1
|
Ghadimi D, Fölster-Holst R, Blömer S, Ebsen M, Röcken C, Uchiyama J, Matsuzaki S, Bockelmann W. Convergence of plant sterols and host eukaryotic cell-derived defensive lipids at the infectious pathogen-host interface. Biochimie 2024:S0300-9084(24)00294-3. [PMID: 39647774 DOI: 10.1016/j.biochi.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/15/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Plant sterols (PSs) exhibit intrinsic functions such as antibacterial effects. Their effects simultaneously on both host-mediated and bacteria-mediated pathogenesis are not yet fully understood. We hypothesized that when absorptive cells, defensive cells and detoxer cells are cultured together, their convergent response to an infectious pathogen depends on the molecular mimicry between the ingested sterols and their own defensive lipids. A human triple cell co-culture model incorporating colonocytes, macrophages, and hepatocytes was established. Cocultures were stimulated with Klebsiella pneumoniae 52145 (Kp52145) in the presence of pure plant sterol (β-sitosterol, PS) for 6 h. Changes in the structural health markers of the stimulated cocultured cells and their immune response and biochemical markers of pathogenicity were determined. PS significantly inhibited the secretion of cytokines induced by Kp52145. Cell viability was higher in the Kp52145 + PS group compared to the Kp52145 alone group. PS decreased Kp52145-induced marker of pathogenicity (SOD), accompanied by reduced levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), mannose binding lectin (MBL), and pentraxin 3 (PTX3) which are the mediators and enzymes associated with the inflammatory response to an infectious-inflamed milieu. PS recovered Kp52145-decreased peroxidase (POX), catalase (CAT), complement component 3 (C3), and high-density lipoprotein cholesterol (HDL-C) values. Convergence of ingested plant sterols and host eukaryotic cell-derived defensive lipids mitigates the disruptive effects of bacterial toxic effector molecules. Structural or immunological similarities (molecular mimicry) between ingested plant sterols and host defensive lipids play an important role in modulating bacterial signalling that occurs at the pathogen-host interface and in the mitigation of infection- and inflammation-driven pathological processes.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103, Kiel, Germany.
| | - Regina Fölster-Holst
- Department of Allergology and Dermatology, University Hospital Schleswig-Holstein, Schittenhelmstr. 7, D-24105, Kiel, Germany
| | - Sophia Blömer
- Department of Allergology and Dermatology, University Hospital Schleswig-Holstein, Schittenhelmstr. 7, D-24105, Kiel, Germany
| | - Michael Ebsen
- Städtisches MVZ Kiel GmbH (Kiel City Hospital), Department of Pathology, Chemnitzstr.33, 24116, Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, Kiel University, University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, D-24105, Kiel, Germany
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shigenobu Matsuzaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Japan
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103, Kiel, Germany
| |
Collapse
|
2
|
Dentice Maidana S, Elean M, Fukuyama K, Imamura Y, Albarracín L, Saha S, Suda Y, Kurata S, Jure MÁ, Kitazawa H, Villena J. Hypermucoviscous Carbapenem-Resistant Klebsiella pneumoniae ST25 Infect Human Intestinal Epithelial Cells and Induce Moderate Inflammation. Int J Mol Sci 2023; 24:ijms24108804. [PMID: 37240146 DOI: 10.3390/ijms24108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that can produce moderate and severe infections in immunosuppressed hosts. In recent years, an increase in the isolation of hypermucoviscous carbapenem-resistant K. pneumoniae with sequence type 25 (ST25) in hospitals in Norwest Argentina was observed. This work aimed to study the virulence and inflammatory potential of two K. pneumoniae ST25 strains (LABACER01 and LABACER27) in the intestinal mucosa. The human intestinal Caco-2 cells were infected with the K. pneumoniae ST25 strains, and their adhesion and invasion rates and changes in the expression of tight junction and inflammatory factors genes were evaluated. ST25 strains were able to adhere and invade Caco-2 cells, reducing their viability. Furthermore, both strains reduced the expression of tight junction proteins (occludin, ZO-1, and claudin-5), altered permeability, and increased the expression of TGF-β and TLL1 and the inflammatory factors (COX-2, iNOS, MCP-1, IL-6, IL-8, and TNF-α) in Caco-2 cells. The inflammatory response induced by LABACER01 and LABACER27 was significantly lower than the one produced by LPS or other intestinal pathogens, including K. pneumoniae NTUH-K2044. No differences in virulence and inflammatory potential were found between LABACER01 and LABACER27. In line with these findings, no major differences between the strains were found when the comparative genomic analysis of virulence factors associated with intestinal infection/colonization was performed. This work is the first to demonstrate that hypermucoviscous carbapenem-resistant K. pneumoniae ST25 infects human intestinal epithelial cells and induces moderate inflammation.
