1
|
Jurado-Martín I, Tomás-Cortázar J, Hou Y, Sainz-Mejías M, Mysior MM, Sadonès O, Huebner J, Romero-Saavedra F, Simpson JC, Baugh JA, McClean S. Proteomic approach to identify host cell attachment proteins provides protective Pseudomonas aeruginosa vaccine antigen FtsZ. NPJ Vaccines 2024; 9:204. [PMID: 39468053 PMCID: PMC11519640 DOI: 10.1038/s41541-024-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes severe nosocomial infections in susceptible individuals due to the emergence of multidrug-resistant strains. There are no approved vaccines against P. aeruginosa infections nor candidates in active clinical development, highlighting the need for novel candidates and strategies. Using a cell-blot proteomic approach, we reproducibly identified 49 proteins involved in interactions with human lung epithelial cells across four P. aeruginosa strains. Among these were cell division protein FtsZ and outer membrane protein OpmH. Escherichia coli BL21 cells overexpressing recombinant FtsZ or rOpmH showed a 66- and 15-fold increased ability to attach to 16HBE14o- cells, further supporting their involvement in host cell attachment. Both antigens led to proliferation of NK and CD8+ cytotoxic T cells, significant increases in the production of IFN-γ, IL-17A, TNF and IL-4 in immunised mice and elicited strong antigen-specific serological IgG1 and IgG2c responses. Immunisation with FtsZ significantly reduced bacterial burden in the lungs by 1.9-log CFU and dissemination to spleen by 1.8-log CFU. The protective antigen candidate, FtsZ, would not have been identified by traditional approaches relying on either virulence mechanisms or sequence-based predictions, opening new avenues in the development of an anti-P. aeruginosa vaccine.
Collapse
Affiliation(s)
- Irene Jurado-Martín
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Yueran Hou
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maite Sainz-Mejías
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Margaritha M Mysior
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Océane Sadonès
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Johannes Huebner
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Disease, Hauner Children's Hospital, LMU, Munich, Germany
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - John A Baugh
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
- UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Varshith MR, Ghosh Dastidar R, Shrilaxmi MS, Bhattacharya R, Jha S, Choudhary S, Varny E, Carvalho RA, John L, Sundaramoorthy V, Smith CM, Damerla RR, Herai RH, Biswas SR, Lal PB, Mukhopadhyay C, Ghosh Dastidar S. Virulome and phylogenomic profiling of a novel Burkholderia pseudomallei strain from an Indian clinical isolate. Mol Genet Genomics 2024; 299:98. [PMID: 39441253 DOI: 10.1007/s00438-024-02188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Highly pathogenic Burkholderia pseudomallei is the causative agent of melioidosis, a neglected tropical disease endemic in Southeast Asian tropical region. This bacterium encompasses diverse virulence factors which further undergo dynamic gene-expression flux as it transits through distinct environmental niches within the host which may lead to manifestation of differential clinical symptoms. B. pseudomallei, is classified as a Tier 1 select agent in the United States and regarded as a risk group 3 organism in India with the potential to be used as bioweapon. Considering these facts, it is vital to uncover both physiological and genetic heterogeneity of B. pseudomallei, particularly to identify any novel virulence factors that may contribute to pathogenicity. B. pseudomallei strain CM000113 was isolated from a clinical case in India, characterized it for its physiological, biochemical, and prominently genetic traits through WGS. It has a type 2 morphotype with faster doubling time and high biofilm producing capacity as compared to Pseudomonas aeruginosa. The genome size is 7.3 Mbp and it is phylogenetically close to B. pseudomallei strain Mahidol 1106a and Burkholderia mallei Turkey 2. We observed genetic heterogeneity, as key virulence factors that were identified shows sequence dissimilarity with reference strains. Additionally, presence of genomic islands, harbouring two virulence factors, GmhA and GmhB2, associated with pathogenesis indicates possibility of horizontal gene transfer. These results emphasize the need for an extensive study focusing the genome of B. pseudomallei and its associated heterogeneity, to identify molecular biomarkers aiding to develop point-of-care diagnostic kits for early diagnosis of melioidosis.
Collapse
Affiliation(s)
- M R Varshith
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ranita Ghosh Dastidar
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - M S Shrilaxmi
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rajarshi Bhattacharya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Botany, Visva Bharati University, Santiniketan, India
| | - S Jha
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - S Choudhary
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - E Varny
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - R A Carvalho
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - L John
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geeelong, Australia
| | - V Sundaramoorthy
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geeelong, Australia
| | - C M Smith
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geeelong, Australia
| | - R R Damerla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - R H Herai
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - S R Biswas
- Department of Botany, Visva Bharati University, Santiniketan, India
| | - P B Lal
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Du M, Ren Y, Zhang Y, Li W, Yang H, Chu H, Zhao Y. CSEL-BGC: A Bioinformatics Framework Integrating Machine Learning for Defining the Biosynthetic Evolutionary Landscape of Uncharacterized Antibacterial Natural Products. Interdiscip Sci 2024:10.1007/s12539-024-00656-5. [PMID: 39348072 DOI: 10.1007/s12539-024-00656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
The sluggish pace of new antibacterial drug development reflects a vulnerability in the face of the current severe threat posed by bacterial resistance. Microbial natural products (NPs), as a reservoir of immense chemical potential, have emerged as the most promising avenue for the discovery of next generation antibacterial agent. Directly accessing the antibacterial activity of potential products derived from biosynthetic gene clusters (BGCs) would significantly expedite the process. To tackle this issue, we propose a CSEL-BGC framework that integrates machine learning (ML) techniques. This framework involves the development of a novel cascade-stacking ensemble learning (CSEL) model and the establishment of a groundbreaking model evaluation system. Based on this framework, we predict 6,666 BGCs with antibacterial activity from 3,468 complete bacterial genomes and elucidate a biosynthetic evolutionary landscape to reveal their antibacterial potential. This provides crucial insights for interpretating the synthesis and secretion mechanisms of unknown NPs.
Collapse
Affiliation(s)
- Minghui Du
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuxiang Ren
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongtao Yang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huiying Chu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Tsaplina O. The Balance between Protealysin and Its Substrate, the Outer Membrane Protein OmpX, Regulates Serratia proteamaculans Invasion. Int J Mol Sci 2024; 25:6159. [PMID: 38892348 PMCID: PMC11172720 DOI: 10.3390/ijms25116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Serratia are opportunistic bacteria, causing infections in plants, insects, animals and humans under certain conditions. The development of bacterial infection in the human body involves several stages of host-pathogen interaction, including entry into non-phagocytic cells to evade host immune cells. The facultative pathogen Serratia proteamaculans is capable of penetrating eukaryotic cells. These bacteria synthesize an actin-specific metalloprotease named protealysin. After transformation with a plasmid carrying the protealysin gene, noninvasive E. coli penetrate eukaryotic cells. This suggests that protealysin may play a key role in S. proteamaculans invasion. This review addresses the mechanisms underlying protealysin's involvement in bacterial invasion, highlighting the main findings as follows. Protealysin can be delivered into the eukaryotic cell by the type VI secretion system and/or by bacterial outer membrane vesicles. By cleaving actin in the host cell, protealysin can mediate the reversible actin rearrangements required for bacterial invasion. However, inactivation of the protealysin gene leads to an increase, rather than decrease, in the intensity of S. proteamaculans invasion. This indicates the presence of virulence factors among bacterial protealysin substrates. Indeed, protealysin cleaves the virulence factors, including the bacterial surface protein OmpX. OmpX increases the expression of the EGFR and β1 integrin, which are involved in S. proteamaculans invasion. It has been shown that an increase in the invasion of genetically modified S. proteamaculans may be the result of the accumulation of full-length OmpX on the bacterial surface, which is not cleaved by protealysin. Thus, the intensity of the S. proteamaculans invasion is determined by the balance between the active protealysin and its substrate OmpX.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
5
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Cocorullo M, Chiarelli LR, Stelitano G. Improving Protection to Prevent Bacterial Infections: Preliminary Applications of Reverse Vaccinology against the Main Cystic Fibrosis Pathogens. Vaccines (Basel) 2023; 11:1221. [PMID: 37515037 PMCID: PMC10384294 DOI: 10.3390/vaccines11071221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reverse vaccinology is a powerful tool that was recently used to develop vaccines starting from a pathogen genome. Some bacterial infections have the necessity to be prevented then treated. For example, individuals with chronic pulmonary diseases, such as Cystic Fibrosis, are prone to develop infections and biofilms in the thick mucus that covers their lungs, mainly caused by Burkholderia cepacia complex, Haemophilus influenzae, Mycobacterium abscessus complex, Pseudomonas aeruginosa and Staphylococcus aureus. These infections are complicated to treat and prevention remains the best strategy. Despite the availability of vaccines against some strains of those pathogens, it is necessary to improve the immunization of people with Cystic Fibrosis against all of them. An effective approach is to develop a broad-spectrum vaccine to utilize proteins that are well conserved across different species. In this context, reverse vaccinology, a method based on computational analysis of the genome of various microorganisms, appears as one of the most promising tools for the identification of putative targets for broad-spectrum vaccine development. This review provides an overview of the vaccines that are under development by reverse vaccinology against the aforementioned pathogens, as well as the progress made so far.
