1
|
Mallik SK, Patil PK, Shahi N, Kala K, Singh S, Pathak R, Tandel RS, Pande A, Pandey PK. Assessing safety, efficacy and residue depletion in golden mahseer, Tor putitora (Hamilton, 1822): biochemical and physiological responses to graded concentrations of oxytetracycline dietary supplementation. Vet Res Commun 2024; 48:1573-1593. [PMID: 38409399 DOI: 10.1007/s11259-024-10340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The safety and effectiveness of oxytetracycline can potentially manage bacterial infections in fish. This, in turn, might reduce the concerns related to its use in aquaculture and human consumption, such as toxicity, antimicrobial resistance, and other associated risks. The primary objective of this study was to assess how adding oxytetracycline dihydrate to the diet affects its effectiveness, safety, and the presence of residues in T. putitora. T. putitora fingerlings, subjected to experimental infection with Aeromonas hydrophila at a concentration of 108 CFU mL- 1, received an oral administration of oxytetracycline dihydrate. The oxytetracycline dihydrate was added to the feed (corresponding to 2% of the fish body weight) at concentrations of 44.1, 88.2, 132.3 and 176.4 mg Kg- 1 fish body weight per day. This treatment was carried out for 10 consecutive days. The biochemical and physiological responses of T. putitora and efficacy of oxytetracycline dihydrate were determined through estimation of microbial load (CFU mL- 1), haematogram, serum biomarkers, behavioral characteristics, non-specific immunity and residue depletion. Experimentally infected fish showed disease progression and induced histopathological conditions with highest microbial load (CFU mL- 1) in the muscle of both control and treated fish. The fish haematogram showed increased leucocyte and haemoglobin content, influenced by dietary oxytetracycline dihydrate. The fish demonstrated adaptive physiological response to oxytetracycline dihydrate at 44.1 to 88.2 mg and resulted in increased albumin and globulin content. The serum-enzyme assay showed significant increase in aspartate aminotransferase (AST), alanine aminotransferase (ALT) and plasma alkaline phosphatase (ALP) activities in the test fish (< 0.05). Oxytetracycline dihydrate at 88.2 to 132.3 mg Kg- 1 fish body weight per day recorded higher feed intake (75%), significant survivability (66-68%) and histopathological recovery. The suppressed immune response was manifested with decreased respiratory burst and lysozyme activity. The palatability, treatment of bacterial infection, histopathological changes and survivability by fingerlings of golden mahseer determined the safety and optimized the therapeutic potential of the oxytetracycline dihydrate at 88.2 mg Kg- 1 fish body weight per day for 10 days to contain the infection by A. hydrophila. A withdrawal period of 8-d was recommended as oxytetracycline dihydrate concentration depleted below the legal maximum residue limit (MRL 2.0 mg g- 1) in the edible muscle of the golden mahseer reared at an average water temperature of 20 °C. This is considered safe for human consumption.
Collapse
Affiliation(s)
- Sumanta Kumar Mallik
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, Uttarakhand, 263 136, India.
| | - Prasanna Kumar Patil
- ICAR- Central Institute of Brackishwater Aquaculture (ICAR-CIBA), Annamalai Puram, Chennai, Tamil Nadu, 600028, India
| | - Neetu Shahi
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, Uttarakhand, 263 136, India
| | - Krishna Kala
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, Uttarakhand, 263 136, India
| | - Shivam Singh
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, Uttarakhand, 263 136, India
| | - Richa Pathak
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, Uttarakhand, 263 136, India
| | - Ritesh Shantilal Tandel
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, Uttarakhand, 263 136, India
| | - Amit Pande
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, Uttarakhand, 263 136, India
| | - Pramod Kumar Pandey
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, Uttarakhand, 263 136, India
| |
Collapse
|
2
|
Chang EK, Miller M, Shahin K, Batac F, Field CL, Duignan P, Struve C, Byrne BA, Murray MJ, Greenwald K, Smith WA, Ziccardi M, Soto E. Genetics and pathology associated with Klebsiella pneumoniae and Klebsiella spp. isolates from North American Pacific coastal marine mammals. Vet Microbiol 2022; 265:109307. [DOI: 10.1016/j.vetmic.2021.109307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/30/2021] [Accepted: 12/11/2021] [Indexed: 01/01/2023]
|
3
|
Hansen JD, Ray K, Chen PJ, Yun S, Elliott DG, Conway CM, Calcutt MJ, Purcell MK, Welch TJ, Bellah JP, Davis EM, Greer JB, Soto E. Disruption of the Francisella noatunensis subsp. orientalis pdpA Gene Results in Virulence Attenuation and Protection in Zebrafish. Infect Immun 2021; 89:e0022021. [PMID: 34424748 PMCID: PMC8519269 DOI: 10.1128/iai.00220-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Several Francisella spp., including Francisella noatunensis, are regarded as important emerging pathogens of wild and farmed fish. However, very few studies have investigated the virulence factors that allow these bacterial species to be pathogenic in fish. The Francisella pathogenicity island (FPI) is a well-described, gene-dense region encoding major virulence factors for the genus Francisella. pdpA is a member of the pathogenicity-determining protein genes carried by the FPI that are implicated in the ability of the mammalian pathogen Francisella tularensis to escape and replicate in infected host cells. Using a sacB suicide approach, we generated pdpA knockouts to address the role of PdpA as a virulence factor for F. noatunensis. Because polarity can be an issue in gene-dense regions, we generated two different marker-based mutants in opposing polarity (the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 strains). Both mutants were attenuated (P < 0.0001) in zebrafish challenges and displayed impaired intracellular replication (P < 0.05) and cytotoxicity (P < 0.05), all of which could be restored to wild-type (WT) levels by complementation for the ΔpdpA1 mutant. Importantly, differences were found for bacterial burden and induction of acute-phase and proinflammatory genes for the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 mutants compared to the WT during acute infection. In addition, neither mutant resulted in significant histopathological changes. Finally, immunization with the F. noatunensis subsp. orientalis ΔpdpA1 mutant led to protection (P < 0.012) against an acute 40% lethal dose (LD40) challenge with WT F. noatunensis in the zebrafish model of infection. Taken together, the results from this study further demonstrate physiological similarities within the genus Francisella relative to their phylogenetic relationships and the utility of zebrafish for addressing virulence factors for the genus.
