1
|
Smith OER, Bharat TAM. Architectural dissection of adhesive bacterial cell surface appendages from a "molecular machines" viewpoint. J Bacteriol 2024; 206:e0029024. [PMID: 39499080 PMCID: PMC7616799 DOI: 10.1128/jb.00290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The ability of bacteria to interact with and respond to their environment is crucial to their lifestyle and survival. Bacterial cells routinely need to engage with extracellular target molecules, in locations spatially separated from their cell surface. Engagement with distant targets allows bacteria to adhere to abiotic surfaces and host cells, sense harmful or friendly molecules in their vicinity, as well as establish symbiotic interactions with neighboring cells in multicellular communities such as biofilms. Binding to extracellular molecules also facilitates transmission of information back to the originating cell, allowing the cell to respond appropriately to external stimuli, which is critical throughout the bacterial life cycle. This requirement of bacteria to bind to spatially separated targets is fulfilled by a myriad of specialized cell surface molecules, which often have an extended, filamentous arrangement. In this review, we compare and contrast such molecules from diverse bacteria, which fulfil a range of binding functions critical for the cell. Our comparison shows that even though these extended molecules have vastly different sequence, biochemical and functional characteristics, they share common architectural principles that underpin bacterial adhesion in a variety of contexts. In this light, we can consider different bacterial adhesins under one umbrella, specifically from the point of view of a modular molecular machine, with each part fulfilling a distinct architectural role. Such a treatise provides an opportunity to discover fundamental molecular principles governing surface sensing, bacterial adhesion, and biofilm formation.
Collapse
Affiliation(s)
- Olivia E. R. Smith
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
2
|
Grunnvåg JS, Hegstad K, Lentz CS. Activity-based protein profiling of serine hydrolases and penicillin-binding proteins in Enterococcus faecium. FEMS MICROBES 2024; 5:xtae015. [PMID: 38813097 PMCID: PMC11134295 DOI: 10.1093/femsmc/xtae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is a gut commensal bacterium which is gaining increasing relevance as an opportunistic, nosocomial pathogen. Its high level of intrinsic and acquired antimicrobial resistance is causing a lack of treatment options, particularly for infections with vancomycin-resistant strains, and prioritizes the identification and functional validation of novel druggable targets. Here, we use activity-based protein profiling (ABPP), a chemoproteomics approach using functionalized covalent inhibitors, to detect active serine hydrolases across 11 E. faecium and Enterococcus lactis strains. Serine hydrolases are a big and diverse enzyme family, that includes known drug targets such as penicillin-binding proteins (PBPs), whereas other subfamilies are underexplored. Comparative gel-based ABPP using Bocillin-FL revealed strain- and growth condition-dependent variations in PBP activities. Profiling with the broadly serine hydrolase-reactive fluorescent probe fluorophosphonate-TMR showed a high similarity across E. faecium clade A1 strains, but higher variation across A2 and E. lactis strains. To identify these serine hydrolases, we used a biotinylated probe analog allowing for enrichment and identification via liquid chromatography-mass spectrometry. We identified 11 largely uncharacterized targets (α,β-hydrolases, SGNH-hydrolases, phospholipases, and amidases, peptidases) that are druggable and accessible in live vancomycin-resistant E. faecium E745 and may possess vital functions that are to be characterized in future studies.
Collapse
Affiliation(s)
- Jeanette S Grunnvåg
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, P.O. Box 56, 9038 Tromsø, Norway
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| |
Collapse
|
3
|
Jackson JJ, Heyer S, Bell G. Sortase-encoding genes, srtA and srtC, mediate Enterococcus faecalis OG1RF persistence in the Helicoverpa zea gastrointestinal tract. Front Microbiol 2024; 15:1322303. [PMID: 38562482 PMCID: PMC10982312 DOI: 10.3389/fmicb.2024.1322303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Enterococcus faecalis is a commensal and opportunistic pathogen in the gastrointestinal (GI) tract of mammals and insects. To investigate mechanisms of bacterial persistence in the gastrointestinal tract (GIT), we developed a non-destructive sampling model using Helicoverpa zea, a destructive agricultural pest, as host to study the role of bacterial sortase enzymes in mitigating persistence in the gastrointestinal tract. E. faecalis OG1RF ΔsrtA and E. faecalis OG1RF ΔsrtC, isogenic E. faecalis OG1RF sortase mutants grew similarly under planktonic growth conditions relative to a streptomycin-resistant E. faecalis OG1RFS WT in vitro but displayed impaired biofilm formation under, both, physiological and alkaline conditions. In the H. zea GI model, both mutants displayed impaired persistence relative to the WT. This represents one of the initial reports in which a non-destructive insect model has been used to characterize mechanisms of bacterial persistence in the Lepidopteran midgut and, furthermore, sheds light on new molecular mechanisms employed by diverse microorganisms to associate with invertebrate hosts.
