1
|
Schlosserová K, Daniel O, Labská K, Jakubů V, Stárková T, Bílý J, Dresler J, Lang C, Fruth A, Flieger A, Žemličková H, Bielaszewska M, Havlíčková M. Enteroaggregative Escherichia coli: Frequent, yet underdiagnosed pathotype among E. coli O111 strains isolated from children with gastrointestinal disorders in the Czech Republic. Int J Med Microbiol 2024; 316:151628. [PMID: 38936338 DOI: 10.1016/j.ijmm.2024.151628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains including those of serogroup O111 are important causes of diarrhea in children. In the Czech Republic, no information is available on the etiological role of EAEC in pediatric diarrhea due to the lack of their targeted surveillance. To fill this gap, we determined the proportion of EAEC among E. coli O111 isolates from children with gastrointestinal disorders ≤ 2 years of age submitted to the National Reference Laboratory for E. coli and Shigella during 2013-2022. EAEC accounted for 177 of 384 (46.1 %) E. coli O111 isolates, being the second most frequent E. coli O111 pathotype. Most of them (75.7 %) were typical EAEC that carried aggR, usually with aaiC and aatA marker genes; the remaining 24.3 % were atypical EAEC that lacked aggR but carried aaiC and/or aatA. Whole genome sequencing of 11 typical and two atypical EAEC O111 strains demonstrated differences in serotypes, sequence types (ST), virulence gene profiles, and the core genomes between these two groups. Typical EAEC O111:H21/ST40 strains resembled by their virulence profiles including the presence of the aggregative adherence fimbriae V (AAF/V)-encoding cluster to such strains from other countries and clustered with them in the core genome multilocus sequence typing (cgMLST). Atypical EAEC O111:H12/ST10 strains lacked virulence genes of typical EAEC and differed from them in cgMLST. All tested EAEC O111 strains displayed stacked-brick aggregative adherence to human intestinal epithelial cells. The AAF/V-encoding cluster was located on a plasmid of 95,749 bp or 93,286 bp (pAAO111) which also carried aggR, aap, aar, sepA, and aat cluster. EAEC O111 strains were resistant to antibiotics, in particular to aminopenicillins and cephalosporins; 88.3 % produced AmpC β-lactamase, and 4.1 % extended spectrum β-lactamase. We conclude that EAEC are frequent among E. coli O111 strains isolated from children with gastrointestinal disorders in the Czech Republic. To reliably assess the etiological role of EAEC in pediatric diarrhea, a serotype-independent, PCR-based pathotype surveillance system needs to be implemented in the future.
Collapse
Affiliation(s)
- Klára Schlosserová
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, V Úvalu 84, Prague 150 06, Czech Republic
| | - Ondřej Daniel
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, V Úvalu 84, Prague 150 06, Czech Republic
| | - Klára Labská
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| | - Vladislav Jakubů
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Ruská 87, Prague 100 00, Czech Republic
| | - Tereza Stárková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| | - Jan Bílý
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| | - Jiří Dresler
- Central Military Medical Institute, Military University Hospital, U Vojenské nemocnice 1200, Prague 160 01, Czech Republic
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Burgstrasse 37, Wernigerode 38855, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Burgstrasse 37, Wernigerode 38855, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Burgstrasse 37, Wernigerode 38855, Germany
| | - Helena Žemličková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Ruská 87, Prague 100 00, Czech Republic
| | - Martina Bielaszewska
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, V Úvalu 84, Prague 150 06, Czech Republic.
| | - Monika Havlíčková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| |
Collapse
|
2
|
Ribeiro LF, Rossi GAM, Sato RA, de Souza Pollo A, Cardozo MV, do Amaral LA, Fairbrother JM. Epidemiology, Virulence and Antimicrobial Resistance of Escherichia coli Isolated from Small Brazilian Farms Producers of Raw Milk Fresh Cheese. Microorganisms 2024; 12:1739. [PMID: 39203581 PMCID: PMC11357254 DOI: 10.3390/microorganisms12081739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to identify contamination sources in raw milk and cheese on small farms in Brazil by isolating Escherichia coli at various stages of milk production and cheese manufacturing. The study targeted EAEC, EIEC, ETEC, EPEC, STEC, and ExPEC pathotypes, characterizing isolates for the presence of virulence genes, phylogroups, antimicrobial susceptibility, and phylogenetic relationships using PFGE and MLST. The presence of antimicrobial resistance genes and serogroups was also determined. Three categories of E. coli were identified: pathogenic, commensal, and ceftriaxone-resistant (ESBL) strains. Pathogenic EPEC, STEC, and ExPEC isolates were detected in milk and cheese samples. Most isolates belonged to phylogroups A and B1 and were resistant to antimicrobials such as nalidixic acid, ampicillin, kanamycin, streptomycin, sulfisoxazole, and tetracycline. Genetic analysis revealed that E. coli with identical virulence genes were present at different stages within the same farm. The most frequently identified serogroup was O18, and MLST identified ST131 associated with pathogenic isolates. The study concluded that E. coli was present at multiple points in milk collection and cheese production, with significant phylogroups and high antimicrobial resistance. These findings highlight the public health risk posed by contamination in raw milk and fresh cheese, emphasizing the need to adopt hygienic practices to control these microorganisms.
Collapse
Affiliation(s)
- Laryssa Freitas Ribeiro
- Mário Palmério University Center (UniFucamp), Av. Brasil Oeste, 1900, Jardim Zenith, Monte Carmelo 38500-000, MG, Brazil;
| | | | - Rafael Akira Sato
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Andressa de Souza Pollo
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Marita Vedovelli Cardozo
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Luiz Augusto do Amaral
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - John Morris Fairbrother
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, 3200 rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
3
|
Van Nederveen V, Melton-Celsa A. Extracellular components in enteroaggregative Escherichia coli biofilm and impact of treatment with proteinase K, DNase or sodium metaperiodate. Front Cell Infect Microbiol 2024; 14:1379206. [PMID: 38938878 PMCID: PMC11209426 DOI: 10.3389/fcimb.2024.1379206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/29/2024] Open
Abstract
Enteroaggregative E. coli (EAEC) is a major cause of diarrhea worldwide. EAEC are highly adherent to cultured epithelial cells and make biofilms. Both adherence and biofilm formation rely on the presence of aggregative adherence fimbriae (AAF). We compared biofilm formation from two EAEC strains of each of the five AAF types. We found that AAF type did not correlate with the level of biofilm produced. Because the composition of the EAEC biofilm has not been fully described, we stained EAEC biofilms to determine if they contained protein, carbohydrate glycoproteins, and/or eDNA and found that EAEC biofilms contained all three extracellular components. Next, we assessed the changes to the growing or mature EAEC biofilm mediated by treatment with proteinase K, DNase, or a carbohydrate cleavage agent to target the different components of the matrix. Growing biofilms treated with proteinase K had decreased biofilm staining for more than half of the strains tested. In contrast, although sodium metaperiodate only altered the biofilm in a quantitative way for two strains, images of biofilms treated with sodium metaperiodate showed that the EAEC were more spread out. Overall, we found variability in the response of the EAEC strains to the treatments, with no one treatment producing a biofilm change for all strains. Finally, once formed, mature EAEC biofilms were more resistant to treatment than biofilms grown in the presence of those same treatments.
Collapse
Affiliation(s)
- Viktoria Van Nederveen
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Angela Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
4
|
Izquierdo-Vega JA, Castillo-Juarez RJ, Sánchez-Gutiérrez M, Ares MA, De La Cruz MA. A Mini-Review of Enteroaggregative Escherichia coli with a Specific Target on the Virulence Factors Controlled by the AggR Master Regulator. Pol J Microbiol 2023; 72:347-354. [PMID: 37875068 PMCID: PMC10725161 DOI: 10.33073/pjm-2023-037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 10/26/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains have been linked to several outbreaks of severe diarrhea around the world, and this bacterium is now commonly resistant to antibiotics. As part of the pathophysiology of EAEC, the characteristic pattern of adherence looks like stacked bricks on the intestinal epithelium. This phenotype depends on an aggregative adhesion plasmid (pAA), which codes for a regulatory protein named AggR. The AggR protein is a master regulator that transcriptionally actives the main virulence genes in this E. coli pathotype, such as those that encode the aggregative adhesion fimbriae, dispersin and its secretion apparatus, Aar regulatory protein, and type VI secretion system. Several reports have shown that AggR positively affects most EAEC virulence genes, functioning as a classic transcriptional activator in the promoter region of these genes, interacting with the RNA polymerase. This minireview article integrates the information about virulence determinants of EAEC controlled by the AggR regulator.