Collapse
Affiliation(s)
- John D. Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Karina Ray
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Po-Jui Chen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Susan Yun
- Department of Medicine and Epidemiology, University of California—Davis, School of Veterinary Medicine, Davis, California, USA
| | - Diane G. Elliott
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Carla M. Conway
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Michael J. Calcutt
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Maureen K. Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Timothy J. Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, West Virginia, USA
| | - John P. Bellah
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Ellie M. Davis
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Justin B. Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, University of California—Davis, School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
4
|
Poudyal S, Pulpipat T, Wang PC, Chen SC. Comparison of the pathogenicity of Francisella orientalis in Nile tilapia (Oreochromis niloticus), Asian seabass (Lates calcarifer) and largemouth bass (Micropterus salmoides) through experimental intraperitoneal infection. JOURNAL OF FISH DISEASES 2020; 43:1097-1106. [PMID: 32700447 DOI: 10.1111/jfd.13217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Francisella orientalis is a highly virulent, emerging bacterium that causes mass mortalities in tilapia. This pathogen also affects numerous other warm-water fish species, including three-line grunt, hybrid striped bass and various ornamental fish. This study sheds light on two new species of fish that are susceptible to F. orientalis. Asian seabass and largemouth bass showed variable levels of susceptibility in a bacterial challenge experiment. After intraperitoneally injected with a dose of 106 CFU/fish, a total of 64.28% and 21.42% mortalities were obtained in Asian seabass and largemouth bass, respectively. Meanwhile, Nile tilapia showed acute mortality of 100%. All fish showed typical lesions of francisellosis, including multifocal granulomas in the spleen and head kidney. Immunohistochemical analysis revealed strong positive signals inside the granulomas of all fish. The bacterial recovery in solid media from infected fish was highest in Nile tilapia (85.71%), followed by Asian seabass (35.71%) and largemouth bass (21.42%). PCR results tested 100% positive for Nile tilapia, and 78.57% and 21.42% for Asian seabass and largemouth bass, respectively. In conclusion, Asian seabass and largemouth bass are susceptible to this pathogen, which warrants new management strategies when employing predation polyculture systems of these species with tilapia.
Collapse
Affiliation(s)
- Sayuj Poudyal
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Theeraporn Pulpipat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
5
|
Pulpipat T, Maekawa S, Wang PC, Chen SC. Immune Responses and Protective Efficacy of a Formalin-Killed Francisella Noatunensis Subsp. Orientalis Vaccine Evaluated through Intraperitoneal and Immersion Challenge Methods in Oreochromis Niloticus. Vaccines (Basel) 2020; 8:vaccines8020163. [PMID: 32260212 PMCID: PMC7348880 DOI: 10.3390/vaccines8020163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Francisella noatunensis subsp. orientalis (Fno), an intracellular bacterium, causes systemic granulomatous diseases, resulting in high mortality and huge economic losses in Taiwanese tilapia farming. In this study, we tested the efficacy of a formalin-killed Fno vaccine in cultured tilapia. Fno was isolated from diseased tilapia, inactivated with formalin, and mixed with the mineral oil base adjuvant (MontanideTM ISA 763 AVG). A total of 300 tilapia were divided into two groups. The experimental group was intraperitoneally injected with 0.1 mL of vaccine, which was substituted with phosphate-buffered saline (PBS) in the control group. A booster was administered at 2 weeks post-immunization. Tilapia were challenged at 6 weeks post primary immunization by intraperitoneal (IP) injection and immersion methods. Mortality was recorded at 21 and 60 days. The results revealed that the vaccine induced a greater antibody titer and led to 71% and 76% of relative percent survival (RPS) after the IP and immersion challenge. The transcripts of proinflammatory cytokines and immune-related genes, including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNFα), C-X-C motif chemokine ligand 8 (CXCL8), and interleukin-17C (IL-17C), were significantly upregulated after vaccination. Additionally, vaccinated fish had lower bacterial loads in the blood and lower granuloma intensities in the kidney, spleen, liver, and gill than control fish. The results in this study demonstrate that the inactivated Fno vaccine could be an essential resource in Taiwanese tilapia farming.
Collapse
Affiliation(s)
- Theeraporn Pulpipat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
| | - Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-8-770-3202 (ext. 5076 or 5095)
| |
Collapse
|
6
|
Larva of greater wax moth Galleria mellonella is a suitable alternative host for the fish pathogen Francisella noatunensis subsp. orientalis. BMC Microbiol 2020; 20:8. [PMID: 31918661 PMCID: PMC6953311 DOI: 10.1186/s12866-020-1695-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022] Open
Abstract
Background Francisella noatunensis subsp. orientalis (Fno) is the etiological agent of francisellosis in cultured warm water fish, such as tilapia. Antibiotics are administered to treat the disease but a better understanding of Fno infection biology will inform improved treatment and prevention measures. However, studies with native hosts are costly and considerable benefits would derive from access to a practical alternative host. Here, larvae of Galleria mellonella were assessed for suitability to study Fno virulence. Results Larvae were killed by Fno in a dose-dependent manner but the insects could be rescued from lethal doses of bacteria by antibiotic therapy. Infection progression was assessed by histopathology (haematoxylin and eosin staining, Gram Twort and immunohistochemistry) and enumeration of bacteria recovered from the larval haemolymph on selective agar. Fno was phagocytosed and could survive intracellularly, which is consistent with observations in fish. Virulence of five Fno isolates showed strong agreement between G. mellonella and red Nile tilapia hosts. Conclusions This study shows that an alternative host, G. mellonella, can be applied to understand Fno infections, which will assist efforts to identify solutions to piscine francisellosis thus securing the livelihoods of tilapia farmers worldwide and ensuring the production of this important food source.
Collapse
|
7
|
Ramírez-Paredes JG, Mendoza-Roldan MA, Lopez-Jimena B, Shahin K, Metselaar M, Thompson KD, Penman DJ, Richards RH, Adams A. Whole cell inactivated autogenous vaccine effectively protects red Nile tilapia (Oreochromis niloticus) against francisellosis via intraperitoneal injection. JOURNAL OF FISH DISEASES 2019; 42:1191-1200. [PMID: 31184398 DOI: 10.1111/jfd.13041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Francisella noatunensis subsp. orientalis is a pathogen of tilapia and other warm-water fish for which no vaccines are commercially available. In this study, a whole cell formalin-inactivated vaccine was developed for the first time using the highly virulent isolate STIR-GUS-F2f7 and the oil-based adjuvant Montanide™ ISA 763A VG. The efficacy of the vaccine was assessed in red Nile tilapia via intraperitoneal (i.p.) injection using homologous experimental infection and correlates of protection such as seral antibody production and bacterial loads in the spleen. For immunization, fish were i.p. injected with 0.1 ml of the vaccine, the adjuvant alone or PBS. At 840 degree days post-vaccination, all fish were i.p. injected with 4.0 × 103 CFU/fish of pathogenic bacteria. The RPS at the end of the trial was 100% in the vaccinated group with significantly higher survival than in the adjuvant and control groups. The RPS in the adjuvant group was 42%, and no significant difference was seen in survival between this and the PBS group. Moreover, significantly higher antibody titres in the serum and significantly lower bacterial loads in the spleen were detected in the vaccinated fish by ELISA and qPCR, respectively. These findings highlight the potential of autogenous vaccines for controlling francisellosis in tilapia.