Collapse
Affiliation(s)
- Jerreme J. Jackson
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, United States
| | | | | |
Collapse
|
4
|
Kumar L, Bisen M, Harjai K, Chhibber S, Azizov S, Lalhlenmawia H, Kumar D. Advances in Nanotechnology for Biofilm Inhibition. ACS OMEGA 2023; 8:21391-21409. [PMID: 37360468 PMCID: PMC10286099 DOI: 10.1021/acsomega.3c02239] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Biofilm-associated infections have emerged as a significant public health challenge due to their persistent nature and increased resistance to conventional treatment methods. The indiscriminate usage of antibiotics has made us susceptible to a range of multidrug-resistant pathogens. These pathogens show reduced susceptibility to antibiotics and increased intracellular survival. However, current methods for treating biofilms, such as smart materials and targeted drug delivery systems, have not been found effective in preventing biofilm formation. To address this challenge, nanotechnology has provided innovative solutions for preventing and treating biofilm formation by clinically relevant pathogens. Recent advances in nanotechnological strategies, including metallic nanoparticles, functionalized metallic nanoparticles, dendrimers, polymeric nanoparticles, cyclodextrin-based delivery, solid lipid nanoparticles, polymer drug conjugates, and liposomes, may provide valuable technological solutions against infectious diseases. Therefore, it is imperative to conduct a comprehensive review to summarize the recent advancements and limitations of advanced nanotechnologies. The present Review encompasses a summary of infectious agents, the mechanisms that lead to biofilm formation, and the impact of pathogens on human health. In a nutshell, this Review offers a comprehensive survey of the advanced nanotechnological solutions for managing infections. A detailed presentation has been made as to how these strategies may improve biofilm control and prevent infections. The key objective of this Review is to summarize the mechanisms, applications, and prospects of advanced nanotechnologies to provide a better understanding of their impact on biofilm formation by clinically relevant pathogens.
Collapse
Affiliation(s)
- Lokender Kumar
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
- Cancer
Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Kusum Harjai
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Shavkatjon Azizov
- Laboratory
of Biological Active Macromolecular Systems, Institute of Bioorganic
Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
- Faculty
of Life Sciences, Pharmaceutical Technical
University, Tashkent 100084, Uzbekistan
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh173229, India
| |
Collapse
|
5
|
Enterococcus Virulence and Resistant Traits Associated with Its Permanence in the Hospital Environment. Antibiotics (Basel) 2022; 11:antibiotics11070857. [PMID: 35884110 PMCID: PMC9311936 DOI: 10.3390/antibiotics11070857] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Enterococcus are opportunistic pathogens that have been gaining importance in the clinical setting, especially in terms of hospital-acquired infections. This problem has mainly been associated with the fact that these bacteria are able to present intrinsic and extrinsic resistance to different classes of antibiotics, with a great deal of importance being attributed to vancomycin-resistant enterococci. However, other aspects, such as the expression of different virulence factors including biofilm-forming ability, and its capacity of trading genetic information, makes this bacterial genus more capable of surviving harsh environmental conditions. All these characteristics, associated with some reports of decreased susceptibility to some biocides, all described in this literary review, allow enterococci to present a longer survival ability in the hospital environment, consequently giving them more opportunities to disseminate in these settings and be responsible for difficult-to-treat infections.
