1
|
Groshong AM, Gibbons NE, Moore BP, Bellamy WT, Blevins JS. The plasmid-encoded members of paralogous gene family 52 are dispensable to the enzootic cycle of Borrelia burgdorferi. Infect Immun 2024; 92:e0021424. [PMID: 39120148 PMCID: PMC11475691 DOI: 10.1128/iai.00214-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Lyme disease, the leading vector-borne disease in the United States and Europe, develops after infection with Borrelia burgdorferi sensu lato bacteria. Transmission of the spirochete from the tick vector to a vertebrate host requires global changes in gene expression that are controlled, in part, by the Rrp2/RpoN/RpoS alternative sigma factor cascade. Transcriptional studies defining the B. burgdorferi RpoS regulon have suggested that RpoS activates the transcription of paralogous family 52 (PFam52) genes. In strain B31, PFam52 genes (bbi42, bbk53, and bbq03) encode a set of conserved hypothetical proteins with >89% amino acid identity that are predicted to be surface-localized. Extensive homology among members of paralogous families complicates studies of protein contributions to pathogenicity as the potential for functional redundancy will obfuscate findings. Using a sequential mutagenesis approach, we generated clones expressing a single PFam52 paralog, as well as a strain deficient in all three. The single paralog expressing strains were used to confirm BBI42, BBK53, and BBQ03 surface localization and RpoS regulation. Surprisingly, the PFam52-deficient strain was able to infect mice and complete the enzootic cycle similar to the wild-type parental strain. Indeed, the presence of numerous pseudogenes that contain frameshifts or internal stop codons among the PFam52 genes suggests that they may be subjected to gene loss in B. burgdorferi's reduced genome. Alternatively, the lack of phenotype might reflect the limitations of the experimental mouse infection model.
Collapse
Affiliation(s)
- Ashley M. Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Nora E. Gibbons
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Brendan P. Moore
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - William T. Bellamy
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S. Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
2
|
Seshu J, Moy BE, Ingle TM. Transformation of Borrelia burgdorferi. Curr Protoc 2021; 1:e61. [PMID: 33661557 DOI: 10.1002/cpz1.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transformation techniques used to genetically manipulate Borrelia burgdorferi, the agent of Lyme disease, play a critical role in generating mutants that facilitate analyses of the role of genes in the pathophysiology of this bacterium. A number of borrelial mutants have been successfully isolated and characterized since the first electrotransformation procedure was established 25 years ago (Samuels, 1995). This article is directed at additional considerations for transforming infectious B. burgdorferi to generate strains retaining the plasmid profile of the parental strain, enabling analysis of transformants for in vitro and in vivo phenotypes. These methods are built on previously published protocols and are intended to add steps and tips to enhance transformation efficiency and recovery of strains amenable for studies involving colonization, survival, and transmission of B. burgdorferi during the vector and vertebrate phases of infection. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of stock cultures, propagation of spirochetes, and analysis of plasmid profiles Basic Protocol 2: Preparation of plasmid and linear DNA templates for transformation Basic Protocol 3: Transformation of B. burgdorferi Basic Protocol 4: Antibiotic selection of borrelial transformants Basic Protocol 5: Isolation of borrelial transformants in agar overlays Basic Protocol 6: Complementation of mutant borrelial strains in cis or in trans.