Collapse
Affiliation(s)
| | | | - Benjamin Lopez-Jimena
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Khalid Shahin
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, UK
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David J Penman
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Randolph H Richards
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Alexandra Adams
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, UK
| |
Collapse
|
8
|
Pereira FL, Tavares GC, de Carvalho AF, Rosa JCC, Rezende CP, Leal CAG, Figueiredo HCP. Effects of temperature changes in the transcriptional profile of the emerging fish pathogen Francisella noatunensis subsp. orientalis. Microb Pathog 2019; 133:103548. [PMID: 31112771 DOI: 10.1016/j.micpath.2019.103548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023]
Abstract
One of the major challenges in Nile tilapia (Oreochromis niloticus L.) farming is the occurrence of bacterial infections, and the Francisella noatunensis subsp. orientalis (FNO) is an important pathogen that has emerged in last decades. Francisellosis outbreaks have been reported in the literature as occurring seasonally when water temperature is below 24 °C. The aim of this study was to quantify the median lethal doses (LD50) of FNO in experimental challenges at 28 °C and 22 °C, and to investigate the impact of temperature changes in whole genome expression using microarray technology. The LD50 for Nile tilapia at 28 °C was ∼105.7, whereas at 22 °C, the LD50 was ∼102.2, showing that the decrease in temperature enhanced disease outcome. Out of 1917 genes screened, a total of 31 and 19 genes were down- and up-regulated at 22 °C, respectively. These genes were grouped by orthology into functional categories of: amino acid, inorganic ion, and carbohydrate transport and metabolism; transcription; and posttranslational modification, protein turnover, and chaperones. Expression of genes related to metabolism, oxidative stress, and thermal shock were regulated by temperature changes, reflecting an ability of FNO to adapt to the environment. Expression of virulence genes usually required for the Francisella genus was not changed between tested temperatures, including that of genes located on the Francisella Pathogenicity Island.
Collapse
Affiliation(s)
- Felipe Luiz Pereira
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Guilherme Campos Tavares
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Alex Fiorini de Carvalho
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Júlio César Camara Rosa
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Cristiana Perdigão Rezende
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Carlos Augusto Gomes Leal
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Henrique César Pereira Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil. http://www.vet.ufmg.br/
| |
Collapse
|
9
|
Suphoronski SA, Chideroli RT, Facimoto CT, Mainardi RM, Souza FP, Lopera-Barrero NM, Jesus GFA, Martins ML, Di Santis GW, de Oliveira A, Gonçalves GS, Dari R, Frouel S, Pereira UP. Effects of a phytogenic, alone and associated with potassium diformate, on tilapia growth, immunity, gut microbiome and resistance against francisellosis. Sci Rep 2019; 9:6045. [PMID: 30988331 PMCID: PMC6465292 DOI: 10.1038/s41598-019-42480-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/28/2019] [Indexed: 11/24/2022] Open
Abstract
This work evaluated the effects of dietary supplementation of A-Live (phytogenic) either individually or in combination with Aquaform (potassium diformate, acidifier) on juvenile Nile tilapia (Oreochromis niloticus) growth performance, innate immune parameters, gut microbiome, and resistance against Francisella noatunensis subsp. orientalis challenge. Each experimental group contained 140 fishes (34.3 ± 0.33) in two 150L tanks. The experimental design consisted of five groups: a negative control; treated groups (G1, G2, G3) supplemented with different concentrations of A-Live and Aquaform in the feed; and a positive control (PC) for pathogen infection. Groups G1, G2, G3, and PC were challenged with Francisella spp. after 15 days. After infection, the mortality was significantly lower in groups G1, G2, and G3 (p < 0.01). Furthermore, these groups showed significant increase (p < 0.05) in daily weight gain, feed conversion rate, and specific growth rate. The PC group presented increase (p < 0.05) in the leukocytes and neutrophils number. Innate immunity parameters showed no difference between treatments after infection. Microbiome analysis revealed an increased number of bacteria belonging to the Vibrionaceae family after pathogen infection suggesting a secondary pathogen function of these bacteria. These results validate the beneficial effects of these products in tilapia farming.
Collapse
Affiliation(s)
- S A Suphoronski
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil
| | - R T Chideroli
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil
| | - C T Facimoto
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil
| | - R M Mainardi
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil
| | - F P Souza
- Department of Animal Science, State University of Londrina, Londrina, PR, Brazil
| | - N M Lopera-Barrero
- Department of Animal Science, State University of Londrina, Londrina, PR, Brazil
| | - G F A Jesus
- Nucleus of studies in Aquaculture Pathology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - M L Martins
- Nucleus of studies in Aquaculture Pathology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - G W Di Santis
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil
| | - A de Oliveira
- Laboratory of Microbial Biotechnology (LABIM) and Laboratory of Electron Microscopy and Microanalysis, State University of Londrina, Londrina, PR, Brazil
| | - G S Gonçalves
- Fishing Institute (APTA-SP), São José do Rio Preto, SP, Brazil
| | - R Dari
- MiXscience, Bruz, Brittany, France
| | - S Frouel
- MiXscience, Bruz, Brittany, France
| | - U P Pereira
- Laboratory of Fish Bacteriology (LABBEP) - Department of Preventing Veterinary Medicine, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
10
|
Lewis J, Soto E. Gene expression of putative type VI secretion system (T6SS) genes in the emergent fish pathogen Francisella noatunensis subsp. orientalis in different physiochemical conditions. BMC Microbiol 2019; 19:21. [PMID: 30665355 PMCID: PMC6341738 DOI: 10.1186/s12866-019-1389-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen and the etiologic agent of piscine francisellosis. Besides persisting in the environment in both biofilm and planktonic forms, Fno is known to infect and replicate inside tilapia macrophages and endothelial-derived cells. However, the mechanism used by this emergent bacterium for intracellular survival is unknown. Additionally, the basis of virulence for Fno is still poorly understood. Several potential virulence determinants have been identified in Fno, including homologues of the recently described F. tularensis Type VI Secretion System (T6SS). In order to gain a better understanding of the role the putative Fno T6SS might play in the pathogenesis of piscine francisellosis, we performed transcriptional analysis of Fno T6SS gene-homologues under temperature, acidic, and oxidative stress conditions. Results Few transcriptional differences were observed at different temperatures, growth stages and pHs; however, a trend towards higher expression of Fno T6SS-homologue genes at 25 °C and under oxidative stress was detected when compared to those quantified at 30 °C and under no H2O2 (p < 0.05). Conclusions Results from this study suggest that several of the F. tularensis T6SS-homologues may play an important role in the virulence of Fno, particularly when the bacterium is exposed to low temperatures and oxidative stress. Electronic supplementary material The online version of this article (10.1186/s12866-019-1389-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jainee Lewis
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Sirimanapong W, Thompson KD, Shinn AP, Adams A, Withyachumnarnkul B. Streptococcus agalactiae infection kills red tilapia with chronic Francisella noatunensis infection more rapidly than the fish without the infection. FISH & SHELLFISH IMMUNOLOGY 2018; 81:221-232. [PMID: 30017930 DOI: 10.1016/j.fsi.2018.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In this study we examined the effect that a Francisella noatunensis (Fno) infection had on hybrid red tilapia (Oreochromis niloticus × Oreochromis mossambicus) subsquently infected with Streptococcus agalactiae. A variety of hemato-immunological parameters (haematocrit, total red blood cell count, mean corpuscular volume, total white blood and differential cell counts, total plasma protein, plasma lysozyme and plasma peroxidase activities, and respiratory burst and phagocytic activities of head-kidney macrophages) were measured in hybrid red tilapia that had been previously exposed to an Fno outbreak in a tilapia grow-out farm. The head-kidneys of these apparently healthy survivors, when checked by PCR were found to be Fno-positive with hemato-immunological parameters that were similar to fish without an a priori infection. The only exception was the percentage lymphocyte count in the peripheral blood, which was slightly, but significantly, lower in the Fno-infected fish, compared to those without the infection. When experimentally infected with S. agalactiae, the Fno-infected fish died more rapidly and at a significantly higher rate than fish without the infection. During the challenge, the hemato-immunological parameters of both groups of fish were very similar, although the Fno-infected fish, challanged with S. agalactiae expressed significantly higher plasma lysozyme and peroxidase activities, and their head kidney macrophages had significantly higher respiratory burst activity compared to non-Fno-infected fish challanged with S. agalactiae. The only two parameters for which Fno-infected fish showed significantly lower expressions than that of their non-infected counterparts were haematocrit and total red blood cell count. The cause of the rapidity and higher rates of mortality observed in the Fno-infected fish when challenged with S. agalactiae is unknown; but it may be due to a reduced erythropoiesis capability within the head-kidney because of the presence of Fno.