Collapse
|
6
|
Lepold AM, Tesfamichael DH, Hartmann FA, Wiley CA, Wood MW. Comparison of urine fibrinogen and interleukin-6 concentrations between healthy dogs and dogs with risk factors for enterococcal bacteriuria. Am J Vet Res 2021; 82:846-852. [PMID: 34554867 DOI: 10.2460/ajvr.82.10.846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare urine concentrations of fibrinogen (uFIB) and interleukin-6 (uIL-6) between dogs with risk factors for enterococcal bacteriuria and healthy dogs. SAMPLE Banked urine samples with negative aerobic culture results from 8 dogs with urolithiasis, 9 dogs with anatomic abnormalities of the lower portion of the urinary tract (LUT), 10 dogs with LUT neoplasia, and 21 healthy control dogs. PROCEDURES Urine creatinine concentration (uCrea) was determined by an automated biochemical analyzer, and uFIB and uIL-6 were determined by dog-specific ELISAs. The uFIB:uCrea and uIL-6:uCrea ratios were calculated for each sample to normalize intersample differences in urine concentration and were compared among the 4 experimental groups. RESULTS Median uFIB:uCrea ratios for dogs with urolithiasis (0.72; interquartile [25th to 75 percentile] range [IQR], 0.46 to 3.48) and LUT neoplasia (6.16; IQR, 3.89 to 12.75), but not for dogs with LUT anatomic abnormalities (0.48; IQR, 0.27 to 0.69), were significantly greater than that for control dogs (0.17; IQR, 0.07 to 0.39). Median uIL-6: uCrea ratios for dogs with urolithiasis (0.48; IQR, 0.18 to 1.61), LUT anatomic abnormalities (0.25; IQR, 0.17 to 0.33), and LUT neoplasia (0.25; IQR, 0.12 to 1.01) were significantly greater than that for control dogs (0.08; IQR, 0.06 to 0.11). CONCLUSIONS AND CLINICAL RELEVANCE The uFIB and uIL-6 in dogs with risk factors for enterococcal bacteriuria were generally greater than corresponding values in control dogs. Further investigation is necessary to determine the role of fibrinogen in enterococcal colonization of the urinary tract of dogs.
Collapse
|
7
|
Revtovich AV, Tjahjono E, Singh KV, Hanson BM, Murray BE, Kirienko NV. Development and Characterization of High-Throughput Caenorhabditis elegans - Enterococcus faecium Infection Model. Front Cell Infect Microbiol 2021; 11:667327. [PMID: 33996637 PMCID: PMC8116795 DOI: 10.3389/fcimb.2021.667327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
The genus Enterococcus includes two Gram-positive pathogens of particular clinical relevance: E. faecalis and E. faecium. Infections with each of these pathogens are becoming more frequent, particularly in the case of hospital-acquired infections. Like most other bacterial species of clinical importance, antimicrobial resistance (and, specifically, multi-drug resistance) is an increasing threat, with both species considered to be of particular importance by the World Health Organization and the US Centers for Disease Control. The threat of antimicrobial resistance is exacerbated by the staggering difference in the speeds of development for the discovery and development of the antimicrobials versus resistance mechanisms. In the search for alternative strategies, modulation of host-pathogen interactions in general, and virulence inhibition in particular, have drawn substantial attention. Unfortunately, these approaches require a fairly comprehensive understanding of virulence determinants. This requirement is complicated by the fact that enterococcal infection models generally require vertebrates, making them slow, expensive, and ethically problematic, particularly when considering the thousands of animals that would be needed for the early stages of experimentation. To address this problem, we developed the first high-throughput C. elegans-E. faecium infection model involving host death. Importantly, this model recapitulates many key aspects of murine peritonitis models, including utilizing similar virulence determinants. Additionally, host death is independent of peroxide production, unlike other E. faecium-C. elegans virulence models, which allows the assessment of other virulence factors. Using this system, we analyzed a panel of lab strains with deletions of targeted virulence factors. Although removal of certain virulence factors (e.g., Δfms15) was sufficient to affect virulence, multiple deletions were generally required to affect pathogenesis, suggesting that host-pathogen interactions are multifactorial. These data were corroborated by genomic analysis of selected isolates with high and low levels of virulence. We anticipate that this platform will be useful for identifying new treatments for E. faecium infection.