Collapse
Affiliation(s)
- Mario Cocorullo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
7
|
Irudal S, Scoffone VC, Trespidi G, Barbieri G, D'Amato M, Viglio S, Pizza M, Scarselli M, Riccardi G, Buroni S. Identification by Reverse Vaccinology of Three Virulence Factors in Burkholderia cenocepacia That May Represent Ideal Vaccine Antigens. Vaccines (Basel) 2023; 11:1039. [PMID: 37376428 DOI: 10.3390/vaccines11061039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The Burkholderia cepacia complex comprises environmental and clinical Gram-negative bacteria that infect particularly debilitated people, such as those with cystic fibrosis. Their high level of antibiotic resistance makes empirical treatments often ineffective, increasing the risk of worst outcomes and the diffusion of multi-drug resistance. However, the discovery of new antibiotics is not trivial, so an alternative can be the use of vaccination. Here, the reverse vaccinology approach has been used to identify antigen candidates, obtaining a short-list of 24 proteins. The localization and different aspects of virulence were investigated for three of them-BCAL1524, BCAM0949, and BCAS0335. The three antigens were localized in the outer membrane vesicles confirming that they are surface exposed. We showed that BCAL1524, a collagen-like protein, promotes bacteria auto-aggregation and plays an important role in virulence, in the Galleria mellonella model. BCAM0949, an extracellular lipase, mediates piperacillin resistance, biofilm formation in Luria Bertani and artificial sputum medium, rhamnolipid production, and swimming motility; its predicted lipolytic activity was also experimentally confirmed. BCAS0335, a trimeric adhesin, promotes minocycline resistance, biofilm organization in LB, and virulence in G. mellonella. Their important role in virulence necessitates further investigations to shed light on the usefulness of these proteins as antigen candidates.
Collapse
Affiliation(s)
- Samuele Irudal
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maura D'Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | | | | | - Giovanna Riccardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
8
|
Estevens R, Mil-Homens D, Fialho AM. In-Silico Analysis Highlights the Existence in Members of Burkholderia cepacia Complex of a New Class of Adhesins Possessing Collagen-like Domains. Microorganisms 2023; 11:1118. [PMID: 37317093 DOI: 10.3390/microorganisms11051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 06/16/2023] Open
Abstract
Burkholderia cenocepacia is a multi-drug-resistant lung pathogen. This species synthesizes various virulence factors, among which cell-surface components (adhesins) are critical for establishing the contact with host cells. This work in the first part focuses on the current knowledge about the adhesion molecules described in this species. In the second part, through in silico approaches, we perform a comprehensive analysis of a group of unique bacterial proteins possessing collagen-like domains (CLDs) that are strikingly overrepresented in the Burkholderia species, representing a new putative class of adhesins. We identified 75 CLD-containing proteins in Burkholderia cepacia complex (Bcc) members (Bcc-CLPs). The phylogenetic analysis of Bcc-CLPs revealed the evolution of the core domain denominated "Bacterial collagen-like, middle region". Our analysis remarkably shows that these proteins are formed by extensive sets of compositionally biased residues located within intrinsically disordered regions (IDR). Here, we discuss how IDR functions may increase their efficiency as adhesion factors. Finally, we provided an analysis of a set of five homologs identified in B. cenocepacia J2315. Thus, we propose the existence in Bcc of a new type of adhesion factors distinct from the described collagen-like proteins (CLPs) found in Gram-positive bacteria.
Collapse
Affiliation(s)
- Ricardo Estevens
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Dalila Mil-Homens
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Institute for Health and Bioeconomic (i4HB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Arsenio M Fialho
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Institute for Health and Bioeconomic (i4HB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
9
|
Valdebenito-Navarrete H, Fuentes-Barrera V, Smith CT, Salas-Burgos A, Zuniga FA, Gomez LA, García-Cancino A. Can Probiotics, Particularly Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A, Be Preventive Alternatives against SARS-CoV-2? BIOLOGY 2023; 12:biology12030384. [PMID: 36979076 PMCID: PMC10045641 DOI: 10.3390/biology12030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
COVID-19, an infection produced by the SARS-CoV-2 virus in humans, has rapidly spread to become a high-mortality pandemic. SARS-CoV-2 is a single-stranded RNA virus characterized by infecting epithelial cells of the intestine and lungs, binding to the ACE2 receptor present on epithelial cells. COVID-19 treatment is based on antivirals and antibiotics against symptomatology in addition to a successful preventive strategy based on vaccination. At this point, several variants of the virus have emerged, altering the effectiveness of treatments and thereby attracting attention to several alternative therapies, including immunobiotics, to cope with the problem. This review, based on articles, patents, and an in silico analysis, aims to address our present knowledge of the COVID-19 disease, its symptomatology, and the possible beneficial effects for patients if probiotics with the characteristics of immunobiotics are used to confront this disease. Moreover, two probiotic strains, L. fermentum UCO-979C and L. rhamnosus UCO-25A, with different effects demonstrated at our laboratory, are emphasized. The point of view of this review highlights the possible benefits of probiotics, particularly those associated with immunomodulation as well as the production of secondary metabolites, and their potential targets during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Héctor Valdebenito-Navarrete
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Victor Fuentes-Barrera
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Carlos T. Smith
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Alexis Salas-Burgos
- Department of Pharmacology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Felipe A. Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Leonardo A. Gomez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4070386, Chile
- Correspondence: ; Tel.: +56-41-2204144; Fax: +56-41-2245975
| |
Collapse
|
10
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
Quinn C, Tomás-Cortázar J, Ofioritse O, Cosgrave J, Purcell C, McAloon C, Frost S, McClean S. GlnH, a Novel Antigen That Offers Partial Protection against Verocytotoxigenic Escherichia coli Infection. Vaccines (Basel) 2023; 11:175. [PMID: 36680019 PMCID: PMC9863631 DOI: 10.3390/vaccines11010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Verotoxin-producing Escherichia coli (VTEC) causes zoonotic infections, with potentially devastating complications, and children under 5 years old are particularly susceptible. Antibiotic treatment is contraindicated, and due to the high proportion of infected children that suffer from severe and life-changing complications, there is an unmet need for a vaccine to prevent VTEC infections. Bacterial adhesins represent promising candidates for the successful development of a vaccine against VTEC. Using a proteomic approach to identify bacterial proteins interacting with human gastrointestinal epithelial Caco-2 and HT-29 cells, we identified eleven proteins by mass spectrometry. These included a glutamine-binding periplasmic protein, GlnH, a member of the ABC transporter family. The glnH gene was identified in 13 of the 15 bovine and all 5 human patient samples tested, suggesting that it is prevalent. We confirmed that GlnH is involved in the host cell attachment of an O157:H7 prototype E. coli strain to gastrointestinal cells in vitro. Recombinant GlnH was expressed and purified prior to the immunisation of mice. When alum was used as an adjuvant, GlnH was highly immunogenic, stimulating strong serological responses in immunised mice, and it resulted in a modest reduction in faecal shedding but did not reduce colonisation. GlnH immunisation with a T-cell-inducing adjuvant (SAS) also showed comparable antibody responses and an IgG1/IgG2a ratio suggestive of a mixed Th1/Th2 response but was partially protective, with a 1.5-log reduction in colonisation of the colon and caecum at 7 days relative to the adjuvant only (p = 0.0280). It is clear that future VTEC vaccine developments should consider the contribution of adjuvants in addition to antigens. Moreover, it is likely that a combined cellular and humoral response may prove more beneficial in providing protective interventions against VTEC.