Collapse
Affiliation(s)
- J Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas
| | - Brian E Moy
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas
| | - Taylor MacMackin Ingle
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
3
|
Chen Y, Vargas SM, Smith TC, Karna SLR, MacMackin Ingle T, Wozniak KL, Wormley FL, Seshu J. Borrelia peptidoglycan interacting Protein (BpiP) contributes to the fitness of Borrelia burgdorferi against host-derived factors and influences virulence in mouse models of Lyme disease. PLoS Pathog 2021; 17:e1009535. [PMID: 33882111 PMCID: PMC8092773 DOI: 10.1371/journal.ppat.1009535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 05/03/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
The Peptidoglycan (PG) cell wall of the Lyme disease (LD) spirochete, Borrelia burgdorferi (Bb), contributes to structural and morphological integrity of Bb; is a persistent antigen in LD patients; and has a unique pentapeptide with L-Ornithine as the third amino acid that cross-links its glycan polymers. A borrelial homolog (BB_0167) interacted specifically with borrelilal PG via its peptidoglycan interacting motif (MHELSEKRARAIGNYL); was localized to the protoplasmic cylinder of Bb; and was designated as Borrelia peptidoglycan interacting Protein (BpiP). A bpiP mutant displayed no defect under in vitro growth conditions with similar levels of several virulence-related proteins. However, the burden of bpiP mutant in C3H/HeN mice at day 14, 28 and 62 post-infection was significantly lower compared to control strains. No viable bpiP mutant was re-isolated from any tissues at day 62 post-infection although bpiP mutant was able to colonize immunodeficient SCID at day 28 post-infection. Acquisition or transmission of bpiP mutant by Ixodes scapularis larvae or nymphs respectively, from and to mice, was significantly lower compared to control strains. Further analysis of bpiP mutant revealed increased sensitivity to vancomycin, osmotic stress, lysosomal extracts, human antimicrobial peptide cathelicidin-LL37, complement-dependent killing in the presence of day 14 post-infection mouse serum and increased internalization of CFSC-labeled bpiP mutant by macrophages and dendritic cells compared to control strains. These studies demonstrate the importance of accessory protein/s involved in sustaining integrity of PG and cell envelope during different phases of Bb infection.
Collapse
Affiliation(s)
- Yue Chen
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sean M. Vargas
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Trever C. Smith
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sai Lakshmi Rajasekhar Karna
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Taylor MacMackin Ingle
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Karen L. Wozniak
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Floyd L. Wormley
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Janakiram Seshu
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
4
|
Structural and Functional Analysis of BBA03, Borrelia burgdorferi Competitive Advantage Promoting Outer Surface Lipoprotein. Pathogens 2020; 9:pathogens9100826. [PMID: 33050189 PMCID: PMC7650648 DOI: 10.3390/pathogens9100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
BBA03 is a Borrelia burgdorferi outer surface lipoprotein encoded on one of the most conserved plasmids in Borrelia genome, linear plasmid 54 (lp54). Although many of its genes have been identified as contributing or essential for spirochete fitness in vivo, the majority of the proteins encoded on this plasmid have no known function and lack homologs in other organisms. In this paper, we report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBA03, which is known to provide a competitive advantage to the bacteria during the transmission from tick vector to mammalian host. BBA03 shows structural homology to other outer surface lipoproteins reflecting their genetic and evolutionary relatedness. Analysis of the structure reveals a pore in BBA03, which could potentially bind lipids.
Collapse
|
5
|
Short-Chain Fatty Acids Alter Metabolic and Virulence Attributes of Borrelia burgdorferi. Infect Immun 2018; 86:IAI.00217-18. [PMID: 29891543 DOI: 10.1128/iai.00217-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Borrelia burgdorferi responds to a variety of host-derived factors and appropriately alters its gene expression for adaptation under different host-specific conditions. We previously showed that various levels of acetate, a short-chain fatty acid (SCFA), altered the protein profile of B. burgdorferi In this study, we determined the effects of other physiologically relevant SCFAs in the regulation of metabolic/virulence-associated proteins using mutant borrelial strains. No apparent increase in the synthesis of outer surface protein C (OspC) was noted when a carbon storage regulator A (csrA of B. burgdorferi, or csrABb ) mutant (mt) was propagated within dialysis membrane chambers implanted within rat peritoneal cavity, while the parental wild type (wt; B31-A3 strain) and csrABb cis-complemented strain (ct) had increased OspC with a reciprocal reduction in OspA levels. Growth rates of wt, mt, ct, 7D (csrABb mutant lacking 7 amino acids at the C terminus), and 8S (csrABb with site-specific changes altering its RNA-binding properties) borrelial strains were similar in the presence of acetate. Increased levels of propionate and butyrate reduced the growth rates of all strains tested, with mt and 8S exhibiting profound growth deficits at higher concentrations of propionate. Transcriptional levels of rpoS and ospC were elevated on supplementation of SCFAs compared to those of untreated spirochetes. Immunoblot analysis revealed elevated levels of RpoS, OspC, and DbpA with increased levels of SCFAs. Physiological levels of SCFAs prevalent in select human and rodent fluids were synergistic with mammalian host temperature and pH to increase the levels of aforementioned proteins, which could impact the colonization of B. burgdorferi during the mammalian phase of infection.
