1
|
Zhu Q, Xia F, Chen Z, Lin S, Zhang Q, Xue B, Dai W. Virulence and molecular epidemiological analysis of three human blood-borne Streptococcus suis. Heliyon 2024; 10:e39978. [PMID: 39553689 PMCID: PMC11566857 DOI: 10.1016/j.heliyon.2024.e39978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/10/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Objective To understand the virulence genes and molecular epidemiological characteristics of human-infected strains of Streptococcus suis in Rui'an, Zhejiang Province, from 2021 to 2022, and to provide a scientific basis for diagnosis, treatment, prevention, and control. Methods Three blood-borne strains of Streptococcus suis were analysed by morphological observation, identification, and drug sensitivity tests. We performed polymerase chain reaction (PCR) amplification of their main seven virulence factors and housekeeping genes. This was followed by virulence analysis and multilocus sequence typing. We analysed their relationships with local pathogens from previous years. Results Three Streptococcus suis strains were isolated from the blood samples of three patients. From these, the virulence genotypes demonstrated that the two strains were orf2+ and ef+/orf2+/sly+, respectively. The Multilocus sequence typing (MLST) typing results demonstrated that the two strains were ST25 and ST7, respectively. Conclusion The first isolation of ST25 Streptococcus suis in Rui'an was presumed to have a close affinity with the endemic strain in North America. The other strain was an ST7 clone, consistent with the endemic strain in Sichuan, and which may have originated from Sichuan. Virulence genotype analysis demonstrated that different virulence genes of the pathogens resulted in different clinical manifestations.
Collapse
Affiliation(s)
| | | | - Zhe Chen
- Department of Clinical Laboratory, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, 325200, Zhejiang, PR China
| | - Sen Lin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, 325200, Zhejiang, PR China
| | - Qing Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, 325200, Zhejiang, PR China
| | - Bingru Xue
- Department of Clinical Laboratory, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, 325200, Zhejiang, PR China
| | - Weisi Dai
- Department of Clinical Laboratory, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, 325200, Zhejiang, PR China
| |
Collapse
|
2
|
Li S, Chen T, Gao K, Yang YB, Qi B, Wang C, An T, Cai X, Wang S. Streptococcus suis Induces Macrophage M1 Polarization and Pyroptosis. Microorganisms 2024; 12:1879. [PMID: 39338553 PMCID: PMC11433784 DOI: 10.3390/microorganisms12091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus suis is an important bacterial pathogen that affects the global pig industry. The immunosuppressive nature of S. suis infection is recognized, and our previous research has confirmed thymus atrophy with a large number of necrotic cells. In this current work, we aimed to uncover the role of pyroptosis in cellular necrosis in thymic cells of S. suis-infected mice. Confocal microscopy revealed that S. suis activated the M1 phenotype and primed pyroptosis in the macrophages of atrophied thymus. Live cell imaging further confirmed that S. suis could induce porcine alveolar macrophage (PAM) pyroptosis in vitro, displaying cell swelling and forming large bubbles on the plasma membrane. Meanwhile, the levels of p-p38, p-extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) were increased, which indicated the mitogen-activated protein kinase (MAPK) and AKT pathways were also involved in the inflammation of S. suis-infected PAMs. Furthermore, RT-PCR revealed significant mRNA expression of pro-inflammatory mediators, including interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor (TNF)-α and chemokine CXCL8. The data indicated that the inflammation induced by S. suis was in parallel with pro-inflammatory activities of M1 macrophages, pyroptosis and MAPK and AKT pathways. Pyroptosis contributes to necrotic cells and thymocyte reduction in the atrophied thymus of mice.
Collapse
Affiliation(s)
- Siqi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Tianfeng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Kexin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Yong-Bo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Baojie Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin 150069, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| |
Collapse
|
3
|
Yu F, Dong C, Zhang Y, Che R, Xie C, Liu Y, Zhang Z, Li L, Chen X, Cai X, Wang G, Li Y. GrpE and ComD contribute to the adherence, biofilm formation, and pathogenicity of Streptococcus suis. Arch Microbiol 2023; 205:159. [PMID: 37005968 DOI: 10.1007/s00203-023-03503-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
Streptococcus suis is a major bacterial pathogen of swine and an emerging zoonotic agent that has to date resulted in substantial economic losses to the swine industry worldwide, and can cause persistent infection by forming biofilms. GrpE and histidine protein kinase ComD are important proteins implicated in the pathogenicity of S. suis, although whether they play roles in adhesion and biofilm formation has yet to be sufficiently clarified. In this study, we constructed grpE and comD deletion strains of S. suis by homologous recombination, and examined their cell adhesion and biofilm formation capacities compared with those of the wild-type strain. The pathogenicity of the grpE and comD deletion strains was evaluated using a mouse infection model, which revealed that compared with the wild-type, these deletion strains induced milder symptoms and lower bacteremia, as well as comparatively minor organ (brain, spleen, liver, and lung) lesions, in the infected mice. Moreover, the deletion of grpE and comD significantly reduced the pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) induction capacity of S. suis. Collectively, the findings of this study indicate that the GrpE and ComD proteins of Streptococcus suis play key roles in the adherence to PK-15 cells and the formation of biofilms, thereby contributing to the virulence of this pathogen.