Collapse
Affiliation(s)
| | | | | | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | | |
Collapse
|
5
|
Jønsson R, Björling A, Midtgaard SR, Jensen GV, Skar-Gislinge N, Arleth L, Matthews S, Krogfelt KA, Jenssen H. Aggregative adherence fimbriae form compact structures as seen by SAXS. Sci Rep 2023; 13:16516. [PMID: 37783694 PMCID: PMC10545799 DOI: 10.1038/s41598-023-42079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Bacterial colonization is mediated by fimbriae, which are thin hair-like appendages dispersed from the bacterial surface. The aggregative adherence fimbriae from enteroaggregative E. coli are secreted through the outer membrane and consist of polymerized minor and major pilin subunits. Currently, the understanding of the structural morphology and the role of the minor pilin subunit in the polymerized fimbriae are limited. In this study we use small-angle X-ray scattering to reveal the structural morphology of purified fimbriae in solution. We show that the aggregative fimbriae are compact arrangements of subunit proteins Agg5A + Agg3B which are assembled pairwise on a flexible string rather than extended in relatively straight filaments. Absence of the minor subunit leads to less compact fimbriae, but did not affect the length. The study provides novel insights into the structural morphology and assembly of the aggregative adherence fimbriae. Our study suggests that the minor subunit is not located at the tip of the fimbriae as previously speculated but has a higher importance for the assembled fimbriae by affecting the global structure.
Collapse
Affiliation(s)
- Rie Jønsson
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark.
| | | | | | | | | | - Lise Arleth
- Niels Bohr Institute, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Steve Matthews
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London, UK
| | | | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark.
| |
Collapse
|
6
|
Llorente MT, Escudero R, Ramiro R, Remacha MA, Martínez-Ruiz R, Galán-Sánchez F, de Frutos M, Elía M, Onrubia I, Sánchez S. Enteroaggregative Escherichia coli as etiological agent of endemic diarrhea in Spain: A prospective multicenter prevalence study with molecular characterization of isolates. Front Microbiol 2023; 14:1120285. [PMID: 37065134 PMCID: PMC10100739 DOI: 10.3389/fmicb.2023.1120285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 03/22/2023] Open
Abstract
BackgroundEnteroaggregative Escherichia coli (EAEC) is increasingly associated with domestically acquired diarrheal episodes in high-income countries, particularly among children. However, its specific role in endemic diarrhea in this setting remains under-recognized and information on molecular characteristics of such EAEC strains is limited. We aimed to investigate the occurrence of EAEC in patients with non-travel related diarrhea in Spain and molecularly characterize EAEC strains associated with illness acquired in this high-income setting.MethodsIn a prospective multicenter study, stool samples from diarrheal patients with no history of recent travel abroad (n = 1,769) were collected and processed for detection of EAEC and other diarrheagenic E. coli (DEC) pathotypes by PCR. An additional case–control study was conducted among children ≤5 years old. Whole-genome sequences (WGS) of the resulting EAEC isolates were obtained.ResultsDetection of DEC in the study population. DEC was detected in 23.2% of patients aged from 0 to 102 years, with EAEC being one of the most prevalent pathotypes (7.8%) and found in significantly more patients ≤5 years old (9.8% vs. 3.4%, p < 0.001). Although not statistically significant, EAEC was more frequent in cases than in controls. WGS-derived characterization of EAEC isolates. Sequence type (ST) 34, ST200, ST40, and ST10 were the predominant STs. O126:H27, O111:H21, and O92:H33 were the predominant serogenotypes. Evidence of a known variant of aggregative adherence fimbriae (AAF) was found in 89.2% of isolates, with AAF/V being the most frequent. Ten percent of isolates were additionally classified as presumptive extraintestinal pathogenic E. coli (ExPEC), uropathogenic E. coli (UPEC), or both, and belonged to clonal lineages that could be specifically associated with extraintestinal infections.ConclusionEAEC was the only bacterial enteric pathogen detected in a significant proportion of cases of endemic diarrhea in Spain, especially in children ≤5 years old. In particular, O126:H27-ST200, O111:H21-ST40, and O92:H33-ST34 were the most important subtypes, with all of them infecting both patients and asymptomatic individuals. Apart from this role as an enteric pathogen, a subset of these domestically acquired EAEC strains revealed an additional urinary/systemic pathogenic potential.
Collapse
Affiliation(s)
- María Teresa Llorente
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Raquel Escudero
- Reference and Research Laboratory on Special Pathogens, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Raquel Ramiro
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - María Antonia Remacha
- Servicio de Microbiología Clínica, Complejo Asistencial Universitario de León, León, Spain
| | - Rocío Martínez-Ruiz
- Servicio de Microbiología y Parasitología, Hospital Puerta de Hierro Majadahonda, Majadahonda, Spain
| | | | - Mónica de Frutos
- Servicio de Microbiología, Hospital Universitario del Río Hortega, Valladolid, Spain
| | - Matilde Elía
- Servicio de Microbiología Clínica, Hospital Universitario de Navarra, Pamplona, Spain
| | - Isabel Onrubia
- Pediatría, Centro de Salud Valle de la Oliva, Majadahonda, Spain
| | - Sergio Sánchez
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Madrid, Spain
- *Correspondence: Sergio Sánchez,
| |
Collapse
|
7
|
Gahlot DK, Taheri N, MacIntyre S. Diversity in Genetic Regulation of Bacterial Fimbriae Assembled by the Chaperone Usher Pathway. Int J Mol Sci 2022; 24:ijms24010161. [PMID: 36613605 PMCID: PMC9820224 DOI: 10.3390/ijms24010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria express different types of hair-like proteinaceous appendages on their cell surface known as pili or fimbriae. These filamentous structures are primarily involved in the adherence of bacteria to both abiotic and biotic surfaces for biofilm formation and/or virulence of non-pathogenic and pathogenic bacteria. In pathogenic bacteria, especially Gram-negative bacteria, fimbriae play a key role in bacteria-host interactions which are critical for bacterial invasion and infection. Fimbriae assembled by the Chaperone Usher pathway (CUP) are widespread within the Enterobacteriaceae, and their expression is tightly regulated by specific environmental stimuli. Genes essential for expression of CUP fimbriae are organised in small blocks/clusters, which are often located in proximity to other virulence genes on a pathogenicity island. Since these surface appendages play a crucial role in bacterial virulence, they have potential to be harnessed in vaccine development. This review covers the regulation of expression of CUP-assembled fimbriae in Gram-negative bacteria and uses selected examples to demonstrate both dedicated and global regulatory mechanisms.
Collapse
Affiliation(s)
- Dharmender K. Gahlot
- School of Biological Sciences, University of Reading, Reading RG6 6EX, UK
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (D.K.G.); (S.M.)
| | - Nayyer Taheri
- APC Microbiome Institute, University College Cork, T12 K8AF Cork, Ireland
| | - Sheila MacIntyre
- School of Biological Sciences, University of Reading, Reading RG6 6EX, UK
- Correspondence: (D.K.G.); (S.M.)
| |
Collapse
|
8
|
Genetic and Antimicrobial Resistance Profiles of Mammary Pathogenic E. coli (MPEC) Isolates from Bovine Clinical Mastitis. Pathogens 2022; 11:pathogens11121435. [PMID: 36558768 PMCID: PMC9781227 DOI: 10.3390/pathogens11121435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mammary pathogenic E. coli (MPEC) is one of the main pathogens of environmental origin responsible for causing clinical mastitis worldwide. Even though E. coli are strongly associated with transient or persistent mastitis and the economic impacts of this disease, the virulence factors involved in the pathogenesis of MPEC remain unknown. Our aim was to characterize 110 MPEC isolates obtained from the milk of cows with clinical mastitis, regarding the virulence factor-encoding genes present, adherence patterns on HeLa cells, and antimicrobial resistance profile. The MPEC isolates were classified mainly in phylogroups A (50.9%) and B1 (38.2%). None of the isolates harbored genes used for diarrheagenic E. coli classification, but 26 (23.6%) and 4 (3.6%) isolates produced the aggregative or diffuse adherence pattern, respectively. Among the 22 genes investigated, encoding virulence factors associated with extraintestinal pathogenic E. coli pathogenesis, fimH (93.6%) was the most frequent, followed by traT (77.3%) and ompT (68.2%). Pulsed-field gel electrophoresis analysis revealed six pulse-types with isolates obtained over time, thus indicating persistent intramammary infections. The genes encoding beta-lactamases detected were as follows: blaTEM (35/31.8%); blaCTX-M-2/blaCTX-M-8 (2/1.8%); blaCTX-M-15 and blaCMY-2 (1/0.9%); five isolates were classified as extended spectrum beta-lactamase (ESBL) producers. As far as we know, papA, shf, ireA, sat and blaCTX-M-8 were detected for the first time in MPEC. In summary, the genetic profile of the MPEC studied was highly heterogeneous, making it impossible to establish a common genetic profile useful for molecular MPEC classification. Moreover, the detection of ESBL-producing isolates is a serious public health concern.