Collapse
Affiliation(s)
- Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
- Laboratory of Antimicrobials, Institute of Microbiology "Luis C. Verna", Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman 4000, Argentina
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
| | - Leonardo Albarracín
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Sudeb Saha
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - María Ángela Jure
- Laboratory of Antimicrobials, Institute of Microbiology "Luis C. Verna", Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
3
|
Gram-Negative Endogenous Endophthalmitis: A Systematic Review. Microorganisms 2022; 11:microorganisms11010080. [PMID: 36677371 PMCID: PMC9860988 DOI: 10.3390/microorganisms11010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Gram-negative bacteria are causative agents of endogenous endophthalmitis (EBE). We aim to systematically review the current literature to assess the aetiologies, risk factors, and early ocular lesions in cases of Gram-negative EBE. Methods: All peer-reviewed articles between January 2002 and August 2022 regarding Gram-negative EBE were included. We conducted a literature search on PubMed and Cochrane Controlled Trials. Results: A total of 115 studies and 591 patients were included, prevalently Asian (98; 81.7%) and male (302; 62.9%). The most common comorbidity was diabetes (231; 55%). The main aetiologies were Klebsiella pneumoniae (510; 66.1%), Pseudomonas aeruginosa (111; 14.4%), and Escherichia coli (60; 7.8%). Liver abscesses (266; 54.5%) were the predominant source of infection. The most frequent ocular lesions were vitreal opacity (134; 49.6%) and hypopyon (95; 35.2%). Ceftriaxone (76; 30.9%), fluoroquinolones (14; 14.4%), and ceftazidime (213; 78.0%) were the most widely used as systemic, topical, and intravitreal anti-Gram-negative agents, respectively. The most reported surgical approaches were vitrectomy (130; 24.1%) and evisceration/exenteration (60; 11.1%). Frequently, visual acuity at discharge was no light perception (301; 55.2%). Conclusions: Gram-negative EBEs are associated with poor outcomes. Our systematic review is mainly based on case reports and case series with significant heterogeneity. The main strength is the large sample spanning over 20 years. Our findings underscore the importance of considering ocular involvement in Gram-negative infections.
Collapse
|
4
|
Tang J, Gu L, Luo J, Luo H, Zeng Q, Jiang Y. 1,25(OH) 2D 3 promotes the elimination of Klebsiella pneumoniae infection by inducing autophagy through the VDR-ATG16L1 pathway. Int Immunopharmacol 2022; 112:109266. [PMID: 36174418 DOI: 10.1016/j.intimp.2022.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Previous studies have shown that vitamin D has regulatory functions in both innate and adaptive immune responses, indicating that it can perform essential roles in host resistance to pathogen infections. This study aimed to verify its effects on Klebsiella pneumoniae (Kp) infection and explore the underlying mechanisms. METHODS THP-1-derived macrophages were infected with Kp and then incubated with 1,25(OH)2D3. Autophagy induced by 1,25(OH)2D3 was investigated by western blotting and immunofluorescence. Real-time PCR (qPCR) was performed to determine the expression of inflammatory mediators. Baf A1 and 3-MA were used to inhibit autophagy. The intracellular killing of Kp was measured using qPCR and colony-forming unit assays. RNA interference assays were used to silence VDR or ATG16L1. The lungs of C57BL/6 mice were infected with Kp via intratracheal instillation, and the established pneumonia models were used for in vivo validation experiments. RESULTS Treatment with 1,25(OH)2D3 enhanced the bactericidal activity of macrophages and concomitantly reduced the expression of the pro-inflammatory mediators TNF-α and IL-6. Kp infection led to a lower expression