Collapse
|
6
|
Borrelia Host Adaptation Protein (BadP) Is Required for the Colonization of a Mammalian Host by the Agent of Lyme Disease. Infect Immun 2018; 86:IAI.00057-18. [PMID: 29685985 DOI: 10.1128/iai.00057-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease (LD), uses host-derived signals to modulate gene expression during the vector and mammalian phases of infection. Microarray analysis of mutants lacking the B orrelia host adaptation regulator (BadR) revealed the downregulation of genes encoding enzymes whose role in the pathophysiology of B. burgdorferi is unknown. Immunoblot analysis of the badR mutants confirmed reduced levels of these enzymes, and one of these enzymes, encoded by bb0086, shares homology to prokaryotic magnesium chelatase and Lon-type proteases. The BB0086 levels in B. burgdorferi were higher under conditions mimicking those in fed ticks. Mutants lacking bb0086 had no apparent in vitro growth defect but were incapable of colonizing immunocompetent C3H/HeN or immunodeficient SCID mice. Immunoblot analysis revealed reduced levels of proteins critical for the adaptation of B. burgdorferi to the mammalian host, such as OspC, DbpA, and BBK32. Both RpoS and BosR, key regulators of gene expression in B. burgdorferi, were downregulated in the bb0086 mutants. Therefore, we designated BB0086 the B orrelia host adaptation protein (BadP). Unlike badP mutants, the control strains established infection in C3H/HeN mice at 4 days postinfection, indicating an early colonization defect in mutants due to reduced levels of the lipoproteins/regulators critical for initial stages of infection. However, badP mutants survived within dialysis membrane chambers (DMCs) implanted within the rat peritoneal cavity but, unlike the control strains, did not display complete switching of OspA to OspC, suggesting incomplete adaptation to the mammalian phase of infection. These findings have opened a novel regulatory mechanism which impacts the virulence potential of B burgdorferi.
Collapse
|
7
|
Abstract
Bioinformatic approaches and a large volume of prokaryotic genome sequences have enabled rapid identification of regulatory proteins with features to bind DNA or RNA in a given prokaryote. However, biological relevance of these regulatory proteins requires methods to rapidly purify and determine their binding properties within the physiological context or life style of the organism. Here, we describe the experimental approaches to determine the nucleic acid binding properties of regulatory proteins of Borrelia burgdorferi using Borrelia host-adaptation Re.3gulator (BadR-a DNA binding protein) and Carbon storage regulators A of B. b urgdorferi (CsrABb-an RNA binding protein) as examples. Best laboratory practices associated with overexpression/purification of recombinant borrelial proteins, synthesis of target nucleic acid sequences, and electrophoretic mobility assays to assess the protein/nucleic acid interactions are described. The methods described are intended to facilitate empirical assessment of the binding affinity, co-factor requirements, quality of the interacting partners, and readily modifiable assay conditions to assess the binding properties to define known and unknown regulatory properties of nucleic acid binding proteins of B. burgdorferi.