Collapse
|
9
|
Freire CA, Rodrigues BO, Elias WP, Abe CM. Adhesin related genes as potential markers for the enteroaggregative Escherichia coli category. Front Cell Infect Microbiol 2022; 12:997208. [DOI: 10.3389/fcimb.2022.997208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important cause of diarrhea in children and adults worldwide. This pathotype is phenotypically characterized by the aggregative-adherence (AA) pattern in HEp-2 cells and genetically associated to the presence of the aatA gene. EAEC pathogenesis relies in different virulence factors. At least, three types of adhesins have been specifically associated with EAEC strains: the five variants of the aggregative adherence fimbriae (AAF), the aggregative forming pilus (AFP) and more recently, a fibrilar adhesin named CS22. Our study aimed to evaluate the presence of AAF, AFP and CS22-related genes among 110 EAEC strains collected from feces of children with diarrhea. The presence of aggR (EAEC virulence regulator) and genes related to AAFs (aggA, aafA, agg3A, agg4A, agg5A and agg3/4C), AFP (afpA1 and afpR) and CS22 (cseA) was detected by PCR, and the adherence patterns were evaluated on HeLa cells. aggR-positive strains comprised 83.6% of the collection; among them, 80.4% carried at least one AAF-related gene and presented the AA pattern. aggA was the most frequent AAF-related gene (28.4% of aggR+ strains). cseA was detected among aggR+ (16.3%) and aggR- strains (22.2%); non-adherent strains or strains presenting AA pattern were observed in both groups. afpR and afpA1 were exclusively detected among aggR- strains (77.8%), most of which (71.4%) also presented AA pattern. Our results indicate that AAF- and AFP-related genes may contribute to identify EAEC strains, while the presence of cseA and its importance as an EAEC virulence factor and genotypic marker needs to be further evaluated.
Collapse
|
10
|
Analysis of the Virulence and Inflammatory Markers Elicited by Enteroaggregative Escherichia coli Isolated from Clinical and Non-Clinical Sources in an Experimental Infection Model, India. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is highly heterogeneous in virulence; we wanted to understand the pathogenic potential of EAEC isolated from various clinical and non-clinical sources in an animal model. We infected male BALB/c mice in six mice/groups with 50 EAEC isolates isolated from clinical and non-clinical sources. We studied colonization, weight loss, stool shedding, and inflammatory markers and their relationship with 21 virulence genes and phylogroups, EAEC organ burden, and histopathological changes. We detected significantly more inflammatory changes and fecal lactoferrin and calprotectin levels in mice infected with EAEC isolated from symptomatic cases. In clinical EAEC isolates, the presence of chromosomal genes (aap (46%), aaiC (23.3%), SPATEs (pet (13.3%), sat (20%), sigA, and pic (6.6%)), the adhesive variantsof EAEC (agg4A (53.3%), aggA (53.3%), aafA (36.6%), andagg3A (40%)), and the master regulator gene aggR (66.6%) were associated with higher levels of lactoferrin and calprotectin. Additionally, 70% (9/13) of EAEC isolated from acute diarrheal cases bearing chuA (70%) in our study were assigned to groups B2 (4 isolates) and D (5 isolates). Real-time PCR analysis revealed that colonization by EAEC strains from different clinical and non-clinical sources occurs up to 10–15 days of life. Even from non-diarrheal stools and non-clinical sources, EAEC strainshad the potential to cause prolonged colonization, weight loss, and inflammation in the intestine, though the degree varied. Moreover, a better understanding of EAEC pathogenic pathways is desperately needed in different clinical scenarios.
Collapse
|
11
|
Molecular Study to Detect Escherichia coli in Diarrheic Children and its Antibiotic Resistance. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diarrheal diseases can lead to infections and cause morbidity and mortality in children. Diarrheagenic Escherichia coli (DEC) is an etiological agent, which is considered the major causative agent of diarrhea in children in some developing countries. The aims of this work were to estimate Escherichia coli (E. coli) causing diarrhea in children less than 5 years old, and to detect some biofilm virulence factors and the effect of some antibiotics. For the methodology, a total of 112 specimens were collected from children from two health centers, Al-Zahraa Teaching Hospital and Public Health Laboratory (located in Al-Kut city/ and the Wasit province in Iraq). All specimens were grown on simple and rich media. A total of 43 (38.4%) E. coli isolates were identified using different traditional methods, such as biochemical tests and 16S rRNA sequencing. Polymerase chain reaction (PCR) testing was used to detect some virulence factor genes that play an important role in the pathogenesis of diarrheic E. coli e.g., 16S rRNA, bfpA, and eaeA. In this study, several antibiotics were used to estimate the sensitivity and resistivity of E. coli isolates. A total of 43 isolates were fully identified as E. coli. These samples were used to detect the virulence factor genes, and 31 (72.1%) and 29 (29.4%) isolates carried bfpA and eaeA, respectively. The preponderance of E. coli isolates were completely resistant to penicillin 43 (100%). Additionally, 33 (76.7%) and 27 (62.8%) isolates were resistant to cephalothin and amoxycillin-clavulanic acid, respectively. Furthermore, the isolates of E. coli isolates showed different levels of sensitivity to antibiotics, including polymyxin B 40 (93%), norfloxacin 38 (88.4%), gentamycin 26 (60.4%), and meropenem 22 (51.2%). In conclusion, diarrheagenic E. coli isolates were the prevalent among diarrheic children. Most isolates showed varying results for the presence of virulence factors. In addition, all isolates were resistant to penicillin and sensitive to polymyxin B.
Collapse
|
12
|
Schüroff PA, Salvador FA, Abe CM, Wami HT, Carvalho E, Hernandes RT, Dobrindt U, Gomes TAT, Elias WP. The aggregate-forming pili (AFP) mediates the aggregative adherence of a hybrid-pathogenic Escherichia coli (UPEC/EAEC) isolated from a urinary tract infection. Virulence 2021; 12:3073-3093. [PMID: 34923895 PMCID: PMC8923075 DOI: 10.1080/21505594.2021.2007645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) comprises an important diarrheagenic pathotype, while uropathogenic E. coli (UPEC) is the most important agent of urinary tract infection (UTI). Recently, EAEC virulence factors have been detected in E. coli strains causing UTI, showing the importance of these hybrid-pathogenic strains. Previously, we detected an E. coli strain isolated from UTI (UPEC-46) presenting characteristics of EAEC, e.g., the aggregative adherence (AA) pattern and EAEC-associated genes (aatA, aap, and pet). In this current study, we analyzed the whole genomic sequence of UPEC-46 and characterized some phenotypic traits. The AA phenotype was observed in cell lineages of urinary and intestinal origin. The production of curli, cellulose, bacteriocins, and Pet toxin was detected. Additionally, UPEC-46 was not capable of forming biofilm using different culture media and human urine. The genome sequence analysis showed that this strain belongs to serotype O166:H12, ST10, and phylogroup A, harbors the tet, aadA, and dfrA/sul resistance genes, and is phylogenetically more related to EAEC strains isolated from human feces. UPEC-46 harbors three plasmids. Plasmid p46-1 (~135 kb) carries some EAEC marker genes and those encoding the aggregate-forming pili (AFP) and its regulator (afpR). A mutation in afpA (encoding the AFP major pilin) led to the loss of pilin production and assembly, and notably, a strongly reduced adhesion to epithelial cells. In summary, the genetic background and phenotypic traits analyzed suggest that UPEC-46 is a hybrid strain (UPEC/EAEC) and highlights the importance of AFP adhesin in the adherence to colorectal and bladder cell lines.
Collapse
Affiliation(s)
- Paulo A Schüroff
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.,Institute of Hygiene, University of Münster, Münster, Germany
| | - Fábia A Salvador
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cecilia M Abe
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Haleluya T Wami
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Rodrigo T Hernandes
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
13
|
de Lira DRP, Cavalcanti AMF, Pinheiro SRS, Orsi H, Dos Santos LF, Hernandes RT. Identification of a hybrid atypical enteropathogenic and enteroaggregative Escherichia coli (aEPEC/EAEC) clone of serotype O3:H2 associated with a diarrheal outbreak in Brazil. Braz J Microbiol 2021; 52:2075-2079. [PMID: 34448133 DOI: 10.1007/s42770-021-00580-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022] Open
Abstract
Enteropathogenic (EPEC) and enteroaggregative (EAEC) Escherichia coli are two of the major pathotypes of diarrheagenic E. coli causing disease worldwide. Here, we report a diarrheal outbreak caused by E. coli of serotype O3:H2, harboring virulence markers from EPEC (eae) and/or EAEC (aggR). This is likely the first E. coli diarrheal outbreak caused by a hybrid atypical-EPEC/EAEC clone reported in Brazil.