Collapse
Affiliation(s)
- Wanna Sirimanapong
- Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon-pathom, 73170, Thailand.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan Penicuik, Scotland, UK
| | - Andrew P Shinn
- Fish Vet Group Asia Limited, 21/359 Premjairard Road, Saensook, Muang Chonburi, Chonburi, 20130, Thailand
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Boonsirm Withyachumnarnkul
- AquaAcademy Farm, Tha Chana, Surat Thani, 84170, Thailand; Department of Anatomy, Faculty of Science, Prince of Songkla University, Hatyai, Songkla, 90112, Thailand
| |
Collapse
|
12
|
Munang'andu HM. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish. Microorganisms 2018; 6:microorganisms6020033. [PMID: 29690563 PMCID: PMC6027125 DOI: 10.3390/microorganisms6020033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022] Open
Abstract
Aquaculture is one of the most rapidly expanding farming systems in the world. Its rapid expansion has brought with it several pathogens infecting different fish species. As a result, there has been a corresponding expansion in vaccine development to cope with the increasing number of infectious diseases in aquaculture. The success of vaccine development for bacterial diseases in aquaculture is largely attributed to empirical vaccine designs based on inactivation of whole cell (WCI) bacteria vaccines. However, an upcoming challenge in vaccine design is the increase of intracellular bacterial pathogens that are not responsive to WCI vaccines. Intracellular bacterial vaccines evoke cellular mediated immune (CMI) responses that “kill” and eliminate infected cells, unlike WCI vaccines that induce humoral immune responses whose protective mechanism is neutralization of extracellular replicating pathogens by antibodies. In this synopsis, I provide an overview of the intracellular bacterial pathogens infecting different fish species in aquaculture, outlining their mechanisms of invasion, replication, and survival intracellularly based on existing data. I also bring into perspective the current state of CMI understanding in fish together with its potential application in vaccine development. Further, I highlight the immunological pitfalls that have derailed our ability to produce protective vaccines against intracellular pathogens for finfish. Overall, the synopsis put forth herein advocates for a shift in vaccine design to include CMI-based vaccines against intracellular pathogens currently adversely affecting the aquaculture industry.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146, Dep NO-0033, 046 Oslo, Norway.
| |
Collapse
|
13
|
Soto E, Yun S, Lewis J, Kearney MT, Hansen J. Interaction of Francisella noatunensis subsp. orientalis with Oreochromis mossambicus bulbus arteriosus cell line. Microb Pathog 2017; 105:326-333. [PMID: 28286149 DOI: 10.1016/j.micpath.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/25/2017] [Accepted: 03/06/2017] [Indexed: 01/12/2023]
Abstract
Francisella noatunensis subsp. orientalis (Fno) (syn. F. asiatica) is an emergent warmwater fish pathogen and the causative agent of piscine francisellosis. Although Fno causes septicemia and can live extracellularly in infected tilapia (Oreochromis spp.), the early interaction of Fno with vasculature endothelium is unknown. In the present study, we examined the interaction of wild-type Fno (WT) and two Fno knockout [intracellular growth loci C (ΔiglC) and pathogenicity determinant protein A (ΔpdpA)] strains with the endothelial O. mossambicus bulbus arteriosus cell line (TmB) at 25 °C and 30 °C. Similar amounts of WT, ΔiglC, and ΔpdpA attached and were detected intracellularly after 5 h of incubation at both temperatures; however temperature affected attachment and uptake. While significantly greater amounts of Fno (WT, ΔiglC, and ΔpdpA) were detected intracellularly when TmB cells were incubated at 30 °C, bacteria attached to TmBs at greater levels at 25 °C. Only WT Fno was able to replicate intracellularly at 25 °C, which resulted in Fno mediated cytotoxicity and apoptosis at 24 and 72 h post-infection. WT Fno incubated at 30 °C as well as ΔiglC, and ΔpdpA incubated at 25 °C and 30 °C were all defective for survival, replication, and the ability to cause cytotoxicity in TmB. Taken together, these results demonstrate that temperature plays a vital role for Fno intracellular survival, persistence and cytotoxicity.