Collapse
Affiliation(s)
- Conor Quinn
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
- APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, D18 DH5 Co. Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| | - Oritsejolomi Ofioritse
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Cosgrave
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Purcell
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanna Frost
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| |
Collapse
|
12
|
Gil-Marqués ML, Pachón J, Smani Y. iTRAQ-Based Quantitative Proteomic Analysis of Acinetobacter baumannii under Hypoxia and Normoxia Reveals the Role of OmpW as a Virulence Factor. Microbiol Spectr 2022; 10:e0232821. [PMID: 35234505 PMCID: PMC8941935 DOI: 10.1128/spectrum.02328-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii needs to adapt to hypoxia during infection. Understanding its proteome regulation during infection would allow us to determine new targets to develop novel treatments. iTRAQ proteomic analysis of A549 cell infection by the ATCC 17978 strain was performed. A total of 175 proteins were differentially expressed under hypoxia versus normoxia. We selected the hypoxia-downregulated protein OmpW to analyze its role as a virulence factor. The loss of OmpW decreased the adherence and invasion of A. baumannii in these host cells, without affecting its bacterial growth. Moreover, A549 cell viability with ΔOmpW infection was higher than that with the wild-type strain. ΔOmpW presented less biofilm formation. Finally, the minimum lethal dose required by the ΔOmpW mutant was higher than that of the wild-type strain in a murine peritoneal sepsis model, with lower bacterial loads in tissues and fluids. Therefore, OmpW seems to be a virulence factor necessary for A. baumannii pathogenesis. IMPORTANCE Acinetobacter baumannii causes infections that are very difficult to treat due to the high rate of resistance to most and sometimes all of the antimicrobials used in the clinical setting. There is an important need to develop new strategies to combat A. baumannii infections. One alternative could be blocking specific bacterial virulence factors that this pathogen needs to infect cells. Pathogens modulate their protein expression as a function of the environment, and several studies have reported that hypoxia occurs in a wide range of infections. Therefore, it would be interesting to determine the proteome of A. baumannii under hypoxia in order to find new virulence factors, such as the outer membrane protein OmpW, as potential targets for the design of novel therapies.
Collapse
Affiliation(s)
- María Luisa Gil-Marqués
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Medicine, University of Seville, Sevilla, Spain
| | - Younes Smani
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| |
Collapse
|
13
|
Dennehy R, Duggan N, Dignam S, McCormack S, Dillon E, Molony J, Romano M, Hou Y, Ardill L, Whelan MVX, Drulis‐Kawa Z, Ó'Cróinín T, Valvano MA, Berisio R, McClean S. Protein with negative surface charge distribution, Bnr1, shows characteristics of a DNA-mimic protein and may be involved in the adaptation of Burkholderia cenocepacia. Microbiologyopen 2022; 11:e1264. [PMID: 35212475 PMCID: PMC9060813 DOI: 10.1002/mbo3.1264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/14/2022] [Indexed: 11/11/2022] Open
Abstract
Adaptation of opportunistic pathogens to their host environment requires reprogramming of a vast array of genes to facilitate survival in the host. Burkholderia cenocepacia, a Gram-negative bacterium with a large genome of ∼8 Mb that colonizes environmental niches, is exquisitely adaptable to the hypoxic environment of the cystic fibrosis lung and survives in macrophages. We previously identified an immunoreactive acidic protein encoded on replicon 3, BCAS0292. Deletion of the BCAS0292 gene significantly altered the abundance of 979 proteins by 1.5-fold or more; 19 proteins became undetectable while 545 proteins showed ≥1.5-fold reduced abundance, suggesting the BCAS0292 protein is a global regulator. Moreover, the ∆BCAS0292 mutant showed a range of pleiotropic effects: virulence and host-cell attachment were reduced, antibiotic susceptibility was altered, and biofilm formation enhanced. Its growth and survival were impaired in 6% oxygen. In silico prediction of its three-dimensional structure revealed BCAS0292 presents a dimeric β-structure with a negative surface charge. The ΔBCAS0292 mutant displayed altered DNA supercoiling, implicated in global regulation of gene expression. Three proteins were identified in pull-downs with FLAG-tagged BCAS0292, including the Histone H1-like protein, HctB, which is recognized as a global transcriptional regulator. We propose that BCAS0292 protein, which we have named Burkholderia negatively surface-charged regulatory protein 1 (Bnr1), acts as a DNA-mimic and binds to DNA-binding proteins, altering DNA topology and regulating the expression of multiple genes, thereby enabling the adaptation of B. cenocepacia to highly diverse environments.
Collapse
Affiliation(s)
- Ruth Dennehy
- Centre of Microbial Host InteractionsInstitute of Technology TallaghtDublinIreland
| | - Niamh Duggan
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfield, DublinIreland
| | - Simon Dignam
- Centre of Microbial Host InteractionsInstitute of Technology TallaghtDublinIreland
| | - Sarah McCormack
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfield, DublinIreland
| | - Eugene Dillon
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfield, DublinIreland
| | - Jessica Molony
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Maria Romano
- Institute of Biostructures and BioimagingNational Research CouncilNaplesItaly
| | - Yueran Hou
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfield, DublinIreland
| | - Laura Ardill
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Matthew V. X. Whelan
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Zuzanna Drulis‐Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and MicrobiologyUniversity of WroclawWroclawPoland
| | - Tadhg Ó'Cróinín
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Miguel A. Valvano
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Rita Berisio
- Institute of Biostructures and BioimagingNational Research CouncilNaplesItaly
| | - Siobhán McClean
- Centre of Microbial Host InteractionsInstitute of Technology TallaghtDublinIreland
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfield, DublinIreland
| |
Collapse
|
14
|
Tomás-Cortázar J, Bossi L, Quinn C, Reynolds CJ, Butler DK, Corcoran N, Murchú MÓ, McMahon E, Singh M, Rongkard P, Anguita J, Blanco A, Dunachie SJ, Altmann D, Boyton RJ, Arnold J, Giltaire S, McClean S. BpOmpW Antigen Stimulates the Necessary Protective T-Cell Responses Against Melioidosis. Front Immunol 2021; 12:767359. [PMID: 34966388 PMCID: PMC8710444 DOI: 10.3389/fimmu.2021.767359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Melioidosis is a potentially fatal bacterial disease caused by Burkholderia pseudomallei and is estimated to cause 89,000 deaths per year in endemic areas of Southeast Asia and Northern Australia. People with diabetes mellitus are most at risk of melioidosis, with a 12-fold increased susceptibility for severe disease. Interferon gamma (IFN-γ) responses from CD4 and CD8 T cells, but also from natural killer (NK) and natural killer T (NKT) cells, are necessary to eliminate the pathogen. We previously reported that immunization with B. pseudomallei OmpW (BpOmpW antigen) protected mice from lethal B. pseudomallei challenge for up to 81 days. Elucidating the immune correlates of protection of the protective BpOmpW vaccine is an essential step prior to clinical trials. Thus, we immunized either non-insulin-resistant C57BL/6J mice or an insulin-resistant C57BL/6J mouse model of type 2 diabetes (T2D) with a single dose of BpOmpW. BpOmpW induced strong antibody responses, stimulated effector CD4+ and CD8+ T cells and CD4+ CD25+ Foxp3+ regulatory T cells, and produced higher IFN-γ responses in CD4+, CD8+, NK, and NKT cells in non-insulin-resistant mice. The T-cell responses of insulin-resistant mice to BpOmpW were comparable to those of non-insulin-resistant mice. In addition, as a precursor to its evaluation in human studies, humanized HLA-DR and HLA-DQ (human leukocyte antigen DR and DQ isotypes, respectively) transgenic mice elicited IFN-γ recall responses in an enzyme-linked immune absorbent spot (ELISpot)-based study. Moreover, human donor peripheral blood mononuclear cells (PBMCs) exposed to BpOmpW for 7 days showed T-cell proliferation. Finally, plasma from melioidosis survivors with diabetes recognized our BpOmpW vaccine antigen. Overall, the range of approaches used strongly indicated that BpOmpW elicits the necessary immune responses to combat melioidosis and bring this vaccine closer to clinical trials.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/immunology
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Burkholderia pseudomallei/immunology
- Burkholderia pseudomallei/metabolism
- Burkholderia pseudomallei/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/microbiology
