1
|
Sanchez SE, Chiarelli TJ, Park MA, Carlyon JA. Orientia tsutsugamushi infection reduces host gluconeogenic but not glycolytic substrates. Infect Immun 2024:e0028424. [PMID: 39324805 DOI: 10.1128/iai.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.
Collapse
Affiliation(s)
- Savannah E Sanchez
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Travis J Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Margaret A Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
2
|
Adcox HE, Hunt JR, Allen PE, Siff TE, Rodino KG, Ottens AK, Carlyon JA. Orientia tsutsugamushi Ank5 promotes NLRC5 cytoplasmic retention and degradation to inhibit MHC class I expression. Nat Commun 2024; 15:8069. [PMID: 39277599 PMCID: PMC11401901 DOI: 10.1038/s41467-024-52119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
How intracellular bacteria subvert the major histocompatibility complex (MHC) class I pathway is poorly understood. Here, we show that the obligate intracellular bacterium Orientia tsutsugamushi uses its effector protein, Ank5, to inhibit nuclear translocation of the MHC class I gene transactivator, NLRC5, and orchestrate its proteasomal degradation. Ank5 uses a tyrosine in its fourth ankyrin repeat to bind the NLRC5 N-terminus while its F-box directs host SCF complex ubiquitination of NLRC5 in the leucine-rich repeat region that dictates susceptibility to Orientia- and Ank5-mediated degradation. The ability of O. tsutsugamushi strains to degrade NLRC5 correlates with ank5 genomic carriage. Ectopically expressed Ank5 that can bind but not degrade NLRC5 protects the transactivator during Orientia infection. Thus, Ank5 is an immunoevasin that uses its bipartite architecture to rid host cells of NLRC5 and reduce surface MHC class I molecules. This study offers insight into how intracellular pathogens can impair MHC class I expression.
Collapse
Affiliation(s)
- Haley E Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Paige E Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Thomas E Siff
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Kyle G Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
3
|
Fisher J, Gonzales C, Chroust Z, Liang Y, Soong L. Orientia tsutsugamushi Infection Stimulates Syk-Dependent Responses and Innate Cytosolic Defenses in Macrophages. Pathogens 2022; 12:pathogens12010053. [PMID: 36678402 PMCID: PMC9861896 DOI: 10.3390/pathogens12010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Orientia tsutsugamushi is an obligately intracellular bacterium and an etiological agent of scrub typhus. Human studies and animal models of scrub typhus have shown robust type 1-skewed proinflammatory responses during severe infection. Macrophages (MΦ) play a critical role in initiating such responses, yet mechanisms of innate recognition for O. tsutsugamushi remain unclear. In this study, we investigated whether Syk-dependent C-type lectin receptors (CLRs) contribute to innate immune recognition and the generation of proinflammatory responses. To validate the role of CLRs in scrub typhus, we infected murine bone marrow-derived MΦ with O. tsutsugamushi in the presence of selective Syk inhibitors and analyzed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that Mincle/Clec4a and Clec5a transcription was significantly abrogated upon Syk inhibition at 6 h of infection. The effect of Syk inhibition on Mincle protein expression was validated via Western blot. Syk-inhibited MΦ had diminished expression of type 1 cytokines/chemokines (Il12p40, Tnf, Il27p28, Cxcl1) during infection. Additionally, expression of innate immune cytosolic sensors (Mx1 and Oas1-3) was highly induced in the brain of lethally infected mice. We established that Mx1 and Oas1 expression was reduced in Syk-inhibited MΦ, while Oas2, Oas3, and MerTK were not sensitive to Syk inhibition. This study reveals that Syk-dependent CLRs contribute to inflammatory responses against O. tsutsugamushi. It also provides the first evidence for Syk-dependent activation of intracellular defenses during infection, suggesting a role of pattern recognition receptor crosstalk in orchestrating macrophage-mediated responses to this poorly studied bacterium.
Collapse
Affiliation(s)
- James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Casey Gonzales
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Zachary Chroust
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Correspondence: (Y.L.); (L.S.)