Collapse
Affiliation(s)
- Daiany R P de Lira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), SP, Botucatu, Brazil
| | | | | | - Henrique Orsi
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), SP, Botucatu, Brazil
| | - Luís F Dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), SP, Botucatu, Brazil.
| |
Collapse
|
14
|
Soria-Bustos J, Saitz W, Medrano A, Lara-Ochoa C, Bennis Z, Monteiro-Neto V, Dos Santos CI, Rodrigues J, Hernandes RT, Yáñez JA, Torres J, Navarro-García F, Martínez-Laguna Y, Fontes Piazza RM, Munhoz DD, Cedillo ML, Ares MA, De la Cruz MA, Nataro JP, Girón JA. Role of the YehD fimbriae in the virulence-associated properties of enteroaggregative Escherichia coli. Environ Microbiol 2021; 24:1035-1051. [PMID: 34431194 DOI: 10.1111/1462-2920.15737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022]
Abstract
The interaction of enteroaggregative Escherichia coli (EAEC) strains with the colonic gut mucosa is characterized by the ability of the bacteria to form robust biofilms, to bind mucin, and induce a local inflammatory response. These events are mediated by a repertoire of five different aggregative adherence fimbriae variants (AAF/I-V) typically encoded on virulence plasmids. In this study, we report the production in EAEC strains of a new YehD fimbriae (YDF), which is encoded by the chromosomal gene cluster yehABCD, also present in most E. coli strains. Immuno-labelling of EAEC strain 042 with anti-AAF/II and anti-YDF antibodies demonstrated the presence of both AAF/II and YDF on the bacterial surface. We investigated the role of YDF in cell adherence, biofilm formation, colonization of spinach leaves, and induction of pro-inflammatory cytokines release. To this aim, we constructed yehD deletion mutants in different EAEC backgrounds (strains 17-2, 042, 55989, C1010, 278-1, J7) each harbouring one of the five AAFs. The effect of the YDF mutation was strain dependent and AAF independent as the lack of YDF had a different impact on the phenotypes manifested by the different EAECs tested. Expression of the yehABCD operon in a E. coli K12 ORN172 showed that YDF is important for biofilm formation but not for adherence to HeLa cells. Lastly, screening of pro-inflammatory cytokines in supernatants of Caco-2 cells infected with EAEC strains 042 and J7 and their isogenic ΔyehD mutants showed that these mutants were significantly defective in release of IL-8 and TNF-α. This study contributes to the understanding of the complex and diverse mechanisms of adherence of EAEC strains and identifies a new potential target for preventive measures of gastrointestinal illness caused by EAEC and other E. coli pathogroups.
Collapse
Affiliation(s)
- Jorge Soria-Bustos
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - Waleska Saitz
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Abraham Medrano
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Cristina Lara-Ochoa
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Zineb Bennis
- University of Florida, Emerging Pathogens Institute, Gainesville, FL, USA
| | | | | | - Josias Rodrigues
- Departamento de Microbiologia e Imunologia, Instituto de Biociencias da UNESP, Botucatu, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociencias da UNESP, Botucatu, SP, Brazil
| | - Jorge A Yáñez
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - Fernando Navarro-García
- Departamento de Biología Celular, Centro de Investigaciones Avanzadas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - María L Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, Mexico
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jorge A Girón
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
15
|
Machado Ribeiro TR, Salgaço MK, Adorno MAT, da Silva MA, Piazza RMF, Sivieri K, Moreira CG. Human microbiota modulation via QseC sensor kinase mediated in the Escherichia coli O104:H4 outbreak strain infection in microbiome model. BMC Microbiol 2021; 21:163. [PMID: 34078285 PMCID: PMC8170955 DOI: 10.1186/s12866-021-02220-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background The intestinal microbiota plays a crucial role in human health, adjusting its composition and the microbial metabolites protects the gut against invading microorganisms. Enteroaggregative E. coli (EAEC) is an important diarrheagenic pathogen, which may cause acute or persistent diarrhea (≥14 days). The outbreak strain has the potent Shiga toxin, forms a dense biofilm and communicate via QseBC two-component system regulating the expression of many important virulence factors. Results Herein, we investigated the QseC histidine sensor kinase role in the microbiota shift during O104:H4 C227–11 infection in the colonic model SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) and in vivo mice model. The microbiota imbalance caused by C227–11 infection affected ỿ-Proteobacteria and Lactobacillus spp. predominance, with direct alteration in intestinal metabolites driven by microbiota change, such as Short-chain fatty acids (SCFA). However, in the absence of QseC sensor kinase, the microbiota recovery was delayed on day 3 p.i., with change in the intestinal production of SCFA, like an increase in acetate production. The higher predominance of Lactobacillus spp. in the microbiota and significant augmented qseC gene expression levels were also observed during C227–11 mice infection upon intestinal depletion. Novel insights during pathogenic bacteria infection with the intestinal microbiota were observed. The QseC kinase sensor seems to have a role in the microbiota shift during the infectious process by Shiga toxin-producing EAEC C227–11. Conclusions The QseC role in C227–11 infection helps to unravel the intestine microbiota modulation and its metabolites during SHIME® and in vivo models, besides they contribute to elucidate bacterial intestinal pathogenesis and the microbiota relationships. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02220-3.
Collapse
Affiliation(s)
- Tamara Renata Machado Ribeiro
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Mateus Kawata Salgaço
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Maria Angela Tallarico Adorno
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo (USP), São Carlos, SP, Brazil
| | | | | | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
16
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
18
|
Schiller P, Knödler M, Berger P, Greune L, Fruth A, Mellmann A, Dersch P, Berger M, Dobrindt U. The Superior Adherence Phenotype of E. coli O104:H4 is Directly Mediated by the Aggregative Adherence Fimbriae Type I. Virulence 2021; 12:346-359. [PMID: 33356871 PMCID: PMC7834096 DOI: 10.1080/21505594.2020.1868841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Whereas the O104:H4 enterohemorrhagic Escherichia coli (EHEC) outbreak strain from 2011 expresses aggregative adherence fimbriae of subtype I (AAF/I), its close relative, the O104:H4 enteroaggregative Escherichia coli (EAEC) strain 55989, encodes AAF of subtype III. Tight adherence mediated by AAF/I in combination with Shiga toxin 2 production has been suggested to result in the outbreak strain’s exceptional pathogenicity. Furthermore, the O104:H4 outbreak strain adheres significantly better to cultured epithelial cells than archetypal EAEC strains expressing different AAF subtypes. To test whether AAF/I expression is associated with the different virulence phenotypes of the outbreak strain, we heterologously expressed AAF subtypes I, III, IV, and V in an AAF-negative EAEC 55989 mutant and compared AAF-mediated phenotypes, incl. autoaggregation, biofilm formation, as well as bacterial adherence to HEp-2 cells. We observed that the expression of all four AAF subtypes promoted bacterial autoaggregation, though with different kinetics. Disturbance of AAF interaction on the bacterial surface via addition of α-AAF antibodies impeded autoaggregation. Biofilm formation was enhanced upon heterologous expression of AAF variants and inversely correlated with the autoaggregation phenotype. Co-cultivation of bacteria expressing different AAF subtypes resulted in mixed bacterial aggregates. Interestingly, bacteria expressing AAF/I formed the largest bacterial clusters on HEp-2 cells, indicating a stronger host cell adherence similar to the EHEC O104:H4 outbreak strain. Our findings show that, compared to the closely related O104:H4 EAEC strain 55989, not only the acquisition of the Shiga toxin phage, but also the acquisition of the AAF/I subtype might have contributed to the increased EHEC O104:H4 pathogenicity.