Collapse
Affiliation(s)
| | - Elissa Tjahjono
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Kavindra V. Singh
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Blake M. Hanson
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Barbara E. Murray
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | |
Collapse
|
8
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
9
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Risks associated with enterococci as probiotics. Food Res Int 2019; 129:108788. [PMID: 32036912 DOI: 10.1016/j.foodres.2019.108788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
Probiotics are naturally occurring microorganisms that confer health benefits by altering host commensal microbiota, modulating immunity, enhancing intestinal barrier function, or altering pain perception. Enterococci are human and animal intestinal commensals that are used as probiotics and in food production. These microorganisms, however, express many virulence traits including cytolysin, proteases, aggregation substance, capsular polysaccharide, enterococcal surface protein, biofilm formation, extracellular superoxide, intestinal translocation, and resistance to innate immunity that can lead to serious hospital-acquired infections. In addition, enterococci are facile in acquiring antibiotic resistance genes to many clinically important antibiotics encoded on a wide variety of conjugative plasmids, transposons, and bacteriophages. The pathogenicity and disease burden caused by enterococci render them poor choices as probiotics. No large, randomized, placebo-controlled clinical trials have demonstrated the safety and efficacy of any enterococcal probiotic. As a result, no enterococcal probiotic has been approved by the United States Food and Drug Administration for the treatment, cure, or amelioration of human disease. In 2007, the European Food Safety Authority concluded that enterococci do not meet the standard for "Qualified Presumption of Safety". Enterococcal strains used or proposed for use as probiotics should be carefully screened for efficacy and safety.
Collapse
|
11
|
D'Souza AW, Potter RF, Wallace M, Shupe A, Patel S, Sun X, Gul D, Kwon JH, Andleeb S, Burnham CAD, Dantas G. Spatiotemporal dynamics of multidrug resistant bacteria on intensive care unit surfaces. Nat Commun 2019; 10:4569. [PMID: 31594927 PMCID: PMC6783542 DOI: 10.1038/s41467-019-12563-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial pathogens that infect patients also contaminate hospital surfaces. These contaminants impact hospital infection control and epidemiology, prompting quantitative examination of their transmission dynamics. Here we investigate spatiotemporal and phylogenetic relationships of multidrug resistant (MDR) bacteria on intensive care unit surfaces from two hospitals in the United States (US) and Pakistan collected over one year. MDR bacteria isolated from 3.3% and 86.7% of US and Pakistani surfaces, respectively, include common nosocomial pathogens, rare opportunistic pathogens, and novel taxa. Common nosocomial isolates are dominated by single lineages of different clones, are phenotypically MDR, and have high resistance gene burdens. Many resistance genes (e.g., blaNDM, blaOXA carbapenamases), are shared by multiple species and flanked by mobilization elements. We identify Acinetobacter baumannii and Enterococcus faecium co-association on multiple surfaces, and demonstrate these species establish synergistic biofilms in vitro. Our results highlight substantial MDR pathogen burdens in hospital built-environments, provide evidence for spatiotemporal-dependent transmission, and demonstrate potential mechanisms for multi-species surface persistence.
Collapse
Affiliation(s)
- Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert F Potter
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela Shupe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanket Patel
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoqing Sun
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danish Gul
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology Islamabad, Islamabad, Pakistan
| | - Jennie H Kwon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology Islamabad, Islamabad, Pakistan.
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
12
|
Ch’ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by enterococci. Nat Rev Microbiol 2018; 17:82-94. [DOI: 10.1038/s41579-018-0107-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Tomlin H, Piccinini AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 2018; 155:186-201. [PMID: 29908065 PMCID: PMC6142291 DOI: 10.1111/imm.12972] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
The role of the host extracellular matrix (ECM) in infection tends to be neglected. However, the complex interactions between invading pathogens, host tissues and immune cells occur in the context of the ECM. On the pathogen side, a variety of surface and secreted molecules, including microbial surface components recognizing adhesive matrix molecules and tissue-degrading enzymes, are employed that interact with different ECM proteins to effectively establish an infection at specific sites. Microbial pathogens can also hijack or misuse host proteolytic systems to modify the ECM, evade immune responses or process biologically active molecules such as cell surface receptors and cytokines that direct cell behaviour and immune defence. On the host side, the ECM composition and three-dimensional ultrastructure undergo significant modifications, which have a profound impact on the specific signals that the ECM conveys to immune cells at the forefront of infection. Unexpectedly, activated immune cells participate in the remodelling of the local ECM by synthesizing ECM glycoproteins, proteoglycans and collagen molecules. The close interplay between the ECM and the innate immune response to microbial pathogens ultimately affects the outcome of infection. This review explores and discusses recent data that implicate an active role for the ECM in the immune response to infection, encompassing antimicrobial activities, microbial recognition, macrophage activation, phagocytosis, leucocyte population balance, and transcriptional and post-transcriptional regulation of inflammatory networks, and may foster novel antimicrobial approaches.