- Cells, Cultured
- Diabetes Mellitus, Type 2/immunology
- Humans
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Male
- Melioidosis/immunology
- Melioidosis/microbiology
- Melioidosis/prevention & control
- Mice, Inbred C57BL
- Mice, Transgenic
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/microbiology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/microbiology
- Mice
Collapse
Affiliation(s)
- Julen Tomás-Cortázar
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Lorenzo Bossi
- Immunxperts SA, a Nexelis Company, Gosselies, Belgium
| | - Conor Quinn
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Catherine J. Reynolds
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - David K. Butler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Niamh Corcoran
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Maitiú Ó Murchú
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Eve McMahon
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Brunswick, Germany
| | - Patpong Rongkard
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford Centre for Global Health Research, University of Oxford, Oxford, United Kingdom
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Lab, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alfonso Blanco
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Oxford Centre for Global Health Research, University of Oxford, Oxford, United Kingdom
| | - Daniel Altmann
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Rosemary J. Boyton
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Johan Arnold
- Immunxperts SA, a Nexelis Company, Gosselies, Belgium
| | | | - Siobhán McClean
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Grund ME, Kramarska E, Choi SJ, McNitt DH, Klimko CP, Rill NO, Dankmeyer JL, Shoe JL, Hunter M, Fetterer DP, Hedrick ZM, Velez I, Biryukov SS, Cote CK, Berisio R, Lukomski S. Predictive and Experimental Immunogenicity of Burkholderia Collagen-like Protein 8-Derived Antigens. Vaccines (Basel) 2021; 9:vaccines9111219. [PMID: 34835150 PMCID: PMC8621890 DOI: 10.3390/vaccines9111219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Burkholderia pseudomallei is an infectious bacterium of clinical and biodefense concern, and is the causative agent of melioidosis. The mortality rate can reach up to 50% and affects 165,000 people per year; however, there is currently no vaccine available. In this study, we examine the antigen-specific immune response to a vaccine formulated with antigens derived from an outer membrane protein in B. pseudomallei, Bucl8. Here, we employed a number of bioinformatic tools to predict Bucl8-derived epitopes that are non-allergenic and non-toxic, but would elicit an immune response. From these data, we formulated a vaccine based on two extracellular components of Bucl8, the β-barrel loops and extended collagen and non-collagen domains. Outbred CD-1 mice were immunized with vaccine formulations—composed of recombinant proteins or conjugated synthetic peptides with adjuvant—to assess the antigen-specific immune responses in mouse sera and lymphoid organs. We found that mice vaccinated with either Bucl8-derived components generated a robust TH2-skewed antibody response when antigen was combined with the adjuvant AddaVax, while the TH1 response was limited. Mice immunized with synthetic loop peptides had a stronger, more consistent antibody response than recombinant protein antigens, based on higher IgG titers and recognition of bacteria. We then compared peptide-based vaccines in an established C57BL/6 inbred mouse model and observed a similar TH2-skewed response. The resulting formulations will be applied in future studies examining the protection of Bucl8-derived vaccines.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.); (D.H.M.)
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, National Research Council (CNR-IBB), 80134 Naples, Italy; (E.K.); (R.B.)
| | - Soo Jeon Choi
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.); (D.H.M.)
| | - Dudley H. McNitt
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.); (D.H.M.)
| | - Christopher P. Klimko
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Nathaniel O. Rill
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Jennifer L. Dankmeyer
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Jennifer L. Shoe
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Melissa Hunter
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - David P. Fetterer
- Biostatistics Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA;
| | - Zander M. Hedrick
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Ivan Velez
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Sergei S. Biryukov
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA; (C.P.K.); (N.O.R.); (J.L.D.); (J.L.S.); (M.H.); (Z.M.H.); (I.V.); (S.S.B.); (C.K.C.)
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council (CNR-IBB), 80134 Naples, Italy; (E.K.); (R.B.)
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.); (D.H.M.)
- Correspondence:
| |
Collapse
|
16
|
Scoffone VC, Trespidi G, Barbieri G, Irudal S, Perrin E, Buroni S. Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens. Antibiotics (Basel) 2021; 10:863. [PMID: 34356783 PMCID: PMC8300704 DOI: 10.3390/antibiotics10070863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
Drug resistance represents a great concern among people with cystic fibrosis (CF), due to the recurrent and prolonged antibiotic therapy they should often undergo. Among Multi Drug Resistance (MDR) determinants, Resistance-Nodulation-cell Division (RND) efflux pumps have been reported as the main contributors, due to their ability to extrude a wide variety of molecules out of the bacterial cell. In this review, we summarize the principal RND efflux pump families described in CF pathogens, focusing on the main Gram-negative bacterial species (Pseudomonas aeruginosa, Burkholderia cenocepacia, Achromobacter xylosoxidans, Stenotrophomonas maltophilia) for which a predominant role of RND pumps has been associated to MDR phenotypes.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Elena Perrin
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| |
Collapse
|
17
|
Sousa SA, Seixas AMM, Marques JMM, Leitão JH. Immunization and Immunotherapy Approaches against Pseudomonas aeruginosa and Burkholderia cepacia Complex Infections. Vaccines (Basel) 2021; 9:vaccines9060670. [PMID: 34207253 PMCID: PMC8234409 DOI: 10.3390/vaccines9060670] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Human infections caused by the opportunist pathogens Burkholderia cepacia complex and Pseudomonas aeruginosa are of particular concern due to their severity, their multiple antibiotic resistance, and the limited eradication efficiency of the current available treatments. New therapeutic options have been pursued, being vaccination strategies to prevent or limit these infections as a rational approach to tackle these infections. In this review, immunization and immunotherapy approaches currently available and under study against these bacterial pathogens is reviewed. Ongoing active and passive immunization clinical trials against P. aeruginosa infections is also reviewed. Novel identified bacterial targets and their possible exploitation for the development of immunization and immunotherapy strategies against P. aeruginosa and B. cepacia complex and infections are also presented and discussed.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| | - António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joana M. M. Marques
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| |
Collapse
|
18
|
Schijns V, Majhen D, van der Ley P, Thakur A, Summerfield A, Berisio R, Nativi C, Fernández-Tejada A, Alvarez-Dominguez C, Gizurarson S, Zamyatina A, Molinaro A, Rosano C, Jakopin Ž, Gursel I, McClean S. Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation. Pharmaceutics 2021; 13:501. [PMID: 33917629 PMCID: PMC8067490 DOI: 10.3390/pharmaceutics13040501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/21/2023] Open
Abstract
Vaccines are the most effective medical intervention due to their continual success in preventing infections and improving mortality worldwide. Early vaccines were developed empirically however, rational design of vaccines can allow us to optimise their efficacy, by tailoring the immune response. Establishing the immune correlates of protection greatly informs the rational design of vaccines. This facilitates the selection of the best vaccine antigens and the most appropriate vaccine adjuvant to generate optimal memory immune T cell and B cell responses. This review outlines the range of vaccine types that are currently authorised and those under development. We outline the optimal immunological correlates of protection that can be targeted. Finally we review approaches to rational antigen selection and rational vaccine adjuvant design. Harnessing current knowledge on protective immune responses in combination with critical vaccine components is imperative to the prevention of future life-threatening diseases.