Collapse
Affiliation(s)
- Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chunliu Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ruixiang Che
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163000, China
| | - Chunmei Xie
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhiyun Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lu Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Xueying Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150030, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150030, China.
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271000, China.
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Li S, Wang C, Tang YD, Qin L, Chen T, Wang S, Bai Y, Cai X, Wang S. Interaction between Porcine Alveolar Macrophage-Tang Cells and Streptococcus suis Strains of Different Virulence: Phagocytosis and Apoptosis. Microorganisms 2023; 11:microorganisms11010160. [PMID: 36677452 PMCID: PMC9863715 DOI: 10.3390/microorganisms11010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Streptococcus suis is an important swine bacterial pathogen that activates macrophages to secrete inflammatory cytokines. Primary porcine alveolar macrophages (PAMs) are inconvenient to obtain, but it is unknown whether immortalized PAM-Tang cells can replace them as a better cell model for the study of the interaction between S. suis and macrophages. In this study, the phagocytic integrity, polarization, and pro-inflammatory cytokine secretion of PAM-Tang cells were confirmed by live-cell imaging, electron microscopy, confocal microscopy, and ELISA. Interestingly, the S. suis serotype 9 avirulent strain W7119 induced higher levels of adhesion and pro-inflammatory cytokines in PAM-Tang cells than the S. suis serotype 2 virulent strain 700794. Prolonged incubation with S. suis caused more cytotoxic cell damage, and the virulent strain induced higher levels of cytotoxicity to PAM-Tang cells. The virulent strain also induced higher levels of apoptosis in PAM-Tang cells, as shown by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assay. In addition, it is the first report of virulent and avirulent S. suis inducing PAM-Tang polarization towards pro-inflammatory M1 macrophages and p53- and caspase-dependent apoptosis in PAMs. Taken together, this study contributes to a better understand of interactions between macrophages and S. suis isolates of different virulence, and confirms that PAM-Tang cells provide a long-term, renewable resource for investigating macrophage infections with bacteria.
Collapse
Affiliation(s)
- Siqi Li
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yan-Dong Tang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Qin
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Tianfeng Chen
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shanghui Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuanzhe Bai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xuehui Cai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Correspondence: (X.C.); (S.W.)
| | - Shujie Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence: (X.C.); (S.W.)
| |
Collapse
|
5
|
Wang S, Xu M, Yang K, Zhang Y, Li S, Tang YD, Wang J, Leng C, An T, Cai X. Streptococcus suis contributes to inguinal lymph node lesions in piglets after highly pathogenic porcine reproductive and respiratory syndrome virus infection. Front Microbiol 2023; 14:1159590. [PMID: 37180243 PMCID: PMC10172469 DOI: 10.3389/fmicb.2023.1159590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
The swine pathogens porcine reproductive and respiratory syndrome virus (PRRSV) and Streptococcus suis have both been reported to cause damage to the immune organs. Inguinal lymph node (ILN) injury has been reported in PRRSV-infected pigs with secondary S. suis infection, but not much is known about the mechanism. In this study, secondary S. suis infection after highly pathogenic (HP)-PRRSV infection caused more severe clinical symptoms, mortality, and ILN lesions. Histopathological lesions were seen in ILNs with a marked decrease in lymphocyte numbers. Terminal deoxynucleotidyl transferase (TdT)-mediated de-oxyuridine triphosphate (dUTP)-biotin nick end-labeling (TUNEL) assays revealed that HP-PRRSV strain HuN4 alone induced ILN apoptosis, but dual-infection with S. suis strain BM0806 induced greater levels of apoptosis. Besides, we found that some HP-PRRSV-infected cells underwent apoptosis. Furthermore, anti-caspase-3 antibody staining confirmed that ILN apoptosis was mainly induced by a caspase-dependent pathway. Pyroptosis was also observed in HP-PRRSV-infected cells, and there was more pyroptosis in piglets infected with HP-PRRSV alone compared with those with secondary S. suis infection, and HP-PRRSV-infected cells underwent pyroptosis. Altogether, this is the first report to identify pyroptosis in ILNs and which signaling pathway is related to ILN apoptosis in single or dual-infected piglets. These results contribute to a better understanding of the pathogenic mechanisms during secondary S. suis infection.