Collapse
Affiliation(s)
- Hannah Tomlin
- School of PharmacyUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
14
|
In Vivo and In Vitro Effects of a ClpP-Activating Antibiotic against Vancomycin-Resistant Enterococci. Antimicrob Agents Chemother 2018; 62:AAC.00424-18. [PMID: 29784838 DOI: 10.1128/aac.00424-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/06/2018] [Indexed: 01/14/2023] Open
Abstract
Antibiotics with novel bactericidal mechanisms of action are urgently needed. The antibiotic acyldepsipeptide 4 (ADEP4) activates the ClpP protease and causes cells to self-digest. The effects of ADEP4 and ClpP activation have not been characterized sufficiently for the enterococci, which are important pathogens known for high levels of acquired and intrinsic antibiotic resistance. In the present study, ADEP4 was found to be potently active against both Enterococcus faecalis and Enterococcus faecium, with MIC90s of 0.016 μg/ml and 0.031 μg/ml, respectively. ClpP purified from E. faecium was found to bind ADEP4 in a surface plasmon resonance analysis, and ClpP activation by ADEP4 was demonstrated biochemically with a β-casein digestion assay. In addition, E. faecium ClpP was crystallized in the presence of ADEP4, revealing ADEP4 binding to ClpP in the activated state. These results confirm that the anti-enterococcal activity of ADEP4 occurs through ClpP activation. In killing curve assays, ADEP4 was found to be bactericidal against stationary-phase vancomycin-resistant E. faecalis (VRE) strain V583, and resistance development was prevented when ADEP4 was combined with multiple classes of approved antibiotics. ADEP4 in combination with partnering antibiotics also eradicated mature VRE biofilms within 72 h of treatment. Biofilm killing with ADEP4 antibiotic combinations was superior to that with the clinically used combinations ampicillin-gentamicin and ampicillin-daptomycin. In a murine peritoneal septicemia model, ADEP4 alone was as effective as ampicillin. ADEP4 coadministered with ampicillin was significantly more effective than either drug alone. These data suggest that ClpP-activating antibiotics may be useful for treating enterococcal infections.
Collapse
|
15
|
Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol 2017; 41:76-82. [PMID: 29227922 DOI: 10.1016/j.mib.2017.11.030] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/29/2022]
Abstract
Enterococci are long-standing members of the human microbiome and they are also widely distributed in nature. However, with the surge of antibiotic-resistance in recent decades, two enterococcal species (Enterococcus faecalis and Enterococcus faecium) have emerged to become significant nosocomial pathogens, acquiring extensive antibiotic resistance. In this review, we summarize what is known about the evolution of virulence in E. faecium, highlighting a specific clone of E. faecium called ST796 that has emerged recently and spread globally.