Collapse
Affiliation(s)
- Virgil Schijns
- Intravacc, Institute for Translational Vaccinology (Intravacc), Utrecht Science Park, 3721 MA Bilthoven, The Netherlands;
- Epitopoietic Research Corporation (ERC), 5374 RE Schaijk, The Netherlands
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Instiute, HR-10000 Zagreb, Croatia;
| | - Peter van der Ley
- Intravacc, Institute for Translational Vaccinology (Intravacc), Utrecht Science Park, 3721 MA Bilthoven, The Netherlands;
| | - Aneesh Thakur
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhausern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, I-80134 Naples, Italy;
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Biscay Science and Technology Park, 48160 Derio-Bilbao, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Carmen Alvarez-Dominguez
- Facultativo en plantilla (Research Faculty), Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, University of Iceland, 107 Reykjavik, Iceland;
- Department of Pharmacy, College of Medicine, University of Malawi, Blantyre 3, Malawi
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, I-80126 Napoli, Italy;
- Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Policlinico San Martino, 16132 Genova-1, Italy;
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubiljana, Slovenia;
| | - Ihsan Gursel
- Molecular Biology and Genetics Department, Science Faculty, Bilkent University, Bilkent, 06800 Ankara, Turkey;
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
19
|
Pimenta AI, Bernardes N, Alves MM, Mil-Homens D, Fialho AM. Burkholderia cenocepacia transcriptome during the early contacts with giant plasma membrane vesicles derived from live bronchial epithelial cells. Sci Rep 2021; 11:5624. [PMID: 33707642 PMCID: PMC7970998 DOI: 10.1038/s41598-021-85222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Burkholderia cenocepacia is known for its capacity of adherence and interaction with the host, causing severe opportunistic lung infections in cystic fibrosis patients. In this work we produced Giant Plasma Membrane Vesicles (GPMVs) from a bronchial epithelial cell line and validated their use as a cell-like alternative to investigate the steps involved in the adhesion process of B. cenocepacia. RNA-sequencing was performed and the analysis of the B. cenocepacia K56-2 transcriptome after the first contacts with the surface of host cells allowed the recognition of genes implicated in bacterial adaptation and virulence-associated functions. The sensing of host membranes led to a transcriptional shift that caused a cascade of metabolic and physiological adaptations to the host specific environment. Many of the differentially expressed genes encode proteins related with central metabolic pathways, transport systems, cellular processes, and virulence traits. The understanding of the changes in gene expression that occur in the early steps of infection can uncover new proteins implicated in B. cenocepacia-host cell adhesion, against which new blocking agents could be designed to control the progression of the infectious process.
Collapse
Affiliation(s)
- Andreia I. Pimenta
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Marta M. Alves
- grid.9983.b0000 0001 2181 4263CQE Instituto Superior Técnico, Departamento de Engenharia Química, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Arsenio M. Fialho
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal ,grid.9983.b0000 0001 2181 4263Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
20
|
Grund ME, Choi Soo J, Cote CK, Berisio R, Lukomski S. Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines. Cells 2021; 10:cells10030495. [PMID: 33668922 PMCID: PMC7996558 DOI: 10.3390/cells10030495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing antimicrobial resistance due to misuse and overuse of antimicrobials, as well as a lack of new and innovative antibiotics in development has become an alarming global threat. Preventative therapeutics, like vaccines, are combative measures that aim to stop infections at the source, thereby decreasing the overall use of antibiotics. Infections due to Gram-negative pathogens pose a significant treatment challenge because of substantial multidrug resistance that is acquired and spread throughout the bacterial population. Burkholderia spp. are Gram-negative intrinsically resistant bacteria that are responsible for environmental and nosocomial infections. The Burkholderia cepacia complex are respiratory pathogens that primarily infect immunocompromised and cystic fibrosis patients, and are acquired through contaminated products and equipment, or via patient-to-patient transmission. The Burkholderia pseudomallei complex causes percutaneous wound, cardiovascular, and respiratory infections. Transmission occurs through direct exposure to contaminated water, water-vapors, or soil, leading to the human disease melioidosis, or the equine disease glanders. Currently there is no licensed vaccine against any Burkholderia pathogen. This review will discuss Burkholderia vaccine candidates derived from outer membrane proteins, OmpA, OmpW, Omp85, and Bucl8, encompassing their structures, conservation, and vaccine formulation.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Jeon Choi Soo
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA;
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council (CNR-IBB), 80145 Naples, Italy;
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
- Correspondence: ; Tel.: +1-304-293-6405
| |
Collapse
|
21
|
Draft Genome Sequence of the Phosphate-Solubilizing Rhizobacterium Burkholderia pseudomultivorans Strain MPSB1, Isolated from a Copper Mined-Out Site. Microbiol Resour Announc 2021; 10:10/1/e01304-20. [PMID: 33414315 PMCID: PMC8407738 DOI: 10.1128/mra.01304-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Burkholderia pseudomultivorans MPSB1 was isolated from a copper mined-out soil sample collected from Mogpog, Marinduque, Philippines. Here, we report the draft genome sequence with predicted gene inventories supporting rhizosphere bioremediation, such as heavy metal tolerance, phosphate solubilization, and siderophore production. Burkholderia pseudomultivorans MPSB1 was isolated from a copper mined-out soil sample collected from Mogpog, Marinduque, Philippines. Here, we report the draft genome sequence with predicted gene inventories supporting rhizosphere bioremediation, such as heavy metal tolerance, phosphate solubilization, and siderophore production.
Collapse
|
22
|
Wang G, Zarodkiewicz P, Valvano MA. Current Advances in Burkholderia Vaccines Development. Cells 2020; 9:E2671. [PMID: 33322641 PMCID: PMC7762980 DOI: 10.3390/cells9122671] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Burkholderia includes a wide range of Gram-negative bacterial species some of which are pathogenic to humans and other vertebrates. The most pathogenic species are Burkholderia mallei, Burkholderia pseudomallei, and the members of the Burkholderia cepacia complex (Bcc). B. mallei and B. pseudomallei, the cause of glanders and melioidosis, respectively, are considered potential bioweapons. The Bcc comprises a subset of Burkholderia species associated with respiratory infections in people with chronic granulomatous disease and cystic fibrosis. Antimicrobial treatment of Burkholderia infections is difficult due to the intrinsic multidrug antibiotic resistance of these bacteria; prophylactic vaccines provide an attractive alternative to counteract these infections. Although commercial vaccines against Burkholderia infections are still unavailable, substantial progress has been made over recent years in the development of vaccines against B. pseudomallei and B. mallei. This review critically discusses the current advances in vaccine development against B. mallei, B. pseudomallei, and the Bcc.
Collapse
Affiliation(s)
| | | | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.W.); (P.Z.)
| |
Collapse
|
23
|
Phenotypic characterization of trimeric autotransporter adhesin-defective bcaC mutant of Burkholderia cenocepacia: cross-talk towards the histidine kinase BCAM0218. Microbes Infect 2020; 22:457-466. [DOI: 10.1016/j.micinf.2020.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
|
24
|
Sousa SA, Seixas AM, Mandal M, Rodríguez-Ortega MJ, Leitão JH. Characterization of the Burkholderia cenocepacia J2315 Surface-Exposed Immunoproteome. Vaccines (Basel) 2020; 8:vaccines8030509. [PMID: 32899969 PMCID: PMC7565204 DOI: 10.3390/vaccines8030509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Infections by the Burkholderia cepacia complex (Bcc) remain seriously life threatening to cystic fibrosis (CF) patients, and no effective eradication is available. A vaccine to protect patients against Bcc infections is a highly attractive therapeutic option, but none is available. A strategy combining the bioinformatics identification of putative surface-exposed proteins with an experimental approach encompassing the “shaving” of surface-exposed proteins with trypsin followed by peptide identification by liquid chromatography and mass spectrometry is here reported. The methodology allowed the bioinformatics identification of 263 potentially surface-exposed proteins, 16 of them also experimentally identified by the “shaving” approach. Of the proteins identified, 143 have a high probability of containing B-cell epitopes that are surface-exposed. The immunogenicity of three of these proteins was demonstrated using serum samples from Bcc-infected CF patients and Western blotting, validating the usefulness of this methodology in identifying potentially immunogenic surface-exposed proteins that might be used for the development of Bcc-protective vaccines.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-2184-19986 (S.A.S.); +351-2184-17688 (J.H.L.)
| | - António M.M. Seixas
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
| | - Manoj Mandal
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
| | | | - Jorge H. Leitão
- iBB–Institute for Bioengineering and Biosciences, 1049-001 Lisbon, Portugal; (A.M.M.S.); (M.M.)
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-2184-19986 (S.A.S.); +351-2184-17688 (J.H.L.)
| |
Collapse
|
25
|
Gétaz M, Puławska J, Smits TH, Pothier JF. Host-Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × ananassa Investigated with a Dual RNA-Seq Analysis. Microorganisms 2020; 8:E1253. [PMID: 32824783 PMCID: PMC7465820 DOI: 10.3390/microorganisms8081253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022] Open
Abstract
Strawberry is economically important and widely grown, but susceptible to a large variety of phytopathogenic organisms. Among them, Xanthomonas fragariae is a quarantine bacterial pathogen threatening strawberry productions by causing angular leaf spots. Using whole transcriptome sequencing, the gene expression of both plant and bacteria in planta was analyzed at two time points, 12 and 29 days post inoculation, in order to compare the pathogen and host response between the stages of early visible and of well-developed symptoms. Among 28,588 known genes in strawberry and 4046 known genes in X. fragariae expressed at both time points, a total of 361 plant and 144 bacterial genes were significantly differentially expressed, respectively. The identified higher expressed genes in the plants were pathogen-associated molecular pattern receptors and pathogenesis-related thaumatin encoding genes, whereas the more expressed early genes were related to chloroplast metabolism as well as photosynthesis related coding genes. Most X. fragariae genes involved in host interaction, recognition, and pathogenesis were lower expressed at late-phase infection. This study gives a first insight into the interaction of X. fragariae with its host. The strawberry plant changed gene expression in order to consistently adapt its metabolism with the progression of infection.