Collapse
Affiliation(s)
| | - Michael Knödler
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Lilo Greune
- Institute for Infectiology, University of Münster , Münster, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute , Wernigerode, Germany
| | | | - Petra Dersch
- Institute for Infectiology, University of Münster , Münster, Germany
| | - Michael Berger
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster , Münster, Germany
| |
Collapse
|
19
|
Abdelwahab R, Yasir M, Godfrey RE, Christie GS, Element SJ, Saville F, Hassan EA, Ahmed EH, Abu-Faddan NH, Daef EA, Busby SJW, Browning DF. Antimicrobial resistance and gene regulation in Enteroaggregative Escherichia coli from Egyptian children with diarrhoea: Similarities and differences. Virulence 2020; 12:57-74. [PMID: 33372849 PMCID: PMC7781526 DOI: 10.1080/21505594.2020.1859852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a common diarrhoeagenic human pathogen, isolated from patients in both developing and industrialized countries, that is becoming increasingly resistant to many frontline antibiotics. In this study, we screened 50 E. coli strains from children presenting with diarrhea at the outpatients clinic of Assiut University Children’s Hospital, Egypt. We show that all of these isolates were resistant to multiple classes of antibiotics and identified two as being typical EAEC strains. Using whole genome sequencing, we determined that both isolates carried, amongst others, blaCTX-M and blaTEM antibiotic resistance genes, as well as many classical EAEC virulence determinants, including the transcriptional regulator, AggR. We demonstrate that the expression of these virulence determinants is dependent on AggR, including aar, which encodes for a repressor of AggR, Aar. Since biofilm formation is the hallmark of EAEC infection, we examined the effect of Aar overexpression on both biofilm formation and AggR-dependent gene expression. We show that whilst Aar has a minimal effect on AggR-dependent transcription it is able to completely disrupt biofilm formation, suggesting that Aar affects these two processes differently. Taken together, our results suggest a model for the induction of virulence gene expression in EAEC that may explain the ubiquity of EAEC in both sick and healthy individuals.
Collapse
Affiliation(s)
- Radwa Abdelwahab
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK.,Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Muhammad Yasir
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK.,Quadram Institute Bioscience, Norwich Research Park , Norwich, UK
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Gabrielle S Christie
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Sarah J Element
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Faye Saville
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | | | | | | | - Enas A Daef
- Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham , Birmingham, UK
| |
Collapse
|
20
|
Molecular Epidemiology of Enteroaggregative Escherichia coli (EAEC) Isolates of Hospitalized Children from Bolivia Reveal High Heterogeneity and Multidrug-Resistance. Int J Mol Sci 2020; 21:ijms21249543. [PMID: 33334000 PMCID: PMC7765457 DOI: 10.3390/ijms21249543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen frequently associated with acute diarrhea in children and travelers to endemic regions. EAEC was found the most prevalent bacterial diarrheal pathogen from hospitalized Bolivian children less than five years of age with acute diarrhea from 2007 to 2010. Here, we further characterized the epidemiology of EAEC infection, virulence genes, and antimicrobial susceptibility of EAEC isolated from 414 diarrheal and 74 non-diarrheal cases. EAEC isolates were collected and subjected to a PCR-based virulence gene screening of seven virulence genes and a phenotypic resistance test to nine different antimicrobials. Our results showed that atypical EAEC (a-EAEC, AggR-negative) was significantly associated with diarrhea (OR, 1.62, 95% CI, 1.25 to 2.09, p < 0.001) in contrast to typical EAEC (t-EAEC, AggR-positive). EAEC infection was most prevalent among children between 7–12 months of age. The number of cases exhibited a biannual cycle with a major peak during the transition from warm to cold (April–June). Both typical and a-EAEC infections were graded as equally severe; however, t-EAEC harbored more virulence genes. aap, irp2 and pic were the most prevalent genes. Surprisingly, we detected 60% and 52.6% of multidrug resistance (MDR) EAEC among diarrheal and non-diarrheal cases. Resistance to ampicillin, sulfonamides, and tetracyclines was most common, being the corresponding antibiotics, the ones that are frequently used in Bolivia. Our work is the first study that provides comprehensive information on the high heterogenicity of virulence genes in t-EAEC and a- EAEC and the large prevalence of MDR EAEC in Bolivia.
Collapse
|
21
|
Boisen N, Østerlund MT, Joensen KG, Santiago AE, Mandomando I, Cravioto A, Chattaway MA, Gonyar LA, Overballe-Petersen S, Stine OC, Rasko DA, Scheutz F, Nataro JP. Redefining enteroaggregative Escherichia coli (EAEC): Genomic characterization of epidemiological EAEC strains. PLoS Negl Trop Dis 2020; 14:e0008613. [PMID: 32898134 PMCID: PMC7500659 DOI: 10.1371/journal.pntd.0008613] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/18/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Although enteroaggregative E. coli (EAEC) has been implicated as a common cause of diarrhea in multiple settings, neither its essential genomic nature nor its role as an enteric pathogen are fully understood. The current definition of this pathotype requires demonstration of cellular adherence; a working molecular definition encompasses E. coli which do not harbor the heat-stable or heat-labile toxins of enterotoxigenic E. coli (ETEC) and harbor the genes aaiC, aggR, and/or aatA. In an effort to improve the definition of this pathotype, we report the most definitive characterization of the pan-genome of EAEC to date, applying comparative genomics and functional characterization on a collection of 97 EAEC strains isolated in the course of a multicenter case-control diarrhea study (Global Enteric Multi-Center Study, GEMS). Genomic analysis revealed that the EAEC strains mapped to all phylogenomic groups of E. coli. Circa 70% of strains harbored one of the five described AAF variants; there were no additional AAF variants identified, and strains that lacked an identifiable AAF generally did not have an otherwise complete AggR regulon. An exception was strains that harbored an ETEC colonization factor (CF) CS22, like AAF a member of the chaperone-usher family of adhesins, but not phylogenetically related to the AAF family. Of all genes scored, sepA yielded the strongest association with diarrhea (P = 0.002) followed by the increased serum survival gene, iss (p = 0.026), and the outer membrane protease gene ompT (p = 0.046). Notably, the EAEC genomes harbored several genes characteristically associated with other E. coli pathotypes. Our data suggest that a molecular definition of EAEC could comprise E. coli strains harboring AggR and a complete AAF(I-V) or CS22 gene cluster. Further, it is possible that strains meeting this definition could be both enteric bacteria and urinary/systemic pathogens.
Collapse
Affiliation(s)
- Nadia Boisen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Mark T. Østerlund
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Katrine G. Joensen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Araceli E. Santiago
- University of Virginia School of Medicine, Department of Pediatrics, Charlottesville, Virginia, United States of America
| | - Inacio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Alejandro Cravioto
- Universidad Nacional Autónoma de México, Faculty of Medicine, Mexico City, Mexico
| | - Marie A. Chattaway
- Public Health England, Gastrointestinal Bacteria Reference Unit (GBRU), Colindale, United Kingdom
| | - Laura A. Gonyar
- University of Virginia School of Medicine, Department of Pediatrics, Charlottesville, Virginia, United States of America
| | | | - O. Colin Stine
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, Maryland, United States of America
| | - David A. Rasko
- University of Maryland School of Medicine, Institute for Genome Sciences, Department of Microbiology and Immunology, Baltimore, Maryland, United States of America
| | - Flemming Scheutz
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - James P. Nataro
- University of Virginia School of Medicine, Department of Pediatrics, Charlottesville, Virginia, United States of America
| |
Collapse
|
22
|
Aggregative Adherence Fimbriae II of Enteroaggregative Escherichia coli Are Required for Adherence and Barrier Disruption during Infection of Human Colonoids. Infect Immun 2020; 88:IAI.00176-20. [PMID: 32631917 DOI: 10.1128/iai.00176-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023] Open
Abstract
Symptomatic and asymptomatic infection with the diarrheal pathogen enteroaggregative Escherichia coli (EAEC) is associated with growth faltering in children in developing settings. The mechanism of this association is unknown, emphasizing a need for better understanding of the interactions between EAEC and the human gastrointestinal mucosa. In this study, we investigated the role of the aggregative adherence fimbriae II (AAF/II) in EAEC adherence and pathogenesis using human colonoids and duodenal enteroids. We found that a null mutant in aafA, the major subunit of AAF/II, adhered significantly less than wild-type (WT) EAEC strain 042, and adherence was restored in a complemented strain. Immunofluorescence confocal microscopy of differentiated colonoids, which produce an intact mucus layer comprised of the secreted mucin MUC2, revealed bacteria at the epithelial surface and within the MUC2 layer. The WT strain adhered to the epithelial surface, whereas the aafA deletion strain remained within the MUC2 layer, suggesting that the presence or absence of AAF/II determines both the abundance and location of EAEC adherence. In order to determine the consequences of EAEC adherence on epithelial barrier integrity, colonoid monolayers were exposed to EAEC constructs expressing or lacking aafA Colonoids infected with WT EAEC had significantly decreased epithelial resistance, an effect that required AAF/II, suggesting that binding of EAEC to the epithelium is necessary to impair barrier function. In summary, we show that production of AAF/II is critical for adherence and barrier disruption in human colonoids, suggesting a role for this virulence factor in EAEC colonization of the gastrointestinal mucosa.