Collapse
Affiliation(s)
- Wei Gao
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia; Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
16
|
Zhang X, de Maat V, Guzmán Prieto AM, Prajsnar TK, Bayjanov JR, de Been M, Rogers MRC, Bonten MJM, Mesnage S, Willems RJL, van Schaik W. RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genomics 2017; 18:893. [PMID: 29162049 PMCID: PMC5699109 DOI: 10.1186/s12864-017-4299-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022] Open
Abstract
Background The Gram-positive bacterium Enterococcus faecium is a commensal of the human gastrointestinal tract and a frequent cause of bloodstream infections in hospitalized patients. The mechanisms by which E. faecium can survive and grow in blood during an infection have not yet been characterized. Here, we identify genes that contribute to growth of E. faecium in human serum through transcriptome profiling (RNA-seq) and a high-throughput transposon mutant library sequencing approach (Tn-seq). Results We first sequenced the genome of E. faecium E745, a vancomycin-resistant clinical isolate, using a combination of short- and long read sequencing, revealing a 2,765,010 nt chromosome and 6 plasmids, with sizes ranging between 9.3 kbp and 223.7 kbp. We then compared the transcriptome of E. faecium E745 during exponential growth in rich medium and in human serum by RNA-seq. This analysis revealed that 27.8% of genes on the E. faecium E745 genome were differentially expressed in these two conditions. A gene cluster with a role in purine biosynthesis was among the most upregulated genes in E. faecium E745 upon growth in serum. The E. faecium E745 transposon mutant library was then used to identify genes that were specifically required for growth of E. faecium in serum. Genes involved in de novo nucleotide biosynthesis (including pyrK_2, pyrF, purD, purH) and a gene encoding a phosphotransferase system subunit (manY_2) were thus identified to be contributing to E. faecium growth in human serum. Transposon mutants in pyrK_2, pyrF, purD, purH and manY_2 were isolated from the library and their impaired growth in human serum was confirmed. In addition, the pyrK_2 and manY_2 mutants were tested for their virulence in an intravenous zebrafish infection model and exhibited significantly attenuated virulence compared to E. faecium E745. Conclusions Genes involved in carbohydrate metabolism and nucleotide biosynthesis of E. faecium are essential for growth in human serum and contribute to the pathogenesis of this organism. These genes may serve as targets for the development of novel anti-infectives for the treatment of E. faecium bloodstream infections. Electronic supplementary material The online version of this article (10.1186/s12864-017-4299-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinglin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.,Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Vincent de Maat
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Ana M Guzmán Prieto
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Tomasz K Prajsnar
- Krebs Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Mark de Been
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands. .,Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
17
|
Goh HMS, Yong MHA, Chong KKL, Kline KA. Model systems for the study of Enterococcal colonization and infection. Virulence 2017; 8:1525-1562. [PMID: 28102784 PMCID: PMC5810481 DOI: 10.1080/21505594.2017.1279766] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are common inhabitants of the human gastrointestinal tract, as well as frequent opportunistic pathogens. Enterococci cause a range of infections including, most frequently, infections of the urinary tract, catheterized urinary tract, bloodstream, wounds and surgical sites, and heart valves in endocarditis. Enterococcal infections are often biofilm-associated, polymicrobial in nature, and resistant to antibiotics of last resort. Understanding Enterococcal mechanisms of colonization and pathogenesis are important for identifying new ways to manage and intervene with these infections. We review vertebrate and invertebrate model systems applied to study the most common E. faecalis and E. faecium infections, with emphasis on recent findings examining Enterococcal-host interactions using these models. We discuss strengths and shortcomings of each model, propose future animal models not yet applied to study mono- and polymicrobial infections involving E. faecalis and E. faecium, and comment on the significance of anti-virulence strategies derived from a fundamental understanding of host-pathogen interactions in model systems.
Collapse
Affiliation(s)
- H. M. Sharon Goh
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - M. H. Adeline Yong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
18
|
Sinel C, Augagneur Y, Sassi M, Bronsard J, Cacaci M, Guérin F, Sanguinetti M, Meignen P, Cattoir V, Felden B. Small RNAs in vancomycin-resistant Enterococcus faecium involved in daptomycin response and resistance. Sci Rep 2017; 7:11067. [PMID: 28894187 PMCID: PMC5593968 DOI: 10.1038/s41598-017-11265-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Vancomycin-resistant Enterococcus faecium is a leading cause of hospital-acquired infections and outbreaks. Regulatory RNAs (sRNAs) are major players in adaptive responses, including antibiotic resistance. They were extensively studied in gram-negative bacteria, but less information is available for gram-positive pathogens. No sRNAs are described in E. faecium. We sought to identify a set of sRNAs expressed in vancomycin-resistant E. faecium Aus0004 strain to assess their roles in daptomycin response and resistance. Genomic and transcriptomic analyses revealed a set of 61 sRNA candidates, including 10 that were further tested and validated by Northern and qPCR. RNA-seq was performed with and without subinhibitory concentrations (SICs) of daptomycin, an antibiotic used to treat enterococcal infections. After daptomycin SIC exposure, the expression of 260 coding and srna genes was altered, with 80 upregulated and 180 downregulated, including 51% involved in carbohydrate and transport metabolisms. Daptomycin SIC exposure significantly affected the expression of seven sRNAs, including one experimentally confirmed, sRNA_0160. We studied sRNA expression in isogenic mutants with increasing levels of daptomycin resistance and observed that expression of several sRNAs, including sRNA_0160, was modified in the stepwise mutants. This first genome-wide sRNA identification in E. faecium suggests that some sRNAs are linked to antibiotic stress response and resistance.