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Correspondence: (Y.L.); (L.S.)
| |
Collapse
|
4
|
Orientia tsutsugamushi OtDUB Is Expressed and Interacts with Adaptor Protein Complexes during Infection. Infect Immun 2022; 90:e0046922. [PMID: 36374099 PMCID: PMC9753657 DOI: 10.1128/iai.00469-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Orientia tsutsugamushi is an etiologic agent of scrub typhus, a globally emerging rickettsiosis that can be fatal. The bacterium's obligate intracellular lifestyle requires its interaction with host eukaryotic cellular pathways. The proteins it employs to do so and their functions during infection are understudied. Recombinant versions of the recently characterized O. tsutsugamushi deubiquitylase (OtDUB) exhibit high-affinity ubiquitin binding, mediate guanine nucleotide exchange to activate Rho GTPases, bind clathrin adaptor protein complexes 1 and 2, and bind the phospholipid phosphatidylserine. Whether OtDUB is expressed and its function during O. tsutsugamushi infection have yet to be explored. Here, OtDUB expression, location, and interactome during infection were examined. O. tsutsugamushi transcriptionally and translationally expresses OtDUB throughout infection of epithelial, monocytic, and endothelial cells. Results from structured illumination microscopy, surface trypsinization of intact bacteria, and acetic acid extraction of non-integral membrane proteins indicate that OtDUB peripherally associates with the O. tsutsugamushi cell wall and is at least partially present on the bacterial surface. Analyses of the proteins with which OtDUB associates during infection revealed several known O. tsutsugamushi cell wall proteins and others. It also forms an interactome with adapter protein complex 2 and other endosomal membrane traffic regulators. This study documents the first interactors of OtDUB during O. tsutsugamushi infection and establishes a strong link between OtDUB and the host endocytic pathway.
Collapse
|
5
|
Huang D, Luo J, OuYang X, Song L. Subversion of host cell signaling: The arsenal of Rickettsial species. Front Cell Infect Microbiol 2022; 12:995933. [PMID: 36389139 PMCID: PMC9659576 DOI: 10.3389/fcimb.2022.995933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 10/10/2023] Open
Abstract
Rickettsia is a genus of nonmotile, Gram-negative, non-spore-forming, highly pleomorphic bacteria that cause severe epidemic rickettsioses. The spotted fever group and typhi group are major members of the genus Rickettsia. Rickettsial species from the two groups subvert diverse host cellular processes, including membrane dynamics, actin cytoskeleton dynamics, phosphoinositide metabolism, intracellular trafficking, and immune defense, to promote their host colonization and intercellular transmission through secreted effectors (virulence factors). However, lineage-specific rickettsiae have exploited divergent strategies to accomplish such challenging tasks and these elaborated strategies focus on distinct host cell processes. In the present review, we summarized current understandings of how different rickettsial species employ their effectors' arsenal to affect host cellular processes in order to promote their own replication or to avoid destruction.
Collapse
Affiliation(s)
- Dan Huang
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Luo
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Song
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
OtDUB from the Human Pathogen Orientia tsutsugamushi Modulates Host Membrane Trafficking by Multiple Mechanisms. Mol Cell Biol 2022; 42:e0007122. [PMID: 35727026 PMCID: PMC9302166 DOI: 10.1128/mcb.00071-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Host cell membrane-trafficking pathways are often manipulated by bacterial pathogens to gain cell entry, avoid immune responses, or to obtain nutrients. The 1,369-residue OtDUB protein from the obligate intracellular human pathogen Orientia tsutsugamushi bears a deubiquitylase (DUB) and additional domains. Here we show that OtDUB ectopic expression disrupts membrane trafficking through multiple mechanisms. OtDUB binds directly to the clathrin adaptor-protein (AP) complexes AP-1 and AP-2, and the OtDUB275-675 fragment is sufficient for binding to either complex. To assess the impact of OtDUB interactions with AP-1 and AP-2, we examined trans-Golgi trafficking and endocytosis, respectively. Endocytosis is reduced by two separate OtDUB fragments: one contains the AP-binding domain (OtDUB1-675), and the other does not (OtDUB675-1369). OtDUB1-675 disruption of endocytosis requires its ubiquitin-binding capabilities. OtDUB675-1369 also fragments trans- and cis-Golgi structures. Using a growth-based selection in yeast, we identified viable OtDUB675-1369 point mutants that also no longer caused Golgi defects in human cells. In parallel, we found OtDUB675-1369 binds directly to phosphatidylserine, and this lipid binding is lost in the same mutants. Together these results show that OtDUB contains multiple activities capable of modulating membrane trafficking. We discuss how these activities may contribute to Orientia infections.