Collapse
Affiliation(s)
- Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
- *Correspondence: Shujie Wang,
| | - Min Xu
- Sinopharm Animal Health Corporation Ltd., Wuhan, China
| | - Kongbin Yang
- Neurosurgery Department, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Zhang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Siqi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinliang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Xuehui Cai,
| |
Collapse
|
6
|
Wang S, Wang G, Tang YD, Li S, Qin L, Wang M, Yang YB, Gottschalk M, Cai X. Streptococcus suis Serotype 2 Infection Induces Splenomegaly with Splenocyte Apoptosis. Microbiol Spectr 2022; 10:e0321022. [PMID: 36287014 PMCID: PMC9769541 DOI: 10.1128/spectrum.03210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/01/2022] [Indexed: 01/10/2023] Open
Abstract
Little is known about the damage to the important peripheral immune organ spleen caused by Streptococcus suis infection. In this study, we found that S. suis induced splenomegaly and lymphocyte disruption in spleens of mice. To explore the mechanism of splenic lesions induced by S. suis, we conducted further studies. The results showed that S. suis induced apoptosis in B cells, which is related to the cleavage of caspase-3 and caspase-8, but not the release of apoptosis-inducing factor (AIF). Thus, S. suis induced apoptosis in the spleen through caspase-dependent and AIF-independent pathways. Inflammation lesions induced in the spleen of infected mice were also investigated; we found macrophages increased in histopathological lesions of infected spleens from 12 h postinoculation to 7 days postinoculation (dpi), and the type of increased macrophages was M1 type by confocal microscopy, which can secrete proinflammatory cytokines. Meanwhile, inflammasome NLRP3 and caspase-1 were activated, and gasdermin D (GSDMD) was cleaved, which causes pyroptosis that may result in the release of numerous proinflammatory cytokines. What's more, the increase of p-JNK and p-p38 indicated that the MAPK pathway was also involved in the proinflammatory responses during S. suis infection, whereas anti-inflammatory responses in spleen were suppressed, with regulatory T cells (Tregs) upregulating at 1 dpi. Taken together, proinflammatory immune responses dominate in early infection, which induce splenomegaly and splenocyte apoptosis. This is the first report of mechanisms associated with S. suis-induced splenic lesions. IMPORTANCE Streptococcus suis serotype 2 is considered an emerging pathogen and represents a threat to humans and animals. The spleen is an important peripheral immune organ, and splenomegaly is a consequence of lesions and an important clinical indicator of S. suis infection. However, knowledge of the mechanisms underlying spleen lesions is still very limited. In the present work, we made the investigation to explain the phenomenon and the related immunomodulation in a mouse infection model. The obtained results show that inflammation contributes to splenomegaly, while apoptosis contributes to lymphocyte disruption in spleens. Related signaling pathways were discovered which have never been associated with S. suis-induced splenic injury. The new knowledge generated will help us better understand the mechanism of S. suis pathogenesis.
Collapse
Affiliation(s)
- Shujie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Gang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siqi Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Qin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Menghang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Bo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Jussiani GG, Março KS, Bertolo PHL, de Oliveira Vasconcelos R, Machado GF. Thymic changes due to leishmaniasis in dogs: An immunohistochemical study. Vet Immunol Immunopathol 2022; 247:110416. [DOI: 10.1016/j.vetimm.2022.110416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022]
|
8
|
Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front Immunol 2021; 12:652538. [PMID: 34113341 PMCID: PMC8186317 DOI: 10.3389/fimmu.2021.652538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingxin Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhengyu Qian
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
9
|
Zhang Y, Zhao J, Zhou BH, Tian EJ, Tian WS, Wang HW. iTRAQ-based quantitative proteomic analysis of low molybdenum inducing thymus atrophy and participating in immune deficiency-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112200. [PMID: 33862434 DOI: 10.1016/j.ecoenv.2021.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Molybdenum is a trace element with extremely uneven distribution in the environment. It constitutes the active sites of molybdenum enzymes that can catalyze redox reactions in almost all organisms. In this study, a mouse model with a low molybdenum diet was established to investigate the differential protein expressions in the thymus and the mechanism of molybdenum regulating thymocyte development. Results showed that the thymus evidently atrophied, and the weight and organ index of the thymus substantially decreased under the condition of low molybdenum (P < 0.01). A total of 274 differentially expressed proteins (DEPs) were screened through isobaric tag for relative and absolute quantification; amongst them, ribosomal proteins (38) were the most abundant. Bioinformatics analysis revealed that DEPs were mainly involved in protein metabolism (18%), nucleus (15%) and nucleic acid binding activity (17%), corresponding to biological process, cellular component and molecular function, respectively. Moreover, DEPs induced by low molybdenum were enriched in 94 pathways, of which typical maps including ribosome, oxidative phosphorylation and systemic lupus erythematosus. Flow cytometry analysis indicated the prominent imbalances of CD4+ and CD8+ cell ratios (P < 0.05, P < 0.01), suggesting the disordered development of T cell subsets. Overall, low molybdenum resulted in thymus atrophy by interfering with ribosomal protein expression and protein metabolism. This study provides a data platform for revealing the linkage between molybdenum and thymus-dependent immunity.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Er-Jie Tian
- Henan Key Laboratory of Environmental and Animal Product Safety Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Wei-Shun Tian
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan 54596, South Korea
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety Henan University of Science and Technology, Luoyang 471003, Henan, China.