Collapse
Affiliation(s)
- Michael Gétaz
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; (M.G.); (T.H.S.)
| | - Joanna Puławska
- Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland;
| | - Theo H.M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; (M.G.); (T.H.S.)
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; (M.G.); (T.H.S.)
| |
Collapse
|
26
|
Tsaplina O, Demidyuk I, Artamonova T, Khodorkovsky M, Khaitlina S. Cleavage of the outer membrane protein OmpX by protealysin regulates
Serratia proteamaculans
invasion. FEBS Lett 2020; 594:3095-3107. [DOI: 10.1002/1873-3468.13897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Tatiana Artamonova
- Peter the Great St. Petersburg Polytechnic University Saint‐Petersburg Russia
| | | | | |
Collapse
|
27
|
Männle D, McKinnie SMK, Mantri SS, Steinke K, Lu Z, Moore BS, Ziemert N, Kaysser L. Comparative Genomics and Metabolomics in the Genus Nocardia. mSystems 2020; 5:e00125-20. [PMID: 32487740 PMCID: PMC7413640 DOI: 10.1128/msystems.00125-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/13/2020] [Indexed: 01/22/2023] Open
Abstract
Using automated genome analysis tools, it is often unclear to what degree genetic variability in homologous biosynthetic pathways relates to structural variation. This hampers strain prioritization and compound identification and can lead to overinterpretation of chemical diversity. Here, we assessed the metabolic potential of Nocardia, an underinvestigated actinobacterial genus that is known to comprise opportunistic human pathogens. Our analysis revealed a plethora of putative biosynthetic gene clusters of various classes, including polyketide, nonribosomal peptide, and terpenoid pathways. Furthermore, we used the highly conserved biosynthetic pathway for nocobactin-like siderophores to investigate how gene cluster differences correlate to structural differences in the produced compounds. Sequence similarity networks generated by BiG-SCAPE (Biosynthetic Gene Similarity Clustering and Prospecting Engine) showed the presence of several distinct gene cluster families. Metabolic profiling of selected Nocardia strains using liquid chromatography-mass spectrometry (LC-MS) metabolomics data, nuclear magnetic resonance (NMR) spectroscopy, and GNPS (Global Natural Product Social molecular networking) revealed that nocobactin-like biosynthetic gene cluster (BGC) families above a BiG-SCAPE threshold of 70% can be assigned to distinct structural types of nocobactin-like siderophores.IMPORTANCE Our work emphasizes that Nocardia represent a prolific source for natural products rivaling better-characterized genera such as Streptomyces or Amycolatopsis Furthermore, we showed that large-scale analysis of biosynthetic gene clusters using similarity networks with high stringency allows the distinction and prediction of natural product structural variations. This will facilitate future genomics-driven drug discovery campaigns.
Collapse
Affiliation(s)
- Daniel Männle
- Pharmaceutical Biology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Shaun M K McKinnie
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Shrikant S Mantri
- German Centre for Infection Research (DZIF), Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Katharina Steinke
- German Centre for Infection Research (DZIF), Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Zeyin Lu
- Pharmaceutical Biology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Nadine Ziemert
- German Centre for Infection Research (DZIF), Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Leonard Kaysser
- Pharmaceutical Biology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|
28
|
Scoffone VC, Barbieri G, Buroni S, Scarselli M, Pizza M, Rappuoli R, Riccardi G. Vaccines to Overcome Antibiotic Resistance: The Challenge of Burkholderia cenocepacia. Trends Microbiol 2020; 28:315-326. [DOI: 10.1016/j.tim.2019.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022]
|
29
|
Pimenta AI, Mil‐Homens D, Fialho AM. Burkholderia cenocepacia-host cell contact controls the transcription activity of the trimeric autotransporter adhesin BCAM2418 gene. Microbiologyopen 2020; 9:e998. [PMID: 32097539 PMCID: PMC7142374 DOI: 10.1002/mbo3.998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/11/2022] Open
Abstract
Cell-to-cell early contact between pathogens and their host cells is required for the establishment of many infections. Among various surface factors produced by bacteria that allow an organism to become established in a host, the class of adhesins is a primary determinant. Burkholderia cenocepacia adheres to the respiratory epithelium of cystic fibrosis patients and causes chronic inflammation and disease. Cell-to-cell contacts are promoted by various kinds of adhesins, including trimeric autotransporter adhesins (TAAs). We observed that among the 7 TAA genes found in the B. cenocepacia K56-2 genome, two of them (BCAM2418 and BCAS0236) express higher levels of mRNA following physical contact with host cells. Further analysis revealed that the B. cenocepacia K56-2 BCAM2418 gene shows an on-off switch after an initial colonization period, exhibits a strong expression dependent on the host cell type, and enhances its function on cell adhesion. Furthermore, our analysis revealed that adhesion to mucin-coated surfaces dramatically increases the expression levels of BCAM2418. Abrogation of mucin O-glycans turns BCAM2418 gene expression off and impairs bacterial adherence. Overall, our findings suggest that glycosylated extracellular components of host membrane might be a binding site for B. cenocepacia and a signal for the differential expression of the TAA gene BCAM2418.
Collapse
Affiliation(s)
- Andreia I. Pimenta
- iBB‐Institute for Bioengineering and BiosciencesInstituto Superior Técnico, University of LisbonLisbonPortugal
| | - Dalila Mil‐Homens
- iBB‐Institute for Bioengineering and BiosciencesInstituto Superior Técnico, University of LisbonLisbonPortugal
| | - Arsenio M. Fialho
- iBB‐Institute for Bioengineering and BiosciencesInstituto Superior Técnico, University of LisbonLisbonPortugal
- Department of BioengineeringInstituto Superior TécnicoUniversity of LisbonLisbonPortugal
| |
Collapse
|
30
|
Paulsson M, Su YC, Ringwood T, Uddén F, Riesbeck K. Pseudomonas aeruginosa uses multiple receptors for adherence to laminin during infection of the respiratory tract and skin wounds. Sci Rep 2019; 9:18168. [PMID: 31796854 PMCID: PMC6890786 DOI: 10.1038/s41598-019-54622-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa efficiently adheres to human tissues, including the lungs and skin, causing infections that are difficult to treat. Laminin is a main component of the extracellular matrix, and in this study we defined bacterial laminin receptors on P. aeruginosa. Persistent clinical P. aeruginosa isolates from patients with cystic fibrosis, wounds or catheter-related urinary tract infections bound more laminin compared to blood isolates. Laminin receptors in the outer membrane were revealed by 2D-immunblotting, and the specificities of interactions were confirmed with ELISA and biolayer interferometry. Four new high-affinity laminin receptors were identified in the outer membrane; EstA, OprD, OprG and PA3923. Mutated bacteria devoid of these receptors adhered poorly to immobilized laminin. All bacterial receptors bound to the heparin-binding domains on LG4 and LG5 of the laminin alpha chain as assessed with truncated laminin fragments, transmission electron microscopy and inhibition by heparin. In conclusion, P. aeruginosa binds laminin via multiple surface receptors, and isolates from lungs of cystic fibrosis patients bound significantly more laminin compared to bacteria isolated from the skin and urine. Since laminin is abundant in both the lungs and skin, we suggest that laminin binding is an important mechanism in P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Magnus Paulsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02, Malmö, Sweden.,Division for Infectious Diseases, Skåne University Hospital, Lund, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02, Malmö, Sweden
| | - Tamara Ringwood
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02, Malmö, Sweden
| | - Fabian Uddén
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02, Malmö, Sweden.