Collapse
|
8
|
Spermine and Spermidine Alter Gene Expression and Antigenic Profile of Borrelia burgdorferi. Infect Immun 2017; 85:IAI.00684-16. [PMID: 28052993 DOI: 10.1128/iai.00684-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, responds to numerous host-derived signals to alter adaptive capabilities during its enzootic cycle in an arthropod vector and mammalian host. Molecular mechanisms that enable B. burgdorferi to detect, channel, and respond to these signals have become an intense area of study for developing strategies to limit transmission/infection. Bioinformatic analysis of the borrelial genome revealed the presence of polyamine transport components (PotA, PotB, PotC, and PotD), while homologs for polyamine biosynthesis were conspicuously absent. Although potABCD is cotranscribed, the level of PotA was elevated under in vitro growth conditions mimicking unfed ticks compared to the level in fed ticks, while the levels of PotD were similar under the aforementioned conditions in B. burgdorferi Among several polyamines and polyamine precursors, supplementation of spermine or spermidine in the borrelial growth medium induced synthesis of major regulators of gene expression in B. burgdorferi, such as RpoS and BosR, with a concomitant increase in proteins that contribute to colonization and survival of B. burgdorferi in the mammalian host. Short transcripts of rpoS were elevated in response to spermidine, which was correlated with increased protein levels of RpoS. Transcriptional analysis of rpoZ and B. burgdorferirel (relBbu ; bb0198) in the presence of spermidine revealed the interplay of multiple regulatory factors in B. burgdorferi gene expression. The effect of spermidine on the levels of select borrelial proteins was also influenced by serum factors. These studies suggest that multiple host-derived signals/nutrients and their transport systems contribute to B. burgdorferi adaptation during the vector and vertebrate host phases of infection.
Collapse
|
9
|
Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi. PLoS One 2015; 10:e0136707. [PMID: 26322513 PMCID: PMC4556403 DOI: 10.1371/journal.pone.0136707] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/07/2015] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA) capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE) and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat). HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348) exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560), and outer surface protein A (OspA, BBA15) were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC), Decorin binding protein A (DbpA), fibronectin binding protein (BBK32), RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox-⁄- and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of the sodA mutant in the mouse model of Lyme disease. This study, utilizing the sodA mutant, has provided insights into adaptive capabilities critical for survival of B. burgdorferi in its hosts.
Collapse
|
10
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
11
|
Lin T, Troy EB, Hu LT, Gao L, Norris SJ. Transposon mutagenesis as an approach to improved understanding of Borrelia pathogenesis and biology. Front Cell Infect Microbiol 2014; 4:63. [PMID: 24904839 PMCID: PMC4033020 DOI: 10.3389/fcimb.2014.00063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/25/2014] [Indexed: 11/13/2022] Open
Abstract
Transposon insertion provides a method for near-random mutation of bacterial genomes, and has been utilized extensively for the study of bacterial pathogenesis and biology. This approach is particularly useful for organisms that are relatively refractory to genetic manipulation, including Lyme disease Borrelia. In this review, progress to date in the application of transposon mutagenesis to the study of Borrelia burgdorferi is reported. An effective Himar1-based transposon vector has been developed and used to acquire a sequence-defined library of nearly 4500 mutants in the infectious, moderately transformable B. burgdorferi B31 derivative 5A18NP1. Analysis of these transposon mutants using signature-tagged mutagenesis (STM) and Tn-seq approaches has begun to yield valuable information regarding the genes important in the pathogenesis and biology of this organism.
Collapse
Affiliation(s)
- Tao Lin
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston Houston, TX, USA
| | - Erin B Troy
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Boston, MA, USA
| | - Linden T Hu
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Boston, MA, USA
| | - Lihui Gao
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston Houston, TX, USA
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston Houston, TX, USA
| |
Collapse
|
12
|
Contributions of environmental signals and conserved residues to the functions of carbon storage regulator A of Borrelia burgdorferi. Infect Immun 2013; 81:2972-85. [PMID: 23753623 DOI: 10.1128/iai.00494-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carbon storage regulator A of Borrelia burgdorferi (CsrABb) contributes to vertebrate host-specific adaptation by modulating activation of the Rrp2-RpoN-RpoS pathway and is critical for infectivity. We hypothesized that the functions of CsrABb are dependent on environmental signals and on select residues. We analyzed the phenotype of csrABb deletion and site-specific mutants to determine the conserved and pathogen-specific attributes of CsrABb. Levels of phosphate acetyltransferase (Pta) involved in conversion of acetyl phosphate to acetyl-coenzyme A (acetyl-CoA) and posttranscriptionally regulated by CsrABb in the csrABb mutant were reduced from or similar to those in the control strains under unfed- or fed-tick conditions, respectively. Increased levels of supplemental acetate restored vertebrate host-responsive determinants in the csrABb mutant to parental levels, indicating that both the levels of CsrABb and the acetyl phosphate and acetyl-CoA balance contribute to the activation of the Rrp2-RpoN-RpoS pathway. Site-specific replacement of 8 key residues of CsrABb (8S) with alanines resulted in increased levels of CsrABb and reduced levels of Pta and acetyl-CoA, while levels of RpoS, BosR, and other members of rpoS regulon were elevated. Truncation of 7 amino acids at the C terminus of CsrABb (7D) resulted in reduced csrABb transcripts and posttranscriptionally reduced levels of FliW located upstream of CsrABb. Electrophoretic mobility shift assays revealed increased binding of 8S mutant protein to the CsrA binding box upstream of pta compared to the parental and 7D truncated protein. Two CsrABb binding sites were also identified upstream of fliW within the flgK coding sequence. These observations reveal conserved and unique functions of CsrABb that regulate adaptive gene expression in B. burgdorferi.