Collapse
|
23
|
Ellis SJ, Crossman LC, McGrath CJ, Chattaway MA, Hölken JM, Brett B, Bundy L, Kay GL, Wain J, Schüller S. Identification and characterisation of enteroaggregative Escherichia coli subtypes associated with human disease. Sci Rep 2020; 10:7475. [PMID: 32366874 PMCID: PMC7198487 DOI: 10.1038/s41598-020-64424-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
Enteroaggregative E. coli (EAEC) are a major cause of diarrhoea worldwide. Due to their heterogeneity and carriage in healthy individuals, identification of diagnostic virulence markers for pathogenic strains has been difficult. In this study, we have determined phenotypic and genotypic differences between EAEC strains of sequence types (STs) epidemiologically associated with asymptomatic carriage (ST31) and diarrhoeal disease (ST40). ST40 strains demonstrated significantly enhanced intestinal adherence, biofilm formation, and pro-inflammatory interleukin-8 secretion compared with ST31 isolates. This was independent of whether strains were derived from diarrhoea patients or healthy controls. Whole genome sequencing revealed differences in putative virulence genes encoding aggregative adherence fimbriae, E. coli common pilus, flagellin and EAEC heat-stable enterotoxin 1. Our results indicate that ST40 strains have a higher intrinsic potential of human pathogenesis due to a specific combination of virulence-related factors which promote host cell colonization and inflammation. These findings may contribute to the development of genotypic and/or phenotypic markers for EAEC strains of high virulence.
Collapse
Affiliation(s)
- Samuel J Ellis
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Lisa C Crossman
- School of Biological Sciences, University of East Anglia, Norwich, UK.,SequenceAnalysis.co.uk, Norwich Research Park, Norwich, UK
| | - Conor J McGrath
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Marie A Chattaway
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, UK
| | - Johanna M Hölken
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Bernard Brett
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Leah Bundy
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Gemma L Kay
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, UK. .,Quadram Institute Bioscience, Norwich, UK.
| |
Collapse
|
24
|
Dias RCB, Tanabe RHS, Vieira MA, Cergole-Novella MC, Dos Santos LF, Gomes TAT, Elias WP, Hernandes RT. Analysis of the Virulence Profile and Phenotypic Features of Typical and Atypical Enteroaggregative Escherichia coli (EAEC) Isolated From Diarrheal Patients in Brazil. Front Cell Infect Microbiol 2020; 10:144. [PMID: 32391284 PMCID: PMC7188757 DOI: 10.3389/fcimb.2020.00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important agent of acute and persistent diarrhea in children and adults worldwide. Here we report a characterization of 220 EAEC isolates, 88.2% (194/220) of which were typical and 11.8% (26/220) were atypical, obtained from diarrheal patients during seven years (2010-2016) of epidemiological surveillance in Brazil. The majority of the isolates were assigned to phylogroups A (44.1%, 97/220) or B1 (21.4%, 47/220). The aggregative adherence (AA) pattern was detected in 92.7% (204/220) of the isolates, with six of them exhibiting AA concomitantly with a chain-like adherence pattern; and agg5A and agg4A were the most common adhesin-encoding genes, which were equally detected in 14.5% (32/220) of the isolates. Each of 12 virulence factor-encoding genes (agg4A, agg5A, pic, aap, aaiA, aaiC, aaiG, orf3, aar, air, capU, and shf) were statistically associated with typical EAEC (P < 0.05). The genes encoding the newly described aggregate-forming pili (AFP) searched (afpB, afpD, afpP, and afpA2), and/or its regulator (afpR), were exclusively detected in atypical EAEC (57.7%, 15/26), and showed a significant association with this subgroup of EAEC (P < 0.001). In conclusion, we presented an extensive characterization of the EAEC circulating in the Brazilian settings and identified the afp genes as putative markers for increasing the efficiency of atypical EAEC diagnosis.
Collapse
Affiliation(s)
- Regiane C B Dias
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | - Rodrigo H S Tanabe
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | - Melissa A Vieira
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| | | | | | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo- Escola Paulista de Medicina (UNIFESP-EPM), São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Rodrigo T Hernandes
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, São Paulo, Brazil
| |
Collapse
|
25
|
Enteric etiological surveillance in acute diarrhea stool of United States Military Personnel on deployment in Thailand, 2013-2017. Gut Pathog 2020; 12:17. [PMID: 32308742 PMCID: PMC7146992 DOI: 10.1186/s13099-020-00356-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
Background Diarrhea remains a major public health problem for both civilian and military populations. This study describes the prevalence of acute diarrheal illness etiological agents, their antibiotic resistance distribution patterns, the resulting impact upon military force health protection, and potential prevention and treatment strategies. Results Forty-eight acute diarrhea stool samples from US military personnel deployed to Thailand from 2013–2017 were screened for enteric pathogens using ELISA, the TaqMan Array Card (TAC), and conventional microbiological methods. These isolates were also evaluated using antimicrobial susceptibility testing (AST) against ampicillin (AMP), azithromycin (AZM), ceftriaxone (CRO), ciprofloxacin (CIP), nalidixic acid (NA), erythromycin (ERY), and trimethoprim-sulfamethoxazole (SXT) using commercial methodology. Susceptibility results were interpreted following the CLSI and NARM guidelines. Questionnaire data obtained from 47/48 volunteers indicated that 89.4% (42/47) reported eating local food and the most common clinical symptoms were nausea and abdominal pain (51%; 24/47). Multiple bacterial species were identified from the 48 stool samples with diarrhea etiological agents being detected in 79% (38/48) of the samples distributed as follows: 43.8% (21/48) Campylobacter jejuni and Campylobacter species, 42% (20/48) diarrheagenic Escherichia coli, and 23% (11/48) Salmonella. Co-infections were detected in 46% (22/48) of the samples. All C. jejuni isolates were resistant to CIP and NA. One C. jejuni isolate exhibited resistance to both AZM and ERY. Lastly, an association between exposure to poultry and subsequent detection of the diarrhea-associated pathogens E. coli and P. shigelloides was significant (p < 0.05). Conclusion The detection of Campylobacter isolates with CIP, AZM and ERY resistance has critical force health protection and public health implications, as these data should guide effective Campylobacteriosis treatment options for deployed military members and travelers to Southeast Asia. Additional research efforts are recommended to determine the association of pathogen co-infections and/or other contributing factors towards diarrheal disease in military and traveler populations. Ongoing surveillance and AST profiling of potential disease-causing bacteria is required for effective disease prevention efforts and treatment strategies.
Collapse
|
26
|
Antibiotic resistance and molecular characterization of enteroaggregative Escherichia coli isolated from patients with diarrhea in the Eastern Province of Saudi Arabia. Heliyon 2020; 6:e03721. [PMID: 32274438 PMCID: PMC7132075 DOI: 10.1016/j.heliyon.2020.e03721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022] Open
Abstract
Aim To investigate presence of Enteroaggregative Escherichia coli (EAEC) in patients suffering with diarrhea by targeting the pCVD432 (pAA) gene using PCR. Methods There were 63 non-duplicate isolates of E. coli isolated from diarrheal cases in teaching hospital in Eastern Province of Saudi Arabia between May 2013 to July 2014. All E. coli strains were examined for antibiotic susceptibility testing and polymerase chain reaction (PCR) for detection of virulence gene markers for EAEC. Results Of the 63 E coli strains that were reported with diarrheal cases, 35 (55.6%) EAEC were tested positive for pCVD432 gene and aggR gene was present in 19 (54.3%) strains. All strains tested positive for pCVD432 and aggR genes were classified as typical EAEC (tEAEC). EAEC revealed resistance to tetracycline, ampicillin, nalidixic acid, trimethoprim sulfamethoxazole, ciprofloxacin, streptomycin, noroxin, and piperacillin. Conclusion EAEC was detected for the first time, among Saudi patients with diarrhea in this region of Saudi Arabia. The reported antibiotic resistance in this study is considered high among isolated EAEC strains to routinely prescribed antibiotics in our area.