Collapse
Affiliation(s)
- Esteban Soto
- University of California-Davis, Department of Medicine and Epidemiology, School of Veterinary Medicine, Davis, CA 95616, USA.
| | - Susan Yun
- University of California-Davis, Department of Medicine and Epidemiology, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Jainee Lewis
- University of California-Davis, Department of Medicine and Epidemiology, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Michael T Kearney
- Louisiana State University, Department of Pathobiological Sciences, School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - John Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| |
Collapse
|
14
|
Bakkemo KR, Mikkelsen H, Johansen A, Robertsen B, Seppola M. Francisella noatunensis subsp. noatunensis invades, survives and replicates in Atlantic cod cells. DISEASES OF AQUATIC ORGANISMS 2016; 121:149-159. [PMID: 27667812 DOI: 10.3354/dao03043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Systemic infection caused by the facultative intracellular bacterium Francisella noatunensis subsp. noatunensis remains a disease threat to Atlantic cod Gadus morhua L. Future prophylactics could benefit from better knowledge on how the bacterium invades, survives and establishes infection in its host cells. Here, facilitated by the use of a gentamicin protection assay, this was studied in primary monocyte/macrophage cultures and an epithelial-like cell line derived from Atlantic cod larvae (ACL cells). The results showed that F. noatunensis subsp. noatunensis is able to invade primary monocyte/macrophages, and that the actin-polymerisation inhibitor cytochalasin D blocked internalisation, demonstrating that the invasion is mediated through phagocytosis. Interferon gamma (IFNγ) treatment of cod macrophages prior to infection enhanced bacterial invasion, potentially by stimulating macrophage activation in an early step in host defence against F. noatunensis subsp. noatunensis infections. We measured a rapid drop of the initial high levels of internalised bacteria in macrophages, indicating the presence and action of a cellular immune defence mechanism before intracellular bacterial replication took place. Low levels of bacterial internalisation and replication were detected in the epithelial-like ACL cells. The capacity of F. noatunensis subsp. noatunensis to enter, survive and even replicate within an epithelial cell line may play an important role in its ability to infect live fish and transverse epithelial barriers to reach the bacterium's main target cells-the macrophage.
Collapse
|
15
|
Soto E, Halliday-Simmonds I, Francis S, Fraites T, Martínez-López B, Wiles J, Hawke JP, Endris RD. Improved Broth Microdilution Method for Antimicrobial Susceptibility Testing of Francisella Noatunensis Orientalis. JOURNAL OF AQUATIC ANIMAL HEALTH 2016; 28:199-207. [PMID: 27484609 DOI: 10.1080/08997659.2016.1185051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this project we optimized a minimal inhibitory concentration testing protocol for Francisella noatunensis orientalis. Thirty-three F. noatunensis orientalis isolates recovered from different fish species and locations were tested, and Escherichia coli ATCC 25922 was used as a quality control reference strain. A modified cation-adjusted Mueller Hinton broth supplemented with 2% IsoVitalex and 0.1% glucose (MMH) was tested at a pH of 6.4 ± 0.1, 7.1 ± 0.1, and 7.3 ± 0.1. Growth curves generated for F. noatunensis orientalis indicated that MMH at a pH of 6.4 ± 0.1 provided optimal growth. There were no significant differences in the growth curves obtained from isolates recovered from different fish species or from fresh or marine water. The pH of 6.4 ± 0.1 in the MMH media interfered with the inhibitory properties of the potentiated sulfonamides (ormetoprim-sulfadimethoxine and trimethoprim-sulfamethoxazole) when using the E. coli ATCC reference strain. Minimal inhibitory concentrations of eight antimicrobials (gentamicin, enrofloxacin, ampicillin, oxytetracycline, erythromycin, florfenicol, flumequine, and oxolinic acid) were similar for all F. noatunensis orientalis isolates. The in vitro susceptibility data provided here can provide a baseline for monitoring the development of antimicrobial resistance among F. noatunensis orientalis isolates, as well as provide valuable data in the development of potential therapeutics. Received October 27, 2015; accepted April 13, 2016.
Collapse
Affiliation(s)
- Esteban Soto
- a Department of Medicine and Epidemiology, School of Veterinary Medicine , University of California , Tupper Hall 2108, 1 Shields Avenue, Davis , California 95616 , USA
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Iona Halliday-Simmonds
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Stewart Francis
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Trellor Fraites
- b Department of Biomedical Sciences , Ross University School of Veterinary Medicine , Post Office Box 334, Basseterre, St. Kitts, West Indies
| | - Beatriz Martínez-López
- c Center for Animal Disease Modeling and Surveillance, Department of Medicine and Epidemiology, School of Veterinary Medicine , University of California , Tupper Hall 2108, 1 Shields Avenue, Davis , California 95616 , USA
| | - Judy Wiles
- d Department of Pathobiological Sciences , Louisiana State University, School of Veterinary Medicine ,1909 Skip Bertman Drive, Baton Rouge , Louisiana 70803 , USA
| | - John P Hawke
- d Department of Pathobiological Sciences , Louisiana State University, School of Veterinary Medicine ,1909 Skip Bertman Drive, Baton Rouge , Louisiana 70803 , USA
| | - Richard D Endris
- e Endris Consulting , Inc., 492 Foothill Road, Bridgewater , New Jersey 08807 , USA
| |
Collapse
|
16
|
Elgendy M, Hakim A, Ibrahim T, Soliman W, Ali S. Immunomodulatory Effects of Curcumin on Nile Tilapia, Oreochromis niloticus and its Antimicrobial Properties against Vibrio alginolyticus. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/jfas.2016.206.215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Cox BL, Schiffer H, Dagget G, Beierschmitt A, Sithole F, Lee E, Revan F, Halliday-Simmonds I, Beeler-Marfisi J, Palmour R, Soto E. Resistance of Klebsiella pneumoniae to the innate immune system of African green monkeys. Vet Microbiol 2015; 176:134-42. [PMID: 25614101 DOI: 10.1016/j.vetmic.2015.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 11/28/2022]
Abstract
In recent years, an emergent Klebsiella pneumoniae hypermucoviscosity (HMV) phenotype has been associated with increased invasiveness and pathogenicity in primates. In this project, bacteria recovered from infected African green monkeys (AGM) (Chlorocebus aethiops sabaeus) were screened for HMV phenotype, and were compared to non-HMV isolates in in vitro, serum, and oxidative-mediated killing assays. Complement-mediated killing was assessed utilizing freshly collected serum from healthy AGM. Oxidative-mediated killing was investigated utilizing sodium hypochlorite and hydrogen peroxide. Compared to non-HMV isolates, HMV isolates were more resistant to serum-mediated and oxidative killing (p<0.05). Phagocytosis resistance was evaluated using AGM peripheral blood monocytes (PBMC), and results indicated that non-HMV isolates associated with the AGM PBMC to a greater extent than HMV isolates (p<0.001). Measurement of lactate dehydrogenase release showed that HMV isolates were more cytotoxic to AGM PBMC than non-HMV isolates (p<0.001). Thus, the hypermucoid phenotype appears to be an important virulence factor that promotes evasion of innate immune defenses.