Collapse
|
7
|
Hunt JR, Carlyon JA. Analysis of Orientia tsutsugamushi promoter activity. Pathog Dis 2021; 79:6369350. [PMID: 34515306 DOI: 10.1093/femspd/ftab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Orientia tsutsugamushi is an obligate intracellular bacterium that causes scrub typhus, a potentially fatal rickettsiosis, and for which no genetic tools exist. Critical to addressing this technical gap is to identify promoters for driving expression of antibiotic resistance and fluorescence reporter genes in O. tsutsugamushi. Such promoters would need to be highly conserved among strains, expressed throughout infection, and exhibit strong activity. We examined the untranslated regions upstream of O. tsutsugamushi genes encoding outer membrane protein A (ompA), 22-kDa type-specific antigen (tsa22) and tsa56. The bacterium transcribed all three during infection of monocytic, endothelial and epithelial cells. Examination of the upstream noncoding regions revealed putative ribosome binding sites, one set of predicted -10 and -35 sequences for ompA and two sets of -10 and -35 sequences for tsa22 and tsa56. Comparison of these regions among geographically diverse O. tsutsugamushi patient isolates revealed nucleotide identities ranging from 84.8 to 100.0%. Upon examination of the candidates for the ability to drive green fluorescence protein expression in Escherichia coli, varying activities were observed with one of the tsa22 promoters being the strongest. Identification and validation of O. tsutsugamushi promoters is an initial key step toward genetically manipulating this important pathogen.
Collapse
Affiliation(s)
- Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, School of Medicine, VCU, Richmond, VA 23298, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, School of Medicine, VCU, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Orientia tsutsugamushi Nucleomodulin Ank13 Exploits the RaDAR Nuclear Import Pathway To Modulate Host Cell Transcription. mBio 2021; 12:e0181621. [PMID: 34340535 PMCID: PMC8406279 DOI: 10.1128/mbio.01816-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orientia tsutsugamushi is the etiologic agent of scrub typhus, the deadliest of all diseases caused by obligate intracellular bacteria. Nucleomodulins, bacterial effectors that dysregulate eukaryotic transcription, are being increasingly recognized as key virulence factors. How they translocate into the nucleus and their functionally essential domains are poorly defined. We demonstrate that Ank13, an O. tsutsugamushi effector conserved among clinical isolates and expressed during infection, localizes to the nucleus in an importin β1-independent manner. Rather, Ank13 nucleotropism requires an isoleucine at the thirteenth position of its fourth ankyrin repeat, consistent with utilization of eukaryotic RaDAR (RanGDP-ankyrin repeats) nuclear import. RNA-seq analyses of cells expressing green fluorescent protein (GFP)-tagged Ank13, nucleotropism-deficient Ank13I127R, or Ank13ΔF-box, which lacks the F-box domain essential for interacting with SCF ubiquitin ligase, revealed Ank13 to be a nucleomodulin that predominantly downregulates transcription of more than 2,000 genes. Its ability to do so involves its nucleotropism and F-box in synergistic and mutually exclusive manners. Ank13 also acts in the cytoplasm to dysregulate smaller cohorts of genes. The effector’s toxicity in yeast heavily depends on its F-box and less so on its nucleotropism. Genes negatively regulated by Ank13 include those involved in the inflammatory response, transcriptional control, and epigenetics. Importantly, the majority of genes that GFP-Ank13 most strongly downregulates are quiescent or repressed in O. tsutsugamushi-infected cells when Ank13 expression is strongest. Ank13 is the first nucleomodulin identified to coopt RaDAR and a multifaceted effector that functions in the nucleus and cytoplasm via F-box-dependent and -independent mechanisms to globally reprogram host cell transcription.