Collapse
|
13
|
Borrelia burgdorferi bba66 gene inactivation results in attenuated mouse infection by tick transmission. Infect Immun 2013; 81:2488-98. [PMID: 23630963 DOI: 10.1128/iai.00140-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The impact of the Borrelia burgdorferi surface-localized immunogenic lipoprotein BBA66 on vector and host infection was evaluated by inactivating the encoding gene, bba66, and characterizing the mutant phenotype throughout the natural mouse-tick-mouse cycle. The BBA66-deficient mutant isolate, Bb(ΔA66), remained infectious in mice by needle inoculation of cultured organisms, but differences in spirochete burden and pathology in the tibiotarsal joint were observed relative to the parental wild-type (WT) strain. Ixodes scapularis larvae successfully acquired Bb(ΔA66) following feeding on infected mice, and the organisms persisted in these ticks through the molt to nymphs. A series of tick transmission experiments (n = 7) demonstrated that the ability of Bb(ΔA66)-infected nymphs to infect laboratory mice was significantly impaired compared to that of mice fed upon by WT-infected ticks. trans-complementation of Bb(ΔA66) with an intact copy of bba66 restored the WT infectious phenotype in mice via tick transmission. These results suggest a role for BBA66 in facilitating B. burgdorferi dissemination and transmission from the tick vector to the mammalian host as part of the disease process for Lyme borreliosis.
Collapse
|
14
|
Van Laar TA, Lin YH, Miller CL, Karna SLR, Chambers JP, Seshu J. Effect of levels of acetate on the mevalonate pathway of Borrelia burgdorferi. PLoS One 2012; 7:e38171. [PMID: 22675445 PMCID: PMC3364977 DOI: 10.1371/journal.pone.0038171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 01/09/2023] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, is a spirochetal pathogen with limited metabolic capabilities that survives under highly disparate host-specific conditions. However, the borrelial genome encodes several proteins of the mevalonate pathway (MP) that utilizes acetyl-CoA as a substrate leading to intermediate metabolites critical for biogenesis of peptidoglycan and post-translational modifications of proteins. In this study, we analyzed the MP and contributions of acetate in modulation of adaptive responses in B. burgdorferi. Reverse-transcription PCR revealed that components of the MP are transcribed as individual open reading frames. Immunoblot analysis using monospecific sera confirmed synthesis of members of the MP in B. burgdorferi. The rate-limiting step of the MP is mediated by HMG-CoA reductase (HMGR) via conversion of HMG-CoA to mevalonate. Recombinant borrelial HMGR exhibited a K(m) value of 132 µM with a V(max) of 1.94 µmol NADPH oxidized minute(-1) (mg protein)(-1) and was inhibited by statins. Total protein lysates from two different infectious, clonal isolates of B. burgdorferi grown under conditions that mimicked fed-ticks (pH 6.8/37°C) exhibited increased levels of HMGR while other members of the MP were elevated under unfed-tick (pH 7.6/23°C) conditions. Increased extra-cellular acetate gave rise to elevated levels of MP proteins along with RpoS, CsrA(Bb) and their respective regulons responsible for mediating vertebrate host-specific adaptation. Both lactone and acid forms of two different statins inhibited growth of B. burgdorferi strain B31, while overexpression of HMGR was able to partially overcome that inhibition. In summary, these studies on MP and contributions of acetate to host-specific adaptation have helped identify potential metabolic targets that can be manipulated to reduce the incidence of Lyme disease.