Collapse
Affiliation(s)
- Brandi L Cox
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Holly Schiffer
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Gregory Dagget
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Amy Beierschmitt
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis; Behavioural Science Foundation, Estridge Estate, Saint Kitts and Nevis
| | - Fortune Sithole
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Elise Lee
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Floyd Revan
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Iona Halliday-Simmonds
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Janet Beeler-Marfisi
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis; Gribbles Veterinary Pathology, Christchurch, New Zealand
| | - Roberta Palmour
- Behavioural Science Foundation, Estridge Estate, Saint Kitts and Nevis
| | - Esteban Soto
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis.
| |
Collapse
|
18
|
Soto E, Brown N, Gardenfors ZO, Yount S, Revan F, Francis S, Kearney MT, Camus A. Effect of size and temperature at vaccination on immunization and protection conferred by a live attenuated Francisella noatunensis immersion vaccine in red hybrid tilapia. FISH & SHELLFISH IMMUNOLOGY 2014; 41:593-599. [PMID: 25462454 DOI: 10.1016/j.fsi.2014.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 06/04/2023]
Abstract
Francisella noatunensis subsp. orientalis (Fno) is a pleomorphic, facultative intracellular, Gram-negative, emerging bacterial pathogen of marine and fresh water fish with worldwide distribution. In this study, the efficacy of an attenuated Fno intracellular growth locus C (iglC) mutant was evaluated for use as a live immersion vaccine, when administered to hybrid tilapia at two different stages of growth (5 g fry and 10 g fingerlings) and at two temperatures (25 °C and 30 °C). To determine vaccine efficacy, mortality, days to first death, and Fno genome equivalents (GE) in the spleens of survivors, as well as serum and mucus antibody levels, were evaluated after 30 d in fish challenged with a wild type virulent strain. Both size and temperature at vaccination played an important role in immunization and protection. Fry vaccinated at 25 °C were not protected when compared to non-vaccinated fry at 25 °C (p = 0.870). In contrast, 5 g fry vaccinated at 30 °C were significantly protected compared to non-vaccinated fry at 30 °C (p = 0.038). Although lower mortalities occurred, 10 g fingerlings vaccinated at 25 °C were not protected, compared to non-vaccinated fingerlings at 25 °C (p = 0.328), while, 10 g fingerlings vaccinated at 30 °C were significantly protected, compared to non-vaccinated fingerlings at 30 °C (p = 0.038). Additionally, overall mortality of 5 g fish was significantly higher than in 10 g fish. Mortality was also significantly higher in fish subjected to a 30 to 25 °C temperature change one week prior to challenge, than in fish maintained at the same temperature during vaccination and challenge. This information demonstrates that both temperature and size at vaccination are important factors when implementing immunization prophylaxis in cultured tilapia.
Collapse
Affiliation(s)
- Esteban Soto
- Center for Conservation Medicine and Ecosystem Health, School of Veterinary Medicine, Ross University, Main Island Road, West Farm, Saint Kitts and Nevis.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Establishment of three Francisella infections in zebrafish embryos at different temperatures. Infect Immun 2014; 82:2180-94. [PMID: 24614659 DOI: 10.1128/iai.00077-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella spp. are facultative intracellular pathogens identified in increasingly diverse hosts, including mammals. F. noatunensis subsp. orientalis and F. noatunensis subsp. noatunensis infect fish inhabiting warm and cold waters, respectively, while F. tularensis subsp. novicida is highly infectious for mice and has been widely used as a model for the human pathogen F. tularensis. Here, we established zebrafish embryo infection models of fluorescently labeled F. noatunensis subsp. noatunensis, F. noatunensis subsp. orientalis, and F. tularensis subsp. novicida at 22, 28, and 32°C, respectively. All infections led to significant bacterial growth, as shown by reverse transcription-quantitative PCR (RT-qPCR), and to a robust proinflammatory immune response, dominated by increased transcription of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). F. noatunensis subsp. orientalis was the most virulent, F. noatunensis subsp. noatunensis caused chronic infection, and F. tularensis subsp. novicida showed moderate virulence and led to formation of relatively small granuloma-like structures. The use of transgenic zebrafish strains with enhanced green fluorescent protein (EGFP)-labeled immune cells revealed their detailed interactions with Francisella species. All three strains entered preferentially into macrophages, which eventually assembled into granuloma-like structures. Entry into neutrophils was also observed, though the efficiency of this event depended on the route of infection. The results demonstrate the usefulness of the zebrafish embryo model for studying infections caused by different Francisella species at a wide range of temperatures and highlight their interactions with immune cells.
Collapse
|
20
|
Francisella noatunensis subsp. orientalis pathogenesis analyzed by experimental immersion challenge in Nile tilapia, Oreochromis niloticus (L.). Vet Microbiol 2013; 164:77-84. [DOI: 10.1016/j.vetmic.2013.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
21
|
Brudal E, Winther-Larsen HC, Colquhoun DJ, Duodu S. Evaluation of reference genes for reverse transcription quantitative PCR analyses of fish-pathogenic Francisella strains exposed to different growth conditions. BMC Res Notes 2013; 6:76. [PMID: 23452832 PMCID: PMC3599356 DOI: 10.1186/1756-0500-6-76] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/27/2013] [Indexed: 12/20/2022] Open
Abstract
Background Reverse transcription quantitative PCR has become a powerful technique to monitor mRNA transcription in response to different environmental conditions in many bacterial species. However, correct evaluation of data requires accurate and reliable use of reference genes whose transcription does not change during the course of the experiment. In the present study exposure to different growth conditions was used to validate the transcription stability of eight reference gene candidates in three strains from two subspecies of Francisella noatunensis, a pathogen causing disease in both warm and cold water fish species. Results Relative transcription levels for genes encoding DNA gyrase (gyrA), RNA polymerase beta subunit (rpoB), DNA polymerase I (polA), cell division protein (ftsZ), outer membrane protein (fopA), riboflavin biosynthesis protein (ribC), 16S ribosomal RNA (16S rRNA) and DNA helicases (uvrD) were quantified under exponential, stationary and iron-restricted growth conditions. The suitability of selected reference genes for reliable interpretation of gene expression data was tested using the virulence-associated intracellular growth locus subunit C (iglC) gene. Conclusion Although the transcription stability of the reference genes was slightly different in the three strains studied, fopA, ftsZ and polA proved to be the most stable and suitable for normalization of gene transcription in Francisella noatunensis ssp.
Collapse
Affiliation(s)
- Espen Brudal
- Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, PO Box 8146 Dep, Oslo 0033, Norway
| | | | | | | |
Collapse
|
22
|
Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection. Infect Immun 2012; 80:2878-85. [PMID: 22689811 DOI: 10.1128/iai.00543-12] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interleukin-1 family of cytokines are essential for the control of pathogenic microbes but are also responsible for devastating autoimmune pathologies. Consequently, tight regulation of inflammatory processes is essential for maintaining homeostasis. In mammals, interleukin-1 beta (IL-1β) is primarily regulated at two levels, transcription and processing. The main pathway for processing IL-1β is the inflammasome, a multiprotein complex that forms in the cytosol and which results in the activation of inflammatory caspase (caspase 1) and the subsequent cleavage and secretion of active IL-1β. Although zebrafish encode orthologs of IL-1β and inflammatory caspases, the processing of IL-1β by activated caspase(s) has never been examined. Here, we demonstrate that in response to infection with the fish-specific bacterial pathogen Francisella noatunensis, primary leukocytes from adult zebrafish display caspase-1-like activity that results in IL-1β processing. Addition of caspase 1 or pancaspase inhibitors considerably abrogates IL-1β processing. As in mammals, this processing event is concurrent with the secretion of cleaved IL-1β into the culture medium. Furthermore, two putative zebrafish inflammatory caspase orthologs, caspase A and caspase B, are both able to cleave IL-1β, but with different specificities. These results represent the first demonstration of processing and secretion of zebrafish IL-1β in response to a pathogen, contributing to our understanding of the evolutionary processes governing the regulation of inflammation.