Collapse
|
9
|
Wangsanut T, Brann KR, Adcox HE, Carlyon JA. Orientia tsutsugamushi modulates cellular levels of NF-κB inhibitor p105. PLoS Negl Trop Dis 2021; 15:e0009339. [PMID: 33857149 PMCID: PMC8078813 DOI: 10.1371/journal.pntd.0009339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Background Scrub typhus is a neglected tropical disease that threatens more than one billion people. If antibiotic therapy is delayed, often due to mis- or late diagnosis, the case fatality rate can increase considerably. Scrub typhus is caused by the obligate intracellular bacterium, Orientia tsutsugamushi, which invades phagocytes and endothelial cells in vivo and diverse tissue culture cell types in vitro. The ability of O. tsutsugamushi to replicate in the cytoplasm indicates that it has evolved to counter eukaryotic host cell immune defense mechanisms. The transcription factor, NF-κB, is a tightly regulated initiator of proinflammatory and antimicrobial responses. Typically, the inhibitory proteins p105 and IκBα sequester the NF-κB p50:p65 heterodimer in the cytoplasm. Canonical activation of NF-κB via TNFα involves IKKβ-mediated serine phosphorylation of IκBα and p105, which leads to their degradation and enables NF-κB nuclear translocation. A portion of p105 is also processed into p50. O. tsutsugamushi impairs NF-κB translocation into the nucleus, but how it does so is incompletely defined. Principal findings Western blot, densitometry, and quantitative RT-PCR analyses of O. tsutsugamushi infected host cells were used to determine if the pathogen’s ability to inhibit NF-κB is linked to modulation of p105. Results demonstrate that p105 levels are elevated several-fold in O. tsutsugamushi infected HeLa and RF/6A cells with only a nominal increase in p50. The O. tsutsugamushi-stimulated increase in p105 is bacterial dose- and protein synthesis-dependent, but does not occur at the level of host cell transcription. While TNFα-induced phosphorylation of p105 serine 932 proceeds unhindered in infected cells, p105 levels remain elevated and NF-κB p65 is retained in the cytoplasm. Conclusions O. tsutsugamushi specifically stabilizes p105 to inhibit the canonical NF-κB pathway, which advances understanding of how it counters host immunity to establish infection. Scrub typhus is a neglected disease that can be fatal and occurs predominantly in the Asia-Pacific, one of the most densely populated regions of the world. Notably, cases continue to emerge outside this area. The etiologic agent is Orientia tsutsugamushi, a bacterial pathogen that infects certain leukocytes and cells that line blood vessels in animals and humans. The success of O. tsutsugamushi to colonize these cells is at least partially attributable to its ability to counter host immunity. In this study, we demonstrate that O. tsutsugamushi stabilizes p105, a mammalian inhibitor of the transcription factor, NF-κB, which is otherwise key for activating proinflammatory and antimicrobial gene expression. O. tsutsugamushi is the first example of a bacterium that inhibits NF-κB by promoting elevated levels of p105 and impairing its degradation. Our findings provide fundamental information that helps explain how this important pathogen has evolved to stealthily establish infection in host cells.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Katelynn R. Brann
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
- * E-mail:
| |
Collapse
|
10
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
11
|
Fisher JR, Chroust ZD, Onyoni F, Soong L. Pattern Recognition Receptors in Innate Immunity to Obligate Intracellular Bacteria. ZOONOSES (BURLINGTON, MASS.) 2021; 1:10. [PMID: 35282331 PMCID: PMC8909792 DOI: 10.15212/zoonoses-2021-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Host pattern recognition receptors (PRRs) are crucial for sensing pathogenic microorganisms, launching innate responses, and shaping pathogen-specific adaptive immunity during infection. Rickettsia spp., Orientia tsutsugamushi, Anaplasma spp., Ehrlichia spp., and Coxiella burnetii are obligate intracellular bacteria, which can only replicate within host cells and must evade immune detection to successfully propagate. These five bacterial species are zoonotic pathogens of clinical or agricultural importance, yet, uncovering how immune recognition occurs has remained challenging. Recent evidence from in-vitro studies and animal models has offered new insights into the types and kinetics of PRR activation during infection with Rickettsia spp., A. phagocytophilum, E. chaffeensis, and C. burnetii, respectively. However, much less is known in these regards for O. tsutsugamushi infection, until the recent discovery for the role of the C-type lectin receptor Mincle during lethal infection in mice and in primary macrophage cultures. This review gives a brief summary for clinical and epidemiologic features of these five bacterial infections, focuses on fundamental biologic facets of infection, and recent advances in host recognition. In addition, we discuss knowledge gaps for innate recognition of these bacteria in the context of disease pathogenesis.
Collapse
Affiliation(s)
- James R. Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zachary D. Chroust
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Florence Onyoni
- Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Corresponding author: Lynn Soong, Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd. MRB 3.142, Galveston, Texas 77555-1070,
| |
Collapse
|
12
|
Cho SX, Vijayan S, Yoo JS, Watanabe T, Ouda R, An N, Kobayashi KS. MHC class I transactivator NLRC5 in host immunity, cancer and beyond. Immunology 2020; 162:252-261. [PMID: 32633419 DOI: 10.1111/imm.13235] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The presentation of antigenic peptides by major histocompatibility complex (MHC) class I and class II molecules is crucial for activation of the adaptive immune system. The nucleotide-binding domain and leucine-rich repeat receptor family members CIITA and NLRC5 function as the major transcriptional activators of MHC class II and class I gene expression, respectively. Since the identification of NLRC5 as the master regulator of MHC class I and class-I-related genes, there have been major advances in understanding the function of NLRC5 in infectious diseases and cancer. Here, we discuss the biological significance and mechanism of NLRC5-dependent MHC class I expression.