Collapse
Affiliation(s)
- Clara Sinel
- University of Caen Normandie, EA4655, Caen, France
| | - Yoann Augagneur
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Mohamed Sassi
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Julie Bronsard
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Margherita Cacaci
- Catholic University of Sacred Heart, Institute of Microbiology, Rome, Italy
| | - François Guérin
- University of Caen Normandie, EA4655, Caen, France.,Caen University Hospital, Department of Clinical Microbiology, Caen, France
| | | | - Pierrick Meignen
- University of Caen Normandie, IUT (department "STID"), Caen, France
| | - Vincent Cattoir
- University of Caen Normandie, EA4655, Caen, France. .,Caen University Hospital, Department of Clinical Microbiology, Caen, France. .,National Reference Center for Antimicrobial Resistance (lab Enterococci), Caen, France. .,Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France.
| | - Brice Felden
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France.
| |
Collapse
|
19
|
Steward KF, Robinson C, Maskell DJ, Nenci C, Waller AS. Investigation of the Fim1 putative pilus locus of Streptococcus equi subspecies equi. MICROBIOLOGY-SGM 2017; 163:1217-1228. [PMID: 28749324 DOI: 10.1099/mic.0.000506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Gram-positive bacterium Streptococcus equi subspecies equi (S. equi) is the causative agent of strangles, among the most frequently diagnosed infectious diseases of horses worldwide. Genome analysis of S. equi strain 4047 (Se4047) identified a putative operon, Fim1, with similarity to the pilus loci of other Gram-positive bacteria. The Fim1 locus was present in all strains of S. equi and its close relative S. equi subspecies zooepidemicus (S. zooepidemicus) that have been studied to date. In this study we provide evidence that the putative structural pilus proteins, SEQ_0936 and CNE, are produced on the cell surface during in vitro growth and in vivo infection. Although the proteins encoded within the Fim1 locus are not essential for attachment or biofilm formation, over-transcription of SEQ_0936 and CNE enhanced attachment to equine tissue in vitro. Our data suggest that whilst the Fim1 locus does not produce a polymerized pilus structure, the products of the Fim1 locus may fulfil an adhesive function. The putative pilus-associated regulator, tetR, which contains a nonsense mutation in S. equi, was able to regulate transcription of the Fim1 locus following repair and over-transcription, confirming its predicted role in the operon.
Collapse
Affiliation(s)
- Karen Frances Steward
- Centre of Preventative Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| | - Carl Robinson
- Centre of Preventative Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Chiara Nenci
- Elanco Animal Health, c/o Novartis Animal Health, Inc., Schwarzwaldallee 215, 4058 Basel, Swizerland
| | - Andrew Stephen Waller
- Centre of Preventative Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| |
Collapse
|
20
|
Puchner SE, Döring K, Staats K, Böhler C, Lass R, Hirschl AM, Presterl E, Windhager R, Holinka J. Sonication culture improves microbiological diagnosis of modular megaprostheses. J Orthop Res 2017; 35:1383-1387. [PMID: 27572456 DOI: 10.1002/jor.23406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023]
Abstract
Modular megaprostheses are known for high infection rates followed by high rates of revisions. Microbial biofilms growing adherently on prosthetic surfaces may inhibit the detection of the pathogens causing prosthetic joint infections. We sought to answer the following questions: Does sonication culture (SC) improve the microbiological diagnosis of periprosthetic infections of megaprostheses compared to conventional tissue culture (TC)? Which pathogens were detected on the surface of megaprostheses with either SC or TC and do the findings help to identify low-grade infections? Included were 31 patients with modular megaprostheses, whose implant had been explanted due to suspected joint infection or revision surgery. SCs were performed according to the protocol by Trampuz et al. The diagnosis of infection was evaluated according to the definition of the Musculoskeletal Infection Society. The sensitivity of SC was 91.3% compared to 52.2% for TC and the specificity was 100% for SC and TC (p = 0.004). Under preoperative antibiotic therapy, the sensitivity of SC was 83.3% while the sensitivity of TC was 50%. Without preoperative antibiotic therapy the sensitivity of SC was 100% compared to 54.5% for TC. In nine cases, SCs detected microorganisms, while TC was negative. Detected bacteria were Staphylococcus epidermidis in four, Micrococcus species in one, Finegoldia magna in one, Brevibacterium casei in one, Pseudomonas fluorescens in one, and Enterococcus faecium in one. SC is a reliable method for dislodging pathogens from orthopedic implants. The SC of modular megaprostheses showed significantly higher pathogen detection than the periprosthetic TC, especially for low virulence pathogens. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1383-1387, 2017.