Collapse
|
23
|
Soto E, Revan F. Culturability and persistence of Francisella noatunensis subsp. orientalis (syn. Francisella asiatica) in sea- and freshwater microcosms. MICROBIAL ECOLOGY 2012; 63:398-404. [PMID: 21881943 DOI: 10.1007/s00248-011-9932-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/17/2011] [Indexed: 05/31/2023]
Abstract
Francisella noatunensis subsp. orientalis (syn. Francisella asiatica), the causative agent of franciselliosis in warm-water fish, is a Gram-negative facultative intracellular bacterium. Although it has been characterized as one of the most pathogenic bacteria in fish, the water conditions that allow for its survival and infectious capacities outside the fish host are not known. Data obtained in this project indicate that both temperature and salinity are important factors in the culturability and persistence of F. noatunensis subsp. orientalis in both sea- and freshwater microcosms. These results indicate that culturable F. noatunensis subsp. orientalis persist for longer periods of time and at higher numbers in seawater, and its persistence is inversely related to water temperature. Moreover, the pathogenic properties of the bacteria suspended in water microcosms appear to decrease after only 24 h and become non-infective after 2 days in the absence of the fish host.
Collapse
Affiliation(s)
- Esteban Soto
- Department of Pathobiology, School of Veterinary Medicine, Basseterre, Ross University School of Veterinary Medicine, West Farm, Basseterre, St. Kitts, West Indies.
| | | |
Collapse
|
24
|
Bakkemo KR, Mikkelsen H, Bordevik M, Torgersen J, Winther-Larsen HC, Vanberg C, Olsen R, Johansen LH, Seppola M. Intracellular localisation and innate immune responses following Francisella noatunensis infection of Atlantic cod (Gadus morhua) macrophages. FISH & SHELLFISH IMMUNOLOGY 2011; 31:993-1004. [PMID: 21896333 DOI: 10.1016/j.fsi.2011.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/19/2011] [Accepted: 08/20/2011] [Indexed: 05/31/2023]
Abstract
The facultative intracellular bacterium Francisella noatunensis causes francisellosis in Atlantic cod (Gadus morhua), but little is known about its survival strategies or how these bacteria evade the host immune response. In this study we show intracellular localisation of F. noatunensis in cod macrophages using indirect immunofluorescence techniques and green fluorescent labelled bacteria. Transmission electron microscopy revealed that F. noatunensis was enclosed by a phagosomal membrane during the initial phase of infection. Bacteria were at a later stage of the infection found in large electron-lucent zones, apparently surrounded by a partially intact or disintegrated membrane. Immune electron microscopy demonstrated the release of bacterial derived vesicles from intracellular F. noatunensis, an event suspected of promoting phagosomal membrane degradation and allowing escape of the bacteria to cytoplasm. Studies of macrophages infected with F. noatunensis demonstrated a weak activation of the inflammatory response genes as measured by increased expression of the Interleukin (IL)-1β and IL-8. In comparison, a stronger induction of gene expression was found for the anti-inflammatory IL-10 indicating that the bacterium exhibits a role in down-regulating the inflammatory response. Expression of the p40 subunit of IL-12/IL-17 genes was highly induced during infection suggesting that F. noatunensis promotes T cell polarisation. The host macrophage responses studied here showed low ability to distinguish between live and inactivated bacteria, although other types of responses could be of importance for such discriminations. The immunoreactivity of F. noatunensis lipopolysaccharide (LPS) was very modest, in contrast to the strong capacity of Escherichia coli LPS to induce inflammatory responsive genes. These results suggest that F. noatunensis virulence mechanisms cover many strategies for intracellular survival in cod macrophages.
Collapse
|
25
|
Gjessing MC, Inami M, Weli SC, Ellingsen T, Falk K, Koppang EO, Kvellestad A. Presence and interaction of inflammatory cells in the spleen of Atlantic cod, Gadus morhua L., infected with Francisella noatunensis. JOURNAL OF FISH DISEASES 2011; 34:687-699. [PMID: 21838712 DOI: 10.1111/j.1365-2761.2011.01284.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Serious infectious diseases, accompanied by macrophage-dominated chronic inflammation, are common in farmed Atlantic cod. To increase knowledge relating to morphological aspects of such inflammatory responses, cod were challenged with Francisella noatunensis, an important bacterial pathogen of this fish species. Tissue and cell dynamics in the spleen were examined sequentially over 60 days. Small clusters of mainly macrophage-like cells (MLCs) staining for non-specific esterase and acid phosphatase developed with time. These foci were transiently infiltrated by pleomorphic proliferating cells of unknown nature and by granulocyte-like cells (GCLCs) staining for peroxidase and lysozyme. The latter cell type, which appeared to be resident in the red pulp of control fish, migrated into the inflammatory foci of infected fish. Cells expressing genes encoding IFN-γ and IL-8 increased in number during the study period. Bacteria were detected only in the MLCs and their number increased despite the extensive inflammation. Our results demonstrate an intimate spatial relationship in inflammatory foci between at least three cell types. The presence of GCLCs, together with MLCs, suggests pyogranulomatous inflammation as a more appropriate descriptive term than granulomatous inflammation.
Collapse
|
26
|
Colquhoun DJ, Duodu S. Francisella infections in farmed and wild aquatic organisms. Vet Res 2011; 42:47. [PMID: 21385413 PMCID: PMC3060124 DOI: 10.1186/1297-9716-42-47] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 03/08/2011] [Indexed: 01/08/2023] Open
Abstract
Over the last 10 years or so, infections caused by bacteria belonging to a particular branch of the genus Francisella have become increasingly recognised in farmed fish and molluscs worldwide. While the increasing incidence of diagnoses may in part be due to the development and widespread availability of molecular detection techniques, the domestication of new organisms has undoubtedly instigated emergence of clinical disease in some species. Francisellosis in fish develops in a similar fashion independent of host species and is commonly characterised by the presence of multi-organ granuloma and high morbidity, with varying associated mortality levels. A number of fish species are affected including Atlantic cod, Gadus morhua; tilapia, Oreochromis sp.; Atlantic salmon, Salmo salar; hybrid striped bass, Morone chrysops × M. saxatilis and three-lined grunt, Parapristipoma trilinineatum. The disease is highly infectious and often prevalent in affected stocks. Most, if not all strains isolated from teleost fish belong to either F. noatunensis subsp. orientalis in warm water fish species or Francisella noatunensis subsp. noatunensis in coldwater fish species. The disease is quite readily diagnosed following histological examination and identification of the aetiological bacterium by culture on cysteine rich media or PCR. The available evidence may indicate a degree of host specificity for the various Francisella strains, although this area requires further study. No effective vaccine is currently available. Investigation of the virulence mechanisms and host response shows similarity to those known from Francisella tularensis infection in mammals. However, no evidence exists for zoonotic potential amongst the fish pathogenic Francisella.