Collapse
Affiliation(s)
- Tricia A. Van Laar
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Ying-Han Lin
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Christine L. Miller
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - S. L. Rajasekhar Karna
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - J. Seshu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, Center for Excellence in Infection Genomics and The University of Texas at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
15
|
Kenedy MR, Lenhart TR, Akins DR. The role of Borrelia burgdorferi outer surface proteins. ACTA ACUST UNITED AC 2012; 66:1-19. [PMID: 22540535 DOI: 10.1111/j.1574-695x.2012.00980.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/13/2012] [Accepted: 04/25/2012] [Indexed: 12/18/2022]
Abstract
Human pathogenic spirochetes causing Lyme disease belong to the Borrelia burgdorferi sensu lato complex. Borrelia burgdorferi organisms are extracellular pathogens transmitted to humans through the bite of Ixodes spp. ticks. These spirochetes are unique in that they can cause chronic infection and persist in the infected human, even though a robust humoral and cellular immune response is produced by the infected host. How this extracellular pathogen is able to evade the host immune response for such long periods of time is currently unclear. To gain a better understanding of how this organism persists in the infected human, many laboratories have focused on identifying and characterizing outer surface proteins of B. burgdorferi. As the interface between B. burgdorferi and its human host is its outer surface, proteins localized to the outer membrane must play an important role in dissemination, virulence, tissue tropism, and immune evasion. Over the last two decades, numerous outer surface proteins from B. burgdorferi have been identified, and more recent studies have begun to elucidate the functional role(s) of many borrelial outer surface proteins. This review summarizes the outer surface proteins identified in B. burgdorferi to date and provides detailed insight into the functions of many of these proteins as they relate to the unique parasitic strategy of this spirochetal pathogen.
Collapse
Affiliation(s)
- Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | |
Collapse
|
16
|
Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 2012; 7:e33280. [PMID: 22432010 PMCID: PMC3303823 DOI: 10.1371/journal.pone.0033280] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/06/2012] [Indexed: 11/21/2022] Open
Abstract
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Oligopeptide permease A5 modulates vertebrate host-specific adaptation of Borrelia burgdorferi. Infect Immun 2011; 79:3407-20. [PMID: 21628523 DOI: 10.1128/iai.05234-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, undergoes rapid adaptive gene expression in response to signals unique to its arthropod vector or vertebrate hosts. Among the upregulated genes under vertebrate host conditions is one of the five annotated homologs of oligopeptide permease A (OppA5, BBA34). A mutant lacking oppA5 was constructed in an lp25-deficient isolate of B. burgdorferi strain B31, and the minimal regions of infectivity were restored via a shuttle vector pBBE22 with or without an intact copy of bba34. Immunoblot analysis of the bba34 mutant revealed a reduction in the levels of RpoS, BosR, and CsrA(Bb) with a concomitant reduction in the levels of OspC, DbpA, BBK32, and BBA64. There were no changes in the levels of OspA, NapA, P66, and three other OppA orthologs. Quantitative transcriptional analysis correlated with the changes in the protein levels. However, the bba34 mutant displayed comparable infectivities in the C3H/HeN mice and the wild-type strain, despite the reduction in several pathogenesis-related proteins. Supplementation of the growth medium with increased levels of select components, notably sodium acetate and sodium bicarbonate, restored the levels of several proteins in the bba34 mutant to wild-type levels. We speculate that the transport of acetate appears to contribute to the accumulation of key metabolites, like acetyl phosphate, that facilitate the adaptation of B. burgdorferi to the vertebrate host by the activation of the Rrp2-RpoN-RpoS pathway. These studies underscore the importance of solute transport to host-specific adaptation of B. burgdorferi.