Collapse
|
27
|
Guerrieri CG, Monfardini MV, Silva EA, Bueno de Freitas L, Schuenck RP, Spano LC. Wide genetic heterogeneity and low antimicrobial resistance of enteroaggregative Escherichia coli isolates from several rural communities. J Med Microbiol 2020; 69:96-103. [DOI: 10.1099/jmm.0.001120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Caroline Gastaldi Guerrieri
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Mariane Vedovatti Monfardini
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Eliza Andrade Silva
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Luciana Bueno de Freitas
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ricardo Pinto Schuenck
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Liliana Cruz Spano
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
28
|
Li X, Luo Q, Yu X, Zhang Y, Cao X, Li D. Diversity of Virulence Genes in Multidrug Resistant Escherichia coli from a Hospital in Western China. Infect Drug Resist 2019; 12:3817-3826. [PMID: 31824179 PMCID: PMC6901040 DOI: 10.2147/idr.s226072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/16/2019] [Indexed: 11/25/2022] Open
Abstract
Background Escherichia coli strains are the most commonly isolated bacteria in hospitals. The normally harmless commensal E. coli can become a highly adapted pathogen, capable of causing various diseases both in healthy and immunocompromised individuals, by acquiring a combination of mobile genetic elements. Our aim was to characterize E. coli strains from a hospital in western China to determine their virulence and antimicrobial resistance potential. Methods A total of 97 E. coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, and antimicrobial susceptibility tests were used in this study. Results The frequency of occurrence of the virulence genes fimC, irp2, fimH, fyuA, lpfA, hlyA, sat, and cnf1 in the E. coli isolates was 93.81, 92.78, 91.75, 84.54, 41.24, 32.99, 28.86, and 7.22%, respectively. Ninety-five (97.9%) isolates carried two or more different virulence genes. Of these, 44 (45.4%) isolates simultaneously harbored five virulence genes, 24 (24.7%) isolates harbored four virulence genes, and 17 (17.5%) isolates harbored six virulence genes. In addition, all E. coli isolates were multidrug resistant and had a high degree of antimicrobial resistance. Conclusion These results indicate a high frequency of occurrence and heterogeneity of virulence gene profiles among clinical multidrug resistant E. coli isolates. Therefore, appropriate surveillance and control measures are essential to prevent the further spread of these isolates in hospitals.
Collapse
Affiliation(s)
- Xue Li
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| | - Qi Luo
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| | - Xinyu Yu
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| | - Yanling Zhang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| | - Xiaoyue Cao
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| | - Dan Li
- School of Medical Laboratory Science, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| |
Collapse
|
29
|
Aijuka M, Buys EM. Persistence of foodborne diarrheagenic Escherichia coli in the agricultural and food production environment: Implications for food safety and public health. Food Microbiol 2019; 82:363-370. [DOI: 10.1016/j.fm.2019.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
|
30
|
Guerrieri CG, Pereira MF, Galdino ACM, Dos Santos ALS, Elias WP, Schuenck RP, Spano LC. Typical and Atypical Enteroaggregative Escherichia coli Are Both Virulent in the Galleria mellonella Model. Front Microbiol 2019; 10:1791. [PMID: 31456762 PMCID: PMC6700222 DOI: 10.3389/fmicb.2019.01791] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging pathotype responsible for acute and persistent diarrhea. It can be classified as typical and atypical strains, respectively, based on the presence or absence of the AggR regulon, suggesting a higher virulence for typical EAEC. This study aims to evaluate in the Galleria mellonella model if there are differences in the virulence profiles among clinical strains of typical and atypical EAEC, prototype strains EAEC C1096, 042 and its aggR mutant. The clinical EAEC strains (n = 20) were analyzed for the presence of 22 putative virulence factors of EAEC or extraintestinal E. coli by PCR, as well as phenotypic characteristics of virulence (enzymes, siderophore, and biofilm). The survival of the larvae was analyzed after inoculation of 104-107 CFU/larva; the monitoring of bacterial growth in vivo and hemocyte quantification was determined after inoculation of the prototype strains (105 CFU/larva) at different periods after infection. The strains of typical and atypical EAEC presented the same virulence profile for the larva, regardless of the amount or type of genes and phenotypic aspects of virulence analyzed. In addition, the EAEC 042 aggR mutant strain showed a significant reduction in the mortality of the inoculated larvae compared to the wild-type strain. In conclusion, the results obtained herein demonstrate that the virulence of EAEC seems to be related to the AggR regulon, but not exclusively, and atypical EAEC strains may be as virulent as typical ones in vivo in the G. mellonella model.
Collapse
Affiliation(s)
- Caroline Gastaldi Guerrieri
- Laboratory of Virology and Infectious Gastroenteritis, Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Monalessa Fábia Pereira
- Laboratory of Virology and Infectious Gastroenteritis, Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Anna Clara Milesi Galdino
- Laboratory of Advanced Studies of Emerging and Resistant Microorganisms, Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratory of Advanced Studies of Emerging and Resistant Microorganisms, Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ricardo Pinto Schuenck
- Laboratory of Virology and Infectious Gastroenteritis, Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| | - Liliana Cruz Spano
- Laboratory of Virology and Infectious Gastroenteritis, Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|
31
|
Boisen N, Melton-Celsa AR, Hansen AM, Zangari T, Smith MA, Russo LM, Scheutz F, O'Brien AD, Nataro JP. The Role of the AggR Regulon in the Virulence of the Shiga Toxin-Producing Enteroaggregative Escherichia coli Epidemic O104:H4 Strain in Mice. Front Microbiol 2019; 10:1824. [PMID: 31456767 PMCID: PMC6700298 DOI: 10.3389/fmicb.2019.01824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/24/2019] [Indexed: 12/04/2022] Open
Abstract
An O104:H4 Shiga toxin (Stx)-producing enteroaggregative Escherichia coli (EAEC) strain caused a large outbreak of bloody diarrhea and the hemolytic uremic syndrome in 2011. We previously developed an ampicillin (Amp)-treated C57BL/6 mouse model to measure morbidity (weight loss) and mortality of mice orally infected with the prototype Stx-EAEC strain C227-11. Here, we hypothesized that mice fed C227-11 cured of the pAA plasmid or deleted for individual genes on that plasmid would display reduced virulence compared to animals given the wild-type (wt) strain. C227-11 cured of the pAA plasmid or deleted for the known pAA-encoded virulence genes aggR, aggA, sepA, or aar were fed to Amp-treated C57BL/6 mice at doses of 1010–1011CFU. Infected animals were then either monitored for morbidity and lethality for 28 days or euthanized to determine intestinal pathology and colonization levels at selected times. The pAA-cured, aggR, and aggA mutants of strain C227-11 all showed reduced colonization at various intestinal sites. However, the aggR mutant was the only mutant attenuated for virulence as it showed both reduced morbidity and mortality. The aar mutant showed increased expression of the aggregative adherence fimbriae (AAF) and caused greater systemic effects in infected mice when compared to the C227-11 wt strain. However, unexpectedly, both the aggA and aar mutants displayed increased weight loss compared to wt. The sepA mutant did not exhibit altered morbidity or mortality in the Amp-treated mouse model compared to wt. Our data suggest that the increased morbidity due to the aar mutant could possibly be via an effect on expression of an as yet unknown virulence-associated factor under AggR control.
Collapse
Affiliation(s)
- Nadia Boisen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.,Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Angela R Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonia Zangari
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mark A Smith
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lisa M Russo
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Flemming Scheutz
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Alison D O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
32
|
QseC Signaling in the Outbreak O104:H4 Escherichia coli Strain Combines Multiple Factors during Infection. J Bacteriol 2019; 201:JB.00203-19. [PMID: 31235511 DOI: 10.1128/jb.00203-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) from the O104:H4 specific serotype caused a large outbreak of bloody diarrhea with some complicated cases of hemolytic-uremic syndrome (HUS) in Europe in 2011. The outbreak strain consisted in an EAEC capable to produce the Shiga toxin (Stx) subtype 2a, a characteristic from enterohemorrhagic E. coli QseBC two-component system detects AI-3/Epi/NE and mediates the chemical signaling between pathogen and mammalian host. This system coordinates a cascade of virulence genes expression in important human enteropathogens. The blocking of QseC of EAEC C227-11 (Stx+) strain by N-phenyl-4-{[(phenylamino) thioxomethyl]amino}-benzenesulfonamide (also known as LED209) in vivo demonstrated a lower efficiency of colonization. The periplasmic protein VisP, which is related to survival mechanisms in a colitis model of infection, bacterial membrane maintenance, and stress resistance, here presented high levels of expression during the initial infection within the host. Under acid stress conditions, visP expression levels were differentiated in an Stx-dependent way. Together, these results emphasize the important role of VisP and the histidine kinase sensor QseC in the C227-11 (Stx+) outbreak strain for the establishment of the infectious niche process in the C57BL/6 mouse model and of LED209 as a promising antivirulence drug strategy against these enteric pathogens.IMPORTANCE EAEC is a remarkable etiologic agent of acute and persistent diarrhea worldwide. The isolates harbor specific subsets of virulence genes and their pathogenesis needs to be better understood. Chemical signaling via histidine kinase sensor QseC has been shown as a potential target to elucidate the orchestration of the regulatory cascade of virulence factors.