level of VDR in macrophages than in the control, whereas co-treatment with 1,25(OH)2D3 up-regulated VDR expression and robustly induced autophagy via the VDR signaling pathway. Silencing ATG16L1 significantly counteracted autophagy induced by 1,25(OH)2D3 in Kp-infected macrophages. Furthermore, we found that when autophagy activity was diminished by ATG16L1 siRNA or blocked by Baf A1, the ability of 1,25(OH)2D3 to promote macrophages to eliminate Kp infection was obviously impaired, as were its anti-inflammatory effects. These protective efficacies of 1,25(OH)2D3 against Kp infection were also validated in vivo using a mouse model of pneumonia. CONCLUSIONS The present study demonstrated the protective features of 1,25(OH)2D3 in macrophages against Kp infection and may provide evidence for further exploration of its potential as an adjunctive therapy agent for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Jinhui Tang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, and State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Liwen Gu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jieyu Luo
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haihua Luo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, and State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Qingli Zeng
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, and State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Shi Y, Zhao W, Liu G, Ali T, Chen P, Liu Y, Kastelic JP, Han B, Gao J. Bacteriophages isolated from dairy farm mitigated Klebsiella pneumoniae-induced inflammation in bovine mammary epithelial cells cultured in vitro. BMC Vet Res 2021; 17:37. [PMID: 33468111 PMCID: PMC7814619 DOI: 10.1186/s12917-020-02738-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/29/2020] [Indexed: 12/02/2022] Open
Abstract
Background Klebsiella pneumoniae, an environmental pathogen causing mastitis in dairy cattle, is often resistant to antibiotics. K. pneumoniae was used as the host bacteria to support bacteriophage replication; 2 bacteriophages, CM8-1 and SJT-2 were isolated and considered to have therapeutic potential. In the present study, we determined the ability of these 2 bacteriophages to mitigate cytotoxicity, pathomorphological changes, inflammatory responses and apoptosis induced by K. pneumoniae (bacteriophage to K. pneumoniae MOI 1:10) in bovine mammary epithelial cells (bMECs) cultured in vitro. Results Bacteriophages reduced bacterial adhesion and invasion and cytotoxicity (lactate dehydrogenase release). Morphological changes in bMECs, including swelling, shrinkage, necrosis and hematoxylin and eosin staining of cytoplasm, were apparent 4 to 8 h after infection with K. pneumoniae, but each bacteriophage significantly suppressed damage and decreased TNF-α and IL-1β concentrations. K. pneumoniae enhanced mRNA expression of TLR4, NF-κB, TNF-α, IL-1β, IL-6, IL-8, caspase-3, caspase-9 and cyt-c in bMECs and increased apoptosis of bMECs, although these effects were mitigated by treatment with either bacteriophage for 8 h. Conclusions Bacteriophages CM8-1 and SJT-2 mitigated K. pneumoniae-induced inflammation in bMECs cultured in vitro. Therefore, the potential of these bacteriophages for treating mastitis in cows should be determined in clinical trials.
Collapse
Affiliation(s)
- Yuxiang Shi
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, 056038, Handan, Hebei, P.R. China
| | - Wenpeng Zhao
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China
| | - Tariq Ali
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.,Center of Microbiology & Biotechnology, Veterinary Research Institute, Peshawar, Pakistan
| | - Peng Chen
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, 271018, Taìan, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, T2N 4N1, Calgary, AB, Canada
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.