Collapse
|
18
|
BB0844, an RpoS-regulated protein, is dispensable for Borrelia burgdorferi infectivity and maintenance in the mouse-tick infectious cycle. Infect Immun 2010; 79:1208-17. [PMID: 21173312 DOI: 10.1128/iai.01156-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genome of Borrelia burgdorferi, the causative agent of Lyme disease, is comprised of a large linear chromosome and numerous smaller linear and circular plasmids. B. burgdorferi exhibits substantial genomic variation, and previous studies revealed genotype-specific variation at the right chromosomal telomere. A correlation has also been established between genotype and invasiveness. The correlation between chromosome length and genotype and between genotype and invasiveness suggested that a gene(s) at the right chromosome telomere may be required for virulence. Of particular interest was bb0844, an RpoS-regulated gene at the right telomere, the expression of which is induced when the spirochete undergoes adaptation to the mammalian host. The structure of the right chromosomal telomere was examined in 53 B. burgdorferi clinical isolates of various genotypes. Four distinct patterns were observed for bb0844: (i) chromosomal localization, (ii) plasmid localization, (iii) presence on both chromosome and plasmid, and (iv) complete absence. These patterns correlated with the B. burgdorferi genotype. On the basis of available sequence data, we propose a mechanism for the genomic rearrangements that accounts for the variability in bb0844 genomic localization. To further explore the role of BB0844 in the spirochete life cycle, a bb0844 deletion mutant was constructed by allelic exchange, and the viability of wild-type and bb0844 deletion mutants was examined in an experimental mouse-tick infection model. The bb0844 mutant was fully infectious in C3H/HeJ mice by either needle inoculation or tick transmission with B. burgdorferi-infected Ixodes scapularis larvae. Naïve larval ticks acquired both wild-type and mutant spirochetes with equal efficiency from B. burgdorferi-infected mice. The results demonstrate that BB0844 is not required for spirochete viability, pathogenicity, or maintenance in the tick vector or the mammalian host. At present, a defined role for BB0844 in B. burgdorferi cannot be ascertained.
Collapse
|
19
|
CsrA modulates levels of lipoproteins and key regulators of gene expression critical for pathogenic mechanisms of Borrelia burgdorferi. Infect Immun 2010; 79:732-44. [PMID: 21078860 DOI: 10.1128/iai.00882-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbon storage regulator A (CsrA) is an RNA binding protein that has been characterized in many bacterial species to play a central regulatory role by modulating several metabolic processes. We recently showed that a homolog of CsrA in Borrelia burgdorferi (CsrA(Bb), BB0184) was upregulated in response to propagation of B. burgdorferi under mammalian host-specific conditions. In order to further delineate the role of CsrA(Bb), we generated a deletion mutant designated ES10 in a linear plasmid 25-negative isolate of B. burgdorferi strain B31 (ML23). The deletion mutant was screened by PCR and Southern blot hybridization, and a lack of synthesis of CsrA(Bb) in ES10 was confirmed by immunoblot analysis. Analysis of ES10 propagated at pH 6.8/37°C revealed a significant reduction in the levels of OspC, DbpA, BBK32, and BBA64 compared to those for the parental wild-type strain propagated under these conditions, while there were no significant changes in the levels of either OspA or P66. Moreover, the levels of two regulatory proteins, RpoS and BosR, were also found to be lower in ES10 than in the control strain. Quantitative real-time reverse transcription-PCR analysis of total RNA extracted from the parental strain and csrA(Bb) mutant revealed significant differences in gene expression consistent with the changes at the protein level. Neither the csrA(Bb) mutant nor the trans-complemented strain was capable of infection following intradermal needle inoculation in C3H/HeN mice at either 10³ or 10⁵ spirochetes per mouse. The further characterization of molecular basis of regulation mediated by CsrA(Bb) will provide significant insights into the pathophysiology of B. burgdorferi.