| |
Collapse
|
10
|
Obradovic MR, Segura M, Segalés J, Gottschalk M. Review of the speculative role of co-infections in Streptococcus suis-associated diseases in pigs. Vet Res 2021; 52:49. [PMID: 33743838 PMCID: PMC7980725 DOI: 10.1186/s13567-021-00918-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus suis is one of the most important bacterial swine pathogens affecting post-weaned piglets, causing mainly meningitis, arthritis and sudden death. It not only results in severe economic losses but also raises concerns over animal welfare and antimicrobial resistance and remains an important zoonotic agent in some countries. The definition and diagnosis of S. suis-associated diseases can be complex. Should S. suis be considered a primary or secondary pathogen? The situation is further complicated when referring to respiratory disease, since the pathogen has historically been considered as a secondary pathogen within the porcine respiratory disease complex (PRDC). Is S. suis a respiratory or strictly systemic pathogen? S. suis is a normal inhabitant of the upper respiratory tract, and the presence of potentially virulent strains alone does not guarantee the appearance of clinical signs. Within this unclear context, it has been largely proposed that co-infection with some viral and bacterial pathogens can significantly influence the severity of S. suis-associated diseases and may be the key to understanding how the infection behaves in the field. In this review, we critically addressed studies reporting an epidemiological link (mixed infections or presence of more than one pathogen at the same time), as well as in vitro and in vivo studies of co-infection of S. suis with other pathogens and discussed their limitations and possibilities for improvement and proposed recommendations for future studies.
Collapse
Affiliation(s)
- Milan R Obradovic
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Mariela Segura
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Departament de Sanitat I Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Marcelo Gottschalk
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
11
|
Granadier D, Iovino L, Kinsella S, Dudakov JA. Dynamics of thymus function and T cell receptor repertoire breadth in health and disease. Semin Immunopathol 2021; 43:119-134. [PMID: 33608819 PMCID: PMC7894242 DOI: 10.1007/s00281-021-00840-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
T cell recognition of unknown antigens relies on the tremendous diversity of the T cell receptor (TCR) repertoire; generation of which can only occur in the thymus. TCR repertoire breadth is thus critical for not only coordinating the adaptive response against pathogens but also for mounting a response against malignancies. However, thymic function is exquisitely sensitive to negative stimuli, which can come in the form of acute insult, such as that caused by stress, infection, or common cancer therapies; or chronic damage such as the progressive decline in thymic function with age. Whether it be prolonged T cell deficiency after hematopoietic cell transplantation (HCT) or constriction in the breadth of the peripheral TCR repertoire with age; these insults result in poor adaptive immune responses. In this review, we will discuss the importance of thymic function for generation of the TCR repertoire and how acute and chronic thymic damage influences immune health. We will also discuss methods that are used to measure thymic function in patients and strategies that have been developed to boost thymic function.
Collapse
Affiliation(s)
- David Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Kinsella S, Dudakov JA. When the Damage Is Done: Injury and Repair in Thymus Function. Front Immunol 2020; 11:1745. [PMID: 32903477 PMCID: PMC7435010 DOI: 10.3389/fimmu.2020.01745] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration has been known for longer even than its primary function to generate T cells, however, the underlying mechanisms controlling the process have been largely unstudied. Although there is likely continual thymic involution and regeneration in response to stress and infection in otherwise healthy people, acute and profound thymic damage such as that caused by common cancer cytoreductive therapies or the conditioning regimes as part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency; precipitating high morbidity and mortality from opportunistic infections and may even facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age as a function of thymic involution; which even at steady state leads to reduced capacity to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is a real clinical need for strategies that can boost thymic function and enhance T cell immunity. One approach to the development of such therapies is to exploit the processes of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell reconstitution in clinical settings of immune depletion such as HCT. In this review, we will highlight recent work that has revealed the mechanisms by which the thymus is capable of repairing itself and how this knowledge is being used to develop novel therapies to boost immune function.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jarrod A. Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|