| |
Collapse
|
6
|
Hobby CR, Herndon JL, Morrow CA, Peters RE, Symes SJK, Giles DK. Exogenous fatty acids alter phospholipid composition, membrane permeability, capacity for biofilm formation, and antimicrobial peptide susceptibility in Klebsiella pneumoniae. Microbiologyopen 2018; 8:e00635. [PMID: 29701307 PMCID: PMC6391273 DOI: 10.1002/mbo3.635] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/20/2018] [Accepted: 03/05/2018] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae represents a major threat to human health due to a combination of its nosocomial emergence and a propensity for acquiring antibiotic resistance. Dissemination of the bacteria from its native intestinal location creates severe, complicated infections that are particularly problematic in healthcare settings. Thus, there is an urgency for identifying novel treatment regimens as the incidence of highly antibiotic‐resistant bacteria rises. Recent findings have highlighted the ability of some Gram‐negative bacteria to utilize exogenous fatty acids in ways that modify membrane phospholipids and influence virulence phenotypes, such as biofilm formation and antibiotic resistance. This study explores the ability of K. pneumoniae to assimilate and respond to exogenous fatty acids. The combination of thin‐layer chromatography liquid chromatography‐mass spectrometry confirmed adoption of numerous exogenous polyunsaturated fatty acids (PUFAs) into the phospholipid species of K. pneumoniae. Membrane permeability was variably affected as determined by two dye uptake assays. Furthermore, the availability of many PUFAs lowered the MICs to the antimicrobial peptides polymyxin B and colistin. Biofilm formation was significantly affected depending upon the supplemented fatty acid.
Collapse
Affiliation(s)
- Chelsea R Hobby
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Joshua L Herndon
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Colton A Morrow
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Rachel E Peters
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Steven J K Symes
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - David K Giles
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| |
Collapse
|
7
|
Caporarello N, Olivieri M, Cristaldi M, Scalia M, Toscano MA, Genovese C, Addamo A, Salmeri M, Lupo G, Anfuso CD. Blood-Brain Barrier in a Haemophilus influenzae Type a In Vitro Infection: Role of Adenosine Receptors A 2A and A 2B. Mol Neurobiol 2017; 55:5321-5336. [PMID: 28921456 DOI: 10.1007/s12035-017-0769-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/07/2017] [Indexed: 01/15/2023]
Abstract
The blood-brain barrier (BBB) is mainly made up of tightly connected microvascular endothelial cells (BMECs), surrounded by pericytes (BMPCs) which regulate BBB tightness by providing soluble factors that control endothelial proliferation. Haemophilus influenzae type a (Hia) is able to reach the BBB, crossing it, thus causing meningitis. In this study, by using an in vitro model of BBB, performed with human BMECs and human BMPCs in co-culture, we demonstrated that, after Hia infection, the number of hBMPCs decreased whereas the number of hBMECs increased in comparison with non-infected cells. SEM and TEM images showed that Hia was able to enter hBMECs and reduce TEER and VE-cadherin expression. When the cells were infected in presence of SCH58261 and PSB603 but not DPCPX, an increase in TEER values was observed thus demonstrating that A2A and A2B adenosine receptors play a key role in BBB dysfunction. These results were confirmed by the use of adenosine receptor agonists CGS21680, CCPA, and NECA. In infected co-cultures cAMP and VEGF increased and TEER reduction was counter-balanced by VEGF-R1 or VEGF-R2 antibodies. Moreover, the phosphorylated CREB and Rho-A significantly increased in infected hBMECs and hBMPCs and the presence of SCH58261 and PSB603 significantly abrogated the phosphorylation. In conclusion, this study demonstrated that the infection stimulated A2A and A2B adenosine receptors in hBMECs and hBMPCs thus inducing the pericytes to release large amounts of VEGF. The latter could be responsible for both, pericyte detachment and endothelial cell proliferation, thus provoking BBB impairment.