Collapse
|
20
|
Characterization of the highly regulated antigen BBA05 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 2009; 78:100-7. [PMID: 19822648 DOI: 10.1128/iai.01008-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dramatic alteration of surface lipoprotein profiles is a key strategy that Borrelia burgdorferi, the Lyme disease pathogen, has evolved for adapting to the diverse environments of arthropod and mammalian hosts. Several of these differentially expressed lipoproteins have been shown to play important roles in the enzootic cycle of B. burgdorferi. The BBA05 protein is a previously identified putative lipoprotein (P55 or S1 antigen) that elicits antibody responses in mammals. Recent microarray analyses indicate that the BBA05 gene is differentially expressed by many environmental factors, including temperature. However, the role of the BBA05 protein in the life cycle of B. burgdorferi has not been elucidated. Here we show that expression of the BBA05 gene was exclusively induced in feeding nymphal ticks during the spirochetal transmission from ticks to mammals. Upon generating a BBA05 mutant in an infectious strain of B. burgdorferi, we showed that the BBA05 mutant remained capable of establishing infection in mice, being acquired by ticks, persisting through tick molting, and reinfecting new mammalian hosts. These results indicate that, despite being a highly conserved and regulated antigen, the BBA05 protein has a nonessential role in the transmission cycle of B. burgdorferi, at least in the animal model.
Collapse
|
21
|
Overexpression of CsrA (BB0184) alters the morphology and antigen profiles of Borrelia burgdorferi. Infect Immun 2009; 77:5149-62. [PMID: 19737901 DOI: 10.1128/iai.00673-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, alters its gene expression in response to highly disparate environmental signals encountered in its hosts. Among the relatively few regulators of adaptive gene expression present in the borrelial genome is an open reading frame (ORF), BB0184, annotated as CsrA (carbon storage regulator A). CsrA, in several bacterial species, has been characterized as a small RNA binding protein that functions as a global regulator affecting mRNA stability or levels of translation of multiple ORFs. Consistent with known functions of CsrA, overexpression of CsrA from B. burgdorferi (CsrABb) in Escherichia coli resulted in reduced accumulation of glycogen. We determined that csrABb is part of the flgK motility operon and that the synthesis of CsrABb was increased when B. burgdorferi was propagated under fed-tick conditions. Overexpression of CsrABb in B. burgdorferi strain B31 (ML23, lp25-negative clonal isolate) resulted in a clone, designated ES25, which exhibited alterations in colony morphology and a significant reduction in the levels of FlaB. Several lipoproteins previously characterized as playing a role in infectivity were also altered in ES25. Real-time reverse transcription-PCR analysis of RNA revealed significant differences in the transcriptional levels of ospC in ES25, while there were no such differences in the levels of other transcripts, suggesting posttranscriptional regulation of expression of these latter genes. These observations indicate that CsrABb plays a role in the regulation of expression of pathophysiological determinants of B. burgdorferi, and further characterization of CsrABb will help in better understanding of the regulators of gene expression in B. burgdorferi.
Collapse
|
22
|
Esteve-Gassent MD, Elliott NL, Seshu J. sodA is essential for virulence of Borrelia burgdorferi in the murine model of Lyme disease. Mol Microbiol 2008; 71:594-612. [PMID: 19040638 DOI: 10.1111/j.1365-2958.2008.06549.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has a limited set of genes to combat oxidative/nitrosative stress encountered in its tick vector or mammalian hosts. We inactivated the gene encoding for superoxide dismutase A (sodA, bb0153), an enzyme mediating the dismutation of superoxide anions and examined the in vitro and in vivo phenotype of the mutant. There were no significant differences in the in vitro growth characteristics of the sodA mutant compared with the control strains. Microscopic analysis of viability of spirochaetes revealed greater percentage of cell death upon treatment of sodA mutant with superoxide generators compared with its controls. Infectivity analysis in C3H/HeN mice following intradermal needle inoculation of 10(3) or 10(5) spirochaetes per mouse revealed complete attenuation of infectivity for the sodA mutant compared with control strains at 21 days post infection. The sodA mutant was more susceptible to the effects of activated macrophages and neutrophils, suggesting that its in vivo phenotype is partly due to the killing effects of activated immune cells. These studies indicate that SodA plays an important role in combating oxidative stress and is essential for the colonization and dissemination of B. burgdorferi in the murine model of Lyme disease.
Collapse
Affiliation(s)
- Maria D Esteve-Gassent
- South Texas Center for Emerging Infectious Diseases, and Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|