| |
Collapse
|
31
|
Sujitha S, Vishnu US, Karthikeyan R, Sankarasubramanian J, Gunasekaran P, Rajendhran J. Genome Investigation of a Cariogenic Pathogen with Implications in Cardiovascular Diseases. Indian J Microbiol 2019; 59:451-459. [PMID: 31762508 DOI: 10.1007/s12088-019-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022] Open
Abstract
The proportion of people suffering from cardiovascular diseases has risen by 34% in the last 15 years in India. Cardiomyopathy is among the many forms of CVD s present. Infection of heart muscles is the suspected etiological agent for the same. Oral pathogens gaining entry into the bloodstream are responsible for such infections. Streptococcus mutans is an oral pathogen with implications in cardiovascular diseases. Previous studies have shown certain strains of S. mutans are found predominantly within atherosclerotic plaques and extirpated valves. To decipher the genetic differences responsible for endothelial cell invasion, we have sequenced the genome of Streptococcus mutans B14. Pan-genome analysis, search for adhesion proteins through a special algorithm, and protein-protein interactions search through HPIDB have been done. Pan-genome analysis of 187 whole genomes, assemblies revealed 6965 genes in total and 918 genes forming the core gene cluster. Adhesion to the endothelial cell is a critical virulence factor distinguishing virulent and non-virulent strains. Overall, 4% of the total proteins in S. mutans B14 were categorized as adhesion proteins. Protein-protein interaction between putative adhesion proteins and Human extracellular matrix components was predicted, revealing novel interactions. A conserved gene catalyzing the synthesis of branched-chain amino acids in S. mutans B14 shows possible interaction with isoforms of cathepsin protein of the ECM. This genome sequence analysis indicates towards other proteins in the S. mutans genome, which might have a specific role to play in host cell interaction.
Collapse
Affiliation(s)
- Srinivasan Sujitha
- 1Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| | - Udayakumar S Vishnu
- 1Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| | - Raman Karthikeyan
- 1Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| | - Jagadesan Sankarasubramanian
- 1Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| | | | - Jeyaprakash Rajendhran
- 1Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021 India
| |
Collapse
|
32
|
Huang L, Zhang Y, He R, Zuo Z, Luo Z, Xu W, Yan Q. Phenotypic characterization, virulence, and immunogenicity of Pseudomonas plecoglossicida rpoE knock-down strain. FISH & SHELLFISH IMMUNOLOGY 2019; 87:772-777. [PMID: 30776544 DOI: 10.1016/j.fsi.2019.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Pseudomonas plecoglossicida, a temperature dependent bacterial pathogen in fish, expresses rpoE gene that is sensitive to temperature and probably critical for pathogen virulence and disease development. In this study, the rpoE silence strain rpoE-RNAi-1 was constructed by gene knock-down. The rpoE-RNAi-1 displayed significant changes in biofilm formation, swarming motility, adhesion and virulence. Meanwhile, vaccination of grouper with rpoE-RNAi-1 led to a relative percent survival (RPS) value of 85% after challenged with the wild-type P. plecoglossicida. qRT-PCR assays showed that vaccination with rpoE-RNAi-1 enhanced the expression of immune-related genes, including MHC-I, MHC-II, IgM, and IL-1β, indicating that it was able to induce humoral and cell-mediated immune response in grouper. These results validated the possibility of rpoE as a potential target for constructing P. plecoglossicida live attenuated vaccine.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, PR China
| | - Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Zhenghong Zuo
- School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Zhuhua Luo
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Wei Xu
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| |
Collapse
|
33
|
Effect of Hypoxia on the Pathogenesis of Acinetobacter baumannii and Pseudomonas aeruginosa In Vitro and in Murine Experimental Models of Infection. Infect Immun 2018; 86:IAI.00543-18. [PMID: 30082478 PMCID: PMC6204731 DOI: 10.1128/iai.00543-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Hypoxia modulates bacterial virulence and the inflammation response through hypoxia-inducible factor 1α (HIF-1α). Here we study the influence of hypoxia on Acinetobacter baumannii and Pseudomonas aeruginosa infections. In vitro, hypoxia increases the bactericidal activities of epithelial cells against A. baumannii and P. aeruginosa, reducing extracellular bacterial concentrations to 50.5% ± 7.5% and 90.8% ± 13.9%, respectively, at 2 h postinfection. The same phenomenon occurs in macrophages (67.6% ± 18.2% for A. baumannii at 2 h and 50.3% ± 10.9% for P. aeruginosa at 24 h). Hypoxia decreases the adherence of A. baumannii to epithelial cells (42.87% ± 8.16% at 2 h) and macrophages (52.0% ± 18.7% at 24 h), as well as that of P. aeruginosa (24.9% ± 4.5% in epithelial cells and 65.7% ± 5.5% in macrophages at 2 h). Moreover, hypoxia decreases the invasion of epithelial cells (48.6% ± 3.8%) and macrophages (8.7% ± 6.9%) by A. baumannii at 24 h postinfection and by P. aeruginosa at 2 h postinfection (75.0% ± 16.3% and 63.4% ± 5.4%, respectively). In vivo, hypoxia diminishes bacterial loads in fluids and tissues in animal models of infection by both pathogens. In contrast, mouse survival time was shorter under hypoxia (23.92 versus 36.42 h) with A. baumannii infection. No differences in the production of cytokines or HIF-1α were found between hypoxia and normoxia in vitro or in vivo We conclude that hypoxia increases the bactericidal activities of host cells against both pathogens and reduces the interaction of pathogens with host cells. Moreover, hypoxia accelerates the rate at which animals die despite the lower bacterial concentrations in vivo.
Collapse
|
34
|
Cullen L, O'Connor A, McCormack S, Owens RA, Holt GS, Collins C, Callaghan M, Doyle S, Smith D, Schaffer K, Fitzpatrick DA, McClean S. The involvement of the low-oxygen-activated locus of Burkholderia cenocepacia in adaptation during cystic fibrosis infection. Sci Rep 2018; 8:13386. [PMID: 30190507 PMCID: PMC6127331 DOI: 10.1038/s41598-018-31556-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/20/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic infection with opportunistic pathogens including Burkholderia cepacia complex (Bcc) is a hallmark of cystic fibrosis (CF). We investigated the adaptive mechanisms facilitating chronic lung infection in sequential Bcc isolates from two siblings with CF (P1 and P2), one of whom also experienced intermittent blood-stream infections (P2). We previously showed increased lung cell attachment with colonisation time in both P1 and P2. WGS analysis confirmed that the isolates are closely related. Twelve genes showed three or more mutations, suggesting these were genes under selection. Single nucleotide polymorphisms (SNVs) in 45 regulatory genes were also observed. Proteomic analysis showed that the abundance of 149 proteins increased over 61-months in sputum isolates, and both time- and source-related alterations in protein abundance between the second patient’s isolates. A consistent time-dependent increase in abundance of 19 proteins encoded by a low-oxygen-activated (lxa) locus was observed in both sets of isolates. Attachment was dramatically reduced in a B. cenocepacia K56-2Δlxa-locus deletion mutant, further indicating that it encodes protein(s) involved in host-cell attachment. Time-related changes in virulence in Galleria mellonella or motility were not observed. We conclude that the lxa-locus, associated with anoxic persistence in vitro, plays a role in host-cell attachment and adaptation to chronic colonization in the hypoxic niche of the CF lung.
Collapse
Affiliation(s)
- Louise Cullen
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland
| | - Andrew O'Connor
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland.,School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Sarah McCormack
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Giles S Holt
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England
| | - Cassandra Collins
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Darren Smith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, England
| | - Kirsten Schaffer
- Department of Microbiology, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | | | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, 24, Ireland. .,School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland.
| |
Collapse
|
35
|
Postgenomic Approaches and Bioinformatics Tools to Advance the Development of Vaccines against Bacteria of the Burkholderia cepacia Complex. Vaccines (Basel) 2018; 6:vaccines6020034. [PMID: 29890657 PMCID: PMC6027386 DOI: 10.3390/vaccines6020034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among patients suffering from cystic fibrosis. Eradication of these pathogens by antimicrobial therapy often fails, highlighting the need to develop novel strategies to eradicate infections. Vaccines are attractive since they can confer protection to particularly vulnerable patients, as is the case of cystic fibrosis patients. Several studies have identified specific virulence factors and proteins as potential subunit vaccine candidates. So far, no vaccine is available to protect from Bcc infections. In the present work, we review the most promising postgenomic approaches and selected web tools available to speed up the identification of immunogenic proteins with the potential of conferring protection against Bcc infections.