Collapse
Affiliation(s)
- Duncan J Colquhoun
- Section for Fish health, National Veterinary Institute, Postbox 750 sentrum, 0106 Oslo, Norway.
| | | |
Collapse
|
27
|
Birkbeck TH, Feist SW, Verner-Jeffreys DW. Francisella infections in fish and shellfish. JOURNAL OF FISH DISEASES 2011; 34:173-187. [PMID: 21306585 DOI: 10.1111/j.1365-2761.2010.01226.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A series of recent reports have implicated bacteria from the family Francisellaceae as the cause of disease in farmed and wild fish and shellfish species such as Atlantic cod, Gadus morhua L., tilapia, Oreochromis spp., Atlantic salmon, Salmo salar L., three-line grunt, Parapristipoma trilineatum (Thunberg), ornamental cichlid species, hybrid striped bass Morone chrysops x M. saxatilis and, recently, a shellfish species, the giant abalone, Haliotisgigantea Gmelin. The range of taxa affected will very probably rise as it is likely that there has been considerable under-reporting to date of these disease agents. In common with other Francisella species, their isolation and culture require specialized solid and liquid media containing cysteine and a source of iron. This likely restricted earlier efforts to identify them correctly as the cause of disease in aquatic animals. The most information to date relates to disease in cod, caused by F. noatunensis and tilapia, caused by F. noatunensis subsp. orientalis (also termed F. asiatica), both causing granulomatous inflammatory reactions. Mortalities in both species can be high and, as the disease can likely be transferred via live fish movements, they pose a significant threat to tilapia and cod aquaculture operations. Although the fish-pathogenic Francisella species are classified in the same genus as the human pathogens F. tularensis, causative agent of tularemia, and F. philomiragia, the risk to humans from the fish and shellfish pathogenic Francisella species is considered very low.
Collapse
Affiliation(s)
- T H Birkbeck
- University of London Marine Biological Station, Millport, Isle of Cumbrae, Scotland, UK
| | | | | |
Collapse
|
28
|
In vitro and in vivo efficacy of florfenicol for treatment of Francisella asiatica infection in tilapia. Antimicrob Agents Chemother 2010; 54:4664-70. [PMID: 20713674 DOI: 10.1128/aac.00206-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella asiatica is a recently described, Gram-negative, facultative intracellular fish pathogen, known to be the causative agent of francisellosis in warm-water fish. Francisellosis outbreaks have increased in frequency among commercial aquaculture operations and have caused severe economic losses in every case reported. The lack of effective treatments for piscine francisellosis led us to investigate the potential efficacy of florfenicol for inhibition of F. asiatica in vitro and as an oral therapeutic agent in vivo. The MIC of florfenicol for F. asiatica, as determined by the broth dilution method, was 2 μg/ml, which indicates its potential efficacy as a therapeutic agent for treatment of francisellosis. The intracellular susceptibility of the bacterium to florfenicol in tilapia head kidney-derived macrophages (THKDM) was also investigated. Addition of florfenicol to the medium at 10 μg/ml was sufficient to significantly reduce bacterial loads in the THKDM in vitro. Cytotoxicity assays done in infected THKDM also demonstrated drug efficacy in vivo, as determined by lactate dehydrogenase (LDH) release. Levels of LDH released from infected THKDM were significantly lower in macrophages treated with florfenicol (P < 0.001) than in untreated cells. In medicated-feed trials, fish were fed 15 mg of florfenicol/kg of fish body weight for 10 days, and the feeding was initiated at either 1, 3, or 6 days postchallenge. Immersion challenges resulted in 30% mean percent survival in nontreated fish, and fish receiving medicated feed administered at 1 and 3 days postinfection showed higher mean percent survival (100% and 86.7%, respectively). A significant decrease (P < 0.001) in bacterial numbers (number of CFU/g of spleen tissue) was observed in treated groups compared to nontreated infected fish at both 1 and 3 days postchallenge. There were no differences in bacterial burden in the spleens between fish treated 6 days postchallenge and untreated controls. In conclusion, if florfenicol is administered during early stages of infection, it has the potential for effectively treating piscine francisellosis, including the capacity for intracellular penetration and bacterial clearance.
Collapse
|
29
|
Soto E, Wiles J, Elzer P, Macaluso K, Hawke JP. Attenuated Francisella asiatica iglC mutant induces protective immunity to francisellosis in tilapia. Vaccine 2010; 29:593-8. [PMID: 20600508 DOI: 10.1016/j.vaccine.2010.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/15/2010] [Accepted: 06/10/2010] [Indexed: 11/18/2022]
Abstract
Francisella asiatica is a Gram-negative, facultative intracellular bacteria that causes fish francisellosis. Fish francisellosis is a severe sub-acute to chronic granulomatous disease with high mortalities and high infectivity rates in cultured and wild fish. To date, there is no approved vaccine for this widespread emergent disease. The goal of this study was to characterize the efficacy of a defined F. asiatica mutant (ΔiglC) as a live attenuated vaccine against subsequent immersion challenge with the wild-type (WT) organism. In previous work, the ΔiglC was found to be attenuated upon intraperitoneal injection and immersion challenges. In vitro, the ΔiglC exhibited reduced growth in tilapia head-kidney derived macrophages, and was significantly attenuated (p<0.001) as demonstrated by cytopathogenic and apoptosis assays. In this study, the ΔiglC was tested to determine its ability to protect tilapia against challenge with high doses (lethal dose 80) of WT bacteria. Naïve tilapia vaccinated by immersion with a suspension of the ΔiglC and subsequently challenged with WT F. asiatica were protected (90% mean percent survival) from the lethal challenges. F. asiatica-specific antibodies produced in response to immunization with the ΔiglC were subsequently found to protect naïve tilapia against high-dose F. asiatica challenge in passive immunization experiments. Significant protection (p<0.001) was obtained when fish were passively immunized and challenged with 10(4) and 10(5)CFU/fish of WT F. asiatica; but not when challenged with 10(6)CFU/fish. This is the first report of a defined live attenuated strain providing protection against F. asiatica in fish.
Collapse
Affiliation(s)
- Esteban Soto
- Department of Pathobiological Sciences, Louisiana State University (LSU)-School of Veterinary Medicine, Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|