Collapse
Affiliation(s)
- Stephan E Puchner
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Kevin Döring
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Kevin Staats
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Christoph Böhler
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Richard Lass
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Alexander M Hirschl
- Department of Clinical Microbiology, Clinical Institute of Hygiene and Medical Microbiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Elisabeth Presterl
- Deparment of Infection Control and Hospital Epidemiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Reinhard Windhager
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Johannes Holinka
- Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| |
Collapse
|
21
|
Differential Penicillin-Binding Protein 5 (PBP5) Levels in the Enterococcus faecium Clades with Different Levels of Ampicillin Resistance. Antimicrob Agents Chemother 2016; 61:AAC.02034-16. [PMID: 27821450 DOI: 10.1128/aac.02034-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Ampicillin resistance in Enterococcus faecium is a serious concern worldwide, complicating the treatment of E. faecium infections. Penicillin-binding protein 5 (PBP5) is considered the main ampicillin resistance determinant in E. faecium The three known E. faecium clades showed sequence variations in the pbp5 gene that are associated with their ampicillin resistance phenotype; however, these changes alone do not explain the array of resistance levels observed among E. faecium clinical strains. We aimed to determine if the levels of PBP5 are differentially regulated between the E. faecium clades, with the hypothesis that variations in PBP5 levels could help account for the spectrum of ampicillin MICs seen in E. faecium We studied pbp5 mRNA levels and PBP5 protein levels as well as the genetic environment upstream of pbp5 in 16 E. faecium strains that belong to the different E. faecium clades and for which the ampicillin MICs covered a wide range. Our results found that pbp5 and PBP5 levels are increased in subclade A1 and A2 ampicillin-resistant strains compared to those in clade B and subclade A2 ampicillin-susceptible strains. Furthermore, we found evidence of major clade-associated rearrangements in the region upstream of pbp5, including large DNA fragment insertions, deletions, and single nucleotide polymorphisms, that may be associated with the differential regulation of PBP5 levels between the E. faecium clades. Overall, these findings highlight the contribution of the clade background to the regulation of PBP5 abundance and point to differences in the region upstream of pbp5 as likely contributors to the differential expression of ampicillin resistance.
Collapse
|
22
|
Salzillo M, Vastano V, Capri U, Muscariello L, Marasco R. Pyruvate dehydrogenase subunit β ofLactobacillus plantarumis a collagen adhesin involved in biofilm formation. J Basic Microbiol 2016; 57:353-357. [DOI: 10.1002/jobm.201600575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/05/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Marzia Salzillo
- Dipartimento di Scienze e Tecnologie Ambientali; Biologiche e Farmaceutiche; Seconda Università di Napoli; Caserta Italy
| | - Valeria Vastano
- Dipartimento di Scienze e Tecnologie Ambientali; Biologiche e Farmaceutiche; Seconda Università di Napoli; Caserta Italy
| | - Ugo Capri
- Dipartimento di Scienze e Tecnologie Ambientali; Biologiche e Farmaceutiche; Seconda Università di Napoli; Caserta Italy
| | - Lidia Muscariello
- Dipartimento di Scienze e Tecnologie Ambientali; Biologiche e Farmaceutiche; Seconda Università di Napoli; Caserta Italy
| | - Rosangela Marasco
- Dipartimento di Scienze e Tecnologie Ambientali; Biologiche e Farmaceutiche; Seconda Università di Napoli; Caserta Italy
| |
Collapse
|