Collapse
|
36
|
El-Halfawy OM, Naguib MM, Valvano MA. Novel antibiotic combinations proposed for treatment of Burkholderia cepacia complex infections. Antimicrob Resist Infect Control 2017; 6:120. [PMID: 29204272 PMCID: PMC5702217 DOI: 10.1186/s13756-017-0279-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Effective strategies to manage Burkholderia cepacia complex (Bcc) infections in cystic fibrosis (CF) patients are lacking. We tested combinations of clinically available antibiotics and show that moxifloxacin-ceftazidime could inhibit 16 Bcc clinical isolates at physiologically achievable concentrations. Adding low dose of colistin improved the efficacy of the combo, especially at conditions mimicking CF respiratory secretions.
Collapse
Affiliation(s)
- Omar M El-Halfawy
- Department of Microbiology and Immunology, University of Western Ontario, London, ON Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Naguib
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7BL UK.,Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, ON Canada.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7BL UK
| |
Collapse
|
37
|
Pradenas GA, Myers JN, Torres AG. Characterization of the Burkholderia cenocepacia TonB Mutant as a Potential Live Attenuated Vaccine. Vaccines (Basel) 2017; 5:vaccines5040033. [PMID: 28956836 PMCID: PMC5748600 DOI: 10.3390/vaccines5040033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen prevalent in cystic fibrosis patients, which is particularly difficult to treat, causing chronic and eventually fatal infections. The lack of effective treatment options makes evident the need to develop alternative therapeutic or prophylactic approaches. Vaccines, and live attenuated vaccines, are an unexplored avenue to treat B. cenocepacia infections. Here we constructed and characterized a B. cenocepacia tonB mutant strain, which was unable to actively transport iron, to test whether this single gene deletion mutant (strain renamed GAP001) protected against an acute respiratory B. cenocepacia lethal infection. Here we show that the mutant strain GAP001 is attenuated, and effective at protecting against B. cenocepacia challenge. Intranasal administration of GAP001 to BALB/c mice resulted in almost complete survival with high degree of bacterial clearance.
Collapse
Affiliation(s)
- Gonzalo A Pradenas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Julia N Myers
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
38
|
Dennehy R, Romano M, Ruggiero A, Mohamed YF, Dignam SL, Mujica Troncoso C, Callaghan M, Valvano MA, Berisio R, McClean S. The Burkholderia cenocepacia peptidoglycan-associated lipoprotein is involved in epithelial cell attachment and elicitation of inflammation. Cell Microbiol 2016; 19. [PMID: 27886433 DOI: 10.1111/cmi.12691] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic pathogens causing infections in people with cystic fibrosis (CF). Bcc is highly antibiotic resistant, making conventional antibiotic treatment problematic. The identification of novel targets for anti-virulence therapies should improve therapeutic options for infected CF patients. We previously identified that the peptidoglycan-associated lipoprotein (Pal) was immunogenic in Bcc infected CF patients; however, its role in Bcc pathogenesis is unknown. The virulence of a pal deletion mutant (Δpal) in Galleria mellonella was 88-fold reduced (p < .001) compared to wild type. The lipopolysaccharide profiles of wild type and Δpal were identical, indicating no involvement of Pal in O-antigen transport. However, Δpal was more susceptible to polymyxin B. Structural elucidation by X-ray crystallography and calorimetry demonstrated that Pal binds peptidoglycan fragments. Δpal showed a 1.5-fold reduced stimulation of IL-8 in CF epithelial cells relative to wild type (p < .001), demonstrating that Pal is a significant driver of inflammation. The Δpal mutant had reduced binding to CFBE41o- cells, but adhesion of Pal-expressing recombinant E. coli to CFBE41o- cells was enhanced compared to wild-type E. coli (p < .0001), confirming that Pal plays a direct role in host cell attachment. Overall, Bcc Pal mediates host cell attachment and stimulation of cytokine secretion, contributing to Bcc pathogenesis.
Collapse
Affiliation(s)
- Ruth Dennehy
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Maria Romano
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Alessia Ruggiero
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Yasmine F Mohamed
- Centre for Experimental Medicine, Queen's University, Belfast, Northern Ireland.,Faculty of Pharmacy, Department of Microbiology, Alexandria University, Alexandria, Egypt
| | - Simon L Dignam
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | | | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Miguel A Valvano
- Centre for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| | - Rita Berisio
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| |
Collapse
|
39
|
McClean S. Prospects for subunit vaccines: Technology advances resulting in efficacious antigens requires matching advances in early clinical trial investment. Hum Vaccin Immunother 2016; 12:3103-3106. [PMID: 27494532 DOI: 10.1080/21645515.2016.1216287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
With the continued march of antimicrobial resistance, a renewed impetus for better vaccines has been heralded. Identification of potent subunit vaccines has been greatly facilitated by recent developments in reverse vaccinology and proteomics strategies. There are a range of antimicrobial resistant bacterial pathogens that could be targeted by potent vaccine antigens identified within the coming years. However, cost is a significant hurdle in progressing lead antigen candidates to clinical trials. In order for novel vaccine technologies to realize their clinical potential, there is a requirement to improve investment and incentives to expedite the development of vaccines that are apparently efficacious in preclinical trials.
Collapse
Affiliation(s)
- Siobhán McClean
- a Centre of Microbial Host Interactions , Institute of Technology Tallaght , Dublin , Ireland
| |
Collapse
|
40
|
Casey WT, Spink N, Cia F, Collins C, Romano M, Berisio R, Bancroft GJ, McClean S. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis. Vaccine 2016; 34:2616-21. [PMID: 27091689 DOI: 10.1016/j.vaccine.2016.03.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/10/2016] [Accepted: 03/27/2016] [Indexed: 12/14/2022]
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, which is associated with a range of clinical manifestations, including sepsis and fatal pneumonia and is endemic in Southeast Asia and Northern Australia. Treatment can be challenging and control of infection involves prolonged antibiotic therapy, yet there are no approved vaccines available to prevent infection. Our aim was to develop and assess the potential of a prophylactic vaccine candidate targeted against melioidosis. The identified candidate is the 22kDa outer membrane protein, OmpW. We previously demonstrated that this protein was immunoprotective in mouse models of Burkholderia cepacia complex (Bcc) infections. We cloned Bp_ompW in Escherichia coli, expressed and purified the protein. Endotoxin free protein administered with SAS adjuvant protected Balb/C mice (75% survival) relative to controls (25% survival) (p<0.05). A potent serological response was observed with IgG2a to IgG1 ratio of 6.0. Furthermore C57BL/6 mice were protected for up to 80 days against a lethal dose of B. pseudomallei and surpassed the efficacy of the live attenuated 2D2 positive control. BpompW is homologous across thirteen sequenced B. pseudomallei strains, indicating that it should be broadly protective against B. pseudomallei. In conclusion, we have demonstrated that BpOmpW is able to induce protective immunity against melioidosis and is likely to be an effective vaccine antigen, possibly in combination with other subunit antigens.
Collapse
Affiliation(s)
- William T Casey
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Natasha Spink
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Felipe Cia
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Cassandra Collins
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland
| | - Maria Romano
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Gregory J Bancroft
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Siobhán McClean
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin 24, Ireland.
| |
Collapse
|
41
|
Pradenas GA, Ross BN, Torres AG. Burkholderia cepacia Complex Vaccines: Where Do We Go from here? Vaccines (Basel) 2016; 4:vaccines4020010. [PMID: 27092530 PMCID: PMC4931627 DOI: 10.3390/vaccines4020010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/15/2023] Open
Abstract
Burkholderia comprises a wide variety of environmental Gram-negative bacteria. Burkholderia cepacia complex (Bcc) includes several Burkholderia species that pose a health hazard as they are able to cause respiratory infections in patients with chronic granulomatous disease and cystic fibrosis. Due to the intrinsic resistance to a wide array of antibiotics and naturally occurring immune evasion strategies, treatment of Bcc infections often proves to be unsuccessful. To date, limited work related to vaccine development has been performed for Bcc pathogens. In this review, we have gathered key aspects of Bcc research that have been reported in recent years related to vaccine efforts, virulence, immune responses, and animal models, and use this information to inform the research community of areas of opportunity toward development of a viable Bcc vaccine.
Collapse
Affiliation(s)
- Gonzalo A Pradenas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Brittany N Ross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|