Collapse
Affiliation(s)
- Steven X Cho
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saptha Vijayan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, USA
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiyuki Watanabe
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ryota Ouda
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ning An
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, USA
| |
Collapse
|
13
|
Aistleitner K, Clark T, Dooley C, Hackstadt T. Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii. PLoS Pathog 2020; 16:e1008582. [PMID: 32421751 PMCID: PMC7259798 DOI: 10.1371/journal.ppat.1008582] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/29/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Fragmentation of the Golgi apparatus is observed during a number of physiological processes including mitosis and apoptosis, but also occurs in pathological states such as neurodegenerative diseases and some infectious diseases. Here we show that highly virulent strains of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, induce selective fragmentation of the trans-Golgi network (TGN) soon after infection of host cells by secretion of the effector protein Rickettsial Ankyrin Repeat Protein 2 (RARP2). Remarkably, this fragmentation is pronounced for the trans-Golgi network but the cis-Golgi remains largely intact and appropriately localized. Thus R. rickettsii targets specifically the TGN and not the entire Golgi apparatus. Dispersal of the TGN is mediated by the secreted effector protein RARP2, a recently identified type IV secreted effector that is a member of the clan CD cysteine proteases. Site-directed mutagenesis of a predicted cysteine protease active site in RARP2 prevents TGN disruption. General protein transport to the cell surface is severely impacted in cells infected with virulent strains of R. rickettsii. These findings suggest a novel manipulation of cellular organization by an obligate intracellular bacterium to determine interactions with the host cell.
Collapse
Affiliation(s)
- Karin Aistleitner
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Tina Clark
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Cheryl Dooley
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kim HI, Ha NY, Kim G, Min CK, Kim Y, Yen NTH, Choi MS, Cho NH. Immunization with a recombinant antigen composed of conserved blocks from TSA56 provides broad genotype protection against scrub typhus. Emerg Microbes Infect 2019; 8:946-958. [PMID: 31237478 PMCID: PMC6598529 DOI: 10.1080/22221751.2019.1632676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Scrub typhus is an acute febrile disease caused by Orientia tsutsugamushi infection. Despite the wide range of approaches explored during the last seventy years, an effective prophylactic vaccine is not yet available. Here, we developed a novel recombinant antigen derived from conserved regions of 56 kDa type-specific antigen (TSA56), a major outer membrane protein responsible for genetic heterogeneity and antigenicity, and evaluated it as a protective vaccine antigen. Our findings demonstrate that immunization with conserved blocks of TSA56 (cTSA56) not only provides protective immunity against lethal challenges with the homologous genotype, but also confers significantly better protection against heterologous genotypes than TSA56. Adoptive transfer of CD4+ or CD8+ T cells from immunized mice provided significantly enhanced protection against lethal challenge, whereas immune B cells failed to do so, indicating that cellular immunity against the conserved epitopes plays a protective role. Moreover, immunization with a 10-mer peptide mixture, screened from CD8+ T cell epitopes within the conserved region of TSA56, provided enhanced protection against lethal challenge with O. tsutsugamushi. Therefore, this novel recombinant antigen is a promising candidate for scrub typhus vaccine against a wide range of O. tsutsugamushi genotypes.
Collapse
Affiliation(s)
- Hong-Il Kim
- a Department of Microbiology and Immunology , Seoul National University College of Medicine , Seoul , Republic of Korea.,b Department of Biomedical Sciences , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Na-Young Ha
- a Department of Microbiology and Immunology , Seoul National University College of Medicine , Seoul , Republic of Korea.,b Department of Biomedical Sciences , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Gwanghun Kim
- a Department of Microbiology and Immunology , Seoul National University College of Medicine , Seoul , Republic of Korea.,b Department of Biomedical Sciences , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Chan-Ki Min
- a Department of Microbiology and Immunology , Seoul National University College of Medicine , Seoul , Republic of Korea.,b Department of Biomedical Sciences , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Yuri Kim
- a Department of Microbiology and Immunology , Seoul National University College of Medicine , Seoul , Republic of Korea.,b Department of Biomedical Sciences , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Nguyen Thi Hai Yen
- a Department of Microbiology and Immunology , Seoul National University College of Medicine , Seoul , Republic of Korea.,b Department of Biomedical Sciences , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Myung-Sik Choi
- a Department of Microbiology and Immunology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Nam-Hyuk Cho
- a Department of Microbiology and Immunology , Seoul National University College of Medicine , Seoul , Republic of Korea.,b Department of Biomedical Sciences , Seoul National University College of Medicine , Seoul , Republic of Korea.,c Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital , Seoul , Republic of Korea
| |
Collapse
|