Collapse
Affiliation(s)
- N Caporarello
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M Olivieri
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M Cristaldi
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M Scalia
- Section of Biology and Genetic, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M A Toscano
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - C Genovese
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - A Addamo
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - M Salmeri
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| | - G Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| | - C D Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
8
|
The role of group IIA secretory phospholipase A2 (sPLA2-IIA) as a biomarker for the diagnosis of sepsis and bacterial infection in adults-A systematic review. PLoS One 2017; 12:e0180554. [PMID: 28671974 PMCID: PMC5495423 DOI: 10.1371/journal.pone.0180554] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION This paper investigates the role of Group II Secretory Phospholipase A2 (sPLA2-IIA) as a biomarker for the diagnosis of sepsis and bacterial infection in adults. Sepsis and bacterial infection are common problems encountered by patients in the hospital and often carry adverse outcomes if not managed early. METHODS Two independent reviewers conducted a comprehensive search using Ovid MEDLINE published from years 1993 to 2016 and SCOPUS published from year 1985 to 2017 to screen for relevant studies. The main inclusion criteria included adult subjects, patients with suspected or confirmed signs of infection and relevant outcomes which looked into the role of sPLA2-IIA in detecting the presence of sepsis and bacterial infection in the subjects. RESULTS AND DISCUSSION Four studies met the inclusion criteria. SPLA2-IIA was found to be effective in detecting the presence of sepsis and bacterial infection in adults. The levels of serum sPLA2-IIA also correlated well with the presence of sepsis and bacterial infection. CONCLUSION This systematic review highlights the role of sPLA2-IIA as a reliable tool to diagnose sepsis and bacterial infection in adult patients. Nonetheless, further studies should be done in the future to provide more compelling evidence on its application in the clinical setting.
Collapse
|
9
|
Cho AR, Kim JG. Bilateral Branch Occlusive Retinal Vasculitis Induced by Septic Embo-lism in Endogenous Klebsiella Endo-phthalmitis. KOREAN JOURNAL OF OPHTHALMOLOGY 2017; 31:175-176. [PMID: 28367048 PMCID: PMC5368093 DOI: 10.3341/kjo.2017.31.2.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ah Ran Cho
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - June-Gone Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Li Y, Li L, Li Z, Sheng J, Zhang X, Feng D, Zhang X, Yin F, Wang A, Wang F. Tat PTD-Endostatin-RGD: A novel protein with anti-angiogenesis effect in retina via eye drops. Biochim Biophys Acta Gen Subj 2016; 1860:2137-47. [PMID: 27233450 DOI: 10.1016/j.bbagen.2016.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/16/2016] [Accepted: 05/21/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Diabetic retinopathy is a leading cause of blindness. The objective was to design a novel fusion protein, Tat PTD-Endostatin-RGD, to treat retinal neovascularization via eye drops instead of traditional intravitreal injection trepapeutical methods. METHOD The anti-angiogenesis ability was evaluated in vitro by chick embryo chorioallantoic membrane assay, wound healing assay and tube formation assay. Corneal barrier and blood-retina barrier were constructed in vitro to investigate the penetration ability of Tat PTD-Endostatin-RGD. Western blot was used to detect the integrin αvβ3 expression level in rat retina microvascular endothelial cells which was stimulated by S-nitroso-N-acetylpenicillamine. The binding affinity of Tat PTD-Endostatin-RGD to integrin αvβ3 was investigated by evaluating the penetration ability on blood-retina barriers treated with S-nitroso-N-acetylpenicillamine. The pharmacodynamics and efficacy analysis were further carried out in the oxygen-induced retinopathy model in vivo. In addition, the pharmacokinetic profile via eye drops was studied on a C57BL/6 mice model. RESULT Tat PTD-Endostatin-RGD showed high anti-angiogenesis activity and high ability to penetrate these two barriers in vitro. The Western blot results indicated S-nitroso-N-acetylpenicillamine upregulated the expression level of integrin αvβ3 in a dose-dependent manner. Tat PTD-Endostatin-RGD showed a high affinity to rat retina microvascular endothelial cells treated with S-nitroso-N-acetylpenicillamine. The results showed that Tat PTD-Endostatin-RGD could inhibit abnormal angiogenesis in retina via eye drops. CONCLUSION Tat PTD-Endostatin-RGD showed high penetration ability through ocular barriers, bound specifically to integrin αvβ3 and effectively inhibited the abnormal angiogenesis. GENERAL SIGNIFICANCE Tat PTD-Endostatin-RGD represents a potent novel drug applied via eye drops for fundus oculi neovascularization diseases.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lian Li
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhiwei Li
- Department of Ophthalmology, Provincial Hospital Affiliated to Shandong University, Jinan 250012, China
| | - Juzheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xinke Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Danyang Feng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xu Zhang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Fengxin Yin
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Aijun Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China.
| |
Collapse
|