24:1/C24:0) as the prevalent Stx1-receptor accompanied by less abundant Gb3Cer (d18:1, C16:0) in the neutral GSL fraction of Raji cells. The same Gb3Cer species but with almost equal proportions of the C24:1/C24:0 and C16:0 variants were found in THP-1 cells. In addition, unusual hydroxylated Gb3Cer (d18:1, C24:1/C24:0) and Gb3Cer (d18:1, C26:1) could be identified in trace quantities in both cell lines. As the most obvious difference between Raji and THP-1 cells we observed the expression of Gb4Cer in THP-1 cells, whereas Raji cells failed to express this elongation product of Gb3Cer. Both short- and long-chain fatty acid carrying Gb4Cer (d18:1, C16:0) and Gb4Cer (d18:1, C24:1/C24:0), respectively, were the prevalent Gb4Cer variants. This first report on the differential expression of Gb3Cer and Gb4Cer and their structural diversity in lymphoid and myeloid cell lines supports the hypothesis that such heterogeneities might play a functional role in the molecular assembly of GSLs in membrane organization and cellular signaling of Stx-susceptible cells.
Collapse
Affiliation(s)
- Petra Hoffmann
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin CF, Chen CL, Huang WC, Cheng YL, Hsieh CY, Wang CY, Hong MY. Different types of cell death induced by enterotoxins. Toxins (Basel) 2010; 2:2158-76. [PMID: 22069678 PMCID: PMC3153280 DOI: 10.3390/toxins2082158] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/03/2010] [Indexed: 02/07/2023] Open
Abstract
The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins) are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.
Collapse
Affiliation(s)
- Chiou-Feng Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (W.-C.H.); (Y.-L.C.); (C.-Y.H.); (C.-Y.W.); (M.-Y.H.)
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (C.-L.C.)
- Author to whom correspondence should be addressed; ; Tel.: +886-06-235-3535 ext. 4240; Fax: +886-06-275-8781
| | - Chia-Ling Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (C.-L.C.)
| | - Wei-Ching Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (W.-C.H.); (Y.-L.C.); (C.-Y.H.); (C.-Y.W.); (M.-Y.H.)
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Lin Cheng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (W.-C.H.); (Y.-L.C.); (C.-Y.H.); (C.-Y.W.); (M.-Y.H.)
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yuan Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (W.-C.H.); (Y.-L.C.); (C.-Y.H.); (C.-Y.W.); (M.-Y.H.)
| | - Chi-Yun Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (W.-C.H.); (Y.-L.C.); (C.-Y.H.); (C.-Y.W.); (M.-Y.H.)
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ming-Yuan Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (W.-C.H.); (Y.-L.C.); (C.-Y.H.); (C.-Y.W.); (M.-Y.H.)
- Department of Emergency, National Cheng Kung University Hospital, Tainan 701, Taiwan
| |
Collapse
|
25
|
Shiga toxins: intracellular trafficking to the ER leading to activation of host cell stress responses. Toxins (Basel) 2010; 2:1515-35. [PMID: 22069648 PMCID: PMC3153247 DOI: 10.3390/toxins2061515] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/18/2010] [Accepted: 06/01/2010] [Indexed: 12/25/2022] Open
Abstract
Despite efforts to improve hygenic conditions and regulate food and drinking water safety, the enteric pathogens, Shiga toxin-producing Escherichia coli (STEC) and Shigella dysenteriae serotype 1 remain major public health concerns due to widespread outbreaks and the severity of extra-intestinal diseases they cause, including acute renal failure and central nervous system complications. Shiga toxins are the key virulence factors expressed by these pathogens mediating extra-intestinal disease. Delivery of the toxins to the endoplasmic reticulum (ER) results in host cell protein synthesis inhibition, activation of the ribotoxic stress response, the ER stress response, and in some cases, the induction of apoptosis. Intrinsic and/or extrinsic apoptosis inducing pathways are involved in executing cell death following intoxication. In this review we provide an overview of the current understanding Shiga toxin intracellular trafficking, host cellular responses to the toxin and ER stress-induced apoptosis with an emphasis on recent findings.
Collapse
|
26
|
Signaling through C/EBP homologous protein and death receptor 5 and calpain activation differentially regulate THP-1 cell maturation-dependent apoptosis induced by Shiga toxin type 1. Infect Immun 2010; 78:3378-91. [PMID: 20515924 DOI: 10.1128/iai.00342-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Shiga toxins (Stxs) induce apoptosis via activation of the intrinsic and extrinsic pathways in many cell types. Toxin-mediated activation of the endoplasmic reticulum (ER) stress response was shown to be instrumental in initiating apoptosis in THP-1 myeloid leukemia cells. THP-1 cells responded to Shiga toxin type 1 (Stx1) in a cell maturation-dependent manner, undergoing rapid apoptosis in the undifferentiated state but reduced and delayed apoptosis in differentiated cells. The onset of apoptosis was associated with calpain activation and changes in expression of C/EBP homologous protein (CHOP), Bcl-2 family members, and death receptor 5 (DR5). Ligation of DR5 by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) activates the extrinsic pathway of apoptosis. We show here that expression of TRAIL and DR5 is increased by Stx1 treatment. Addition of exogenous TRAIL enhances, and anti-TRAIL antibodies inhibit, Stx1-induced apoptosis of THP-1 cells. Silencing of CHOP or DR5 expression selectively prevented caspase activation, loss of mitochondrial membrane potential, and Stx1-induced apoptosis of macrophage-like THP-1 cells. In contrast, the rapid kinetics of apoptosis induction in monocytic THP-1 cells correlated with rates of calpain cleavage. The results suggest that CHOP-DR5 signaling and calpain activation differentially contribute to cell maturation-dependent Stx1-induced apoptosis. Inhibition of these signaling pathways may protect cells from Stx cytotoxicity.
Collapse
|
27
|
Abstract
Shiga toxins comprise a family of structurally and functionally related protein toxins expressed by Shigella dysenteriae serotype 1 and multiple serotypes of Escherichia coli. While the capacity of Shiga toxins to inhibit protein synthesis by catalytic inactivation of eukaryotic ribosomes has been well described, it is also apparent that Shiga toxins trigger apoptosis in many cell types. This review presents evidence that Shiga toxins induce apoptosis of epithelial, endothelial, leukocytic, lymphoid and neuronal cells. Apoptotic signaling pathways activated by the toxins are reviewed with an emphasis on signaling mechanisms that are shared among different cell types. Data suggesting that Shiga toxins induce apoptosis through the endoplasmic reticulum stress response and clinical evidence demonstrating apoptosis in humans infected with Shiga toxin-producing bacteria are briefly discussed. The potential for use of Shiga toxins to induce apoptosis in cancer cells is briefly reviewed.
Collapse
Affiliation(s)
- Vernon L Tesh
- Department of Microbial & Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| |
Collapse
|