Collapse
|
33
|
Alvestegui A, Olivares-Morales M, Muñoz E, Smith R, Nataro JP, Ruiz-Perez F, Farfan MJ. TLR4 Participates in the Inflammatory Response Induced by the AAF/II Fimbriae From Enteroaggregative Escherichia coli on Intestinal Epithelial Cells. Front Cell Infect Microbiol 2019; 9:143. [PMID: 31131263 PMCID: PMC6509964 DOI: 10.3389/fcimb.2019.00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) infections are one of the most frequent causes of persistent diarrhea in children, immunocompromised patients and travelers worldwide. The most prominent colonization factors of EAEC are aggregative adherence fimbriae (AAF). EAEC prototypical strain 042 harbors the AAF/II fimbriae variant, which mediates adhesion to intestinal epithelial cells and participates in the induction of an inflammatory response against this pathogen. However, the mechanism and the cell receptors implicated in eliciting this response have not been fully characterized. Since previous reports have shown that TLR4 recognize fimbriae from different pathogens, we evaluated the role of this receptor in the response elicited against EAEC by intestinal cells. Using a mutual antagonist against TLR2 and TLR4 (OxPAPC), we observed that blocking of these receptors significantly reduces the secretion of the inflammatory marker IL-8 in response to EAEC and AAF/II fimbrial extract in HT-29 cells. Using a TLR4-specific antagonist (TAK-242), we observed that the secretion of this cytokine was significantly reduced in HT-29 cells infected with EAEC or incubated with AAF/II fimbrial extract. We evaluated the participation of AAF/II fimbriae in the TLR4-mediated secretion of 38 cytokines, chemokines, and growth factors involved in inflammation. A reduction in the secretion of IL-8, GRO, and IL-4 was observed. Our results suggest that TLR4 participates in the secretion of several inflammation biomarkers in response to AAF/II fimbriae.
Collapse
Affiliation(s)
- Alejandra Alvestegui
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Mauricio Olivares-Morales
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Ernesto Muñoz
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Rachel Smith
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mauricio J Farfan
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| |
Collapse
|
34
|
van Hattem JM, Cabal A, Arcilla MS, Alvarez J, de Jong MD, Melles DC, Penders J, Schmidt CG, Schultsz C. Risk of acquisition of human diarrhoeagenic Escherichia coli virulence genes in intercontinental travellers: A prospective, multi-centre study. Travel Med Infect Dis 2019; 31:101362. [PMID: 30609386 DOI: 10.1016/j.tmaid.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND We studied geographic distribution of diarrhoeagenic Escherichia coli virulence genes (DEC VGs) acquisition in travellers and investigated if they acquired highly virulent EAEC/STEC hybrid strains. METHODS From the prospective, multicentre COMBAT study among 2001 Dutch travellers, 491 travellers were selected based on travel destination to 7 subregions. Faecal samples taken directly before and after travel were screened for nine DEC VGs with real-time PCR. Incidence proportions and rates were calculated for each gene and subregion. RESULTS 479 travellers were analysed. 21.8% acquired aggR (EAEC), with highest acquisition rates in Northern and Western Africa and 15.3% acquired eae (STEC/EPEC) with highest rates in travellers to Western and Eastern Africa. ETEC (elt or est gene) was acquired by 4.2% of travellers and acquisition of est was associated with traveller's diarrhoea. Overall, the risk of acquiring DEC VGs was low in Southern Africa and South America. Although the combination of aggR (EAEC) and stx1/2 (STEC) was acquired by 3 travellers, these genes could not be detected together in a single E. coli strain. CONCLUSIONS The risk of acquisition of DEC VGs strongly depends on the travel destination, with those travelling to Africa - except Southern Africa - having a higher risk.
Collapse
Affiliation(s)
- Jarne M van Hattem
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands.
| | - Adriana Cabal
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain; SaBio IREC, National Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Maris S Arcilla
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain; Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - Damian C Melles
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - John Penders
- Department of Medical Microbiology, Maastricht University, Maastricht, the Netherlands; School for Nutrition and Translational Research in Metabolism (NUTRIM), Care and Public Health Research Institute (Caphri), Maastricht University, Maastricht, the Netherlands
| | | | - Constance Schultsz
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands; Department of Global Health-Amsterdam-Institute for Global Health and Development, AMC, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Yasir M, Icke C, Abdelwahab R, Haycocks JR, Godfrey RE, Sazinas P, Pallen MJ, Henderson IR, Busby SJW, Browning DF. Organization and architecture of AggR-dependent promoters from enteroaggregative Escherichia coli. Mol Microbiol 2018; 111:534-551. [PMID: 30485564 PMCID: PMC6392122 DOI: 10.1111/mmi.14172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 11/27/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC), is a diarrhoeagenic human pathogen commonly isolated from patients in both developing and industrialized countries. Pathogenic EAEC strains possess many virulence determinants, which are thought to be involved in causing disease, though, the exact mechanism by which EAEC causes diarrhoea is unclear. Typical EAEC strains possess the transcriptional regulator, AggR, which controls the expression of many virulence determinants, including the attachment adherence fimbriae (AAF) that are necessary for adherence to human gut epithelial cells. Here, using RNA‐sequencing, we have investigated the AggR regulon from EAEC strain 042 and show that AggR regulates the transcription of genes on both the bacterial chromosome and the large virulence plasmid, pAA2. Due to the importance of fimbriae, we focused on the two AAF/II fimbrial gene clusters in EAEC 042 (afaB‐aafCB and aafDA) and identified the promoter elements and AggR‐binding sites required for fimbrial expression. In addition, we examined the organization of the fimbrial operon promoters from other important EAEC strains to understand the rules of AggR‐dependent activation. Finally, we generated a series of semi‐synthetic promoters to define the minimal sequence required for AggR‐mediated activation and show that the correct positioning of a single AggR‐binding site is sufficient to confer AggR‐dependence.
Collapse
Affiliation(s)
- Muhammad Yasir
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Christopher Icke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Radwa Abdelwahab
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - James R Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pavelas Sazinas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
36
|
Hebbelstrup Jensen B, Adler Sørensen C, Hebbelstrup Rye Rasmussen S, Rejkjær Holm D, Friis-Møller A, Engberg J, Mirsepasi-Lauridsen HC, Struve C, Hammerum AM, Porsbo LJ, Petersen RF, Petersen AM, Krogfelt KA. Characterization of Diarrheagenic Enteroaggregative Escherichia coli in Danish Adults-Antibiotic Treatment Does Not Reduce Duration of Diarrhea. Front Cell Infect Microbiol 2018; 8:306. [PMID: 30319991 PMCID: PMC6170641 DOI: 10.3389/fcimb.2018.00306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/08/2018] [Indexed: 01/18/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is frequently isolated from sporadic cases of diarrhea and in outbreaks of gastroenteritis in several regions of the world. The pathophysiology of EAEC continues to be enigmatic, and the efficacy of antibiotic treatment in EAEC-associated diarrhea has been discussed. Since the level of antibiotic resistance is increasing, it is essential to restrict the use of antibiotics to prevent further resistance development. We aimed to investigate EAEC strains in adult Danish patients suffering from diarrhea and from healthy controls. We examined the antibiotic resistance in EAEC strains, the clinical response to antibiotic treatment in EAEC diarrheal cases, and the distribution of virulence genes in diarrheal cases. The EAEC strains were collected from patients suffering from diarrhea in a Danish multicenter study. A medical doctor interviewed the patients by using a questionnaire regarding gastrointestinal symptoms, exposures, and use of antibiotic and over-the-counter antidiarrheal drugs. Follow-up was performed after 3–5 months to inquire about differential diagnosis to gastrointestinal disease. A multiplex polymerase chain reaction characterized virulence genes in diarrheal cases. Finally, the level of antibiotic resistance was examined by using the disc diffusion method. Asymptomatic carriage of EAEC in the adult Danish population was rare, in contrast to findings in healthy Danish children. The duration of diarrhea was not shortened by antibiotic treatment, specifically ciprofloxacin treatment, or by over-the-counter antidiarrheal drugs. Follow-up revealed no pathology in diarrheal patients apart from irritable bowel syndrome in two patients. A high number of patients suffered from long-term diarrhea, which was associated with the enterotoxin EAST-1 and a high virulence factor score. A high level of antibiotic resistance was observed and 58% of the EAEC strains were multidrug resistant. Multidrug resistance was most pronounced in cases of travelers' diarrhea, and it was seen that antibiotic treatment did not reduce the duration of diarrhea.
Collapse
Affiliation(s)
- Betina Hebbelstrup Jensen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark.,The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Dorthe Rejkjær Holm
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Alice Friis-Møller
- Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen, Denmark
| | - Jørgen Engberg
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| | | | - Carsten Struve
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anette M Hammerum
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lone Jannok Porsbo
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Randi Føns Petersen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Andreas Munk Petersen
- Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen, Denmark.,Department of Gastroenterology, Hvidovre Hospital, Copenhagen, Denmark
| | | |
Collapse
|
37
|
Li D, Shen M, Xu Y, Liu C, Wang W, Wu J, Luo X, Jia X, Ma Y. Virulence gene profiles and molecular genetic characteristics of diarrheagenic Escherichia coli from a hospital in western China. Gut Pathog 2018; 10:35. [PMID: 30127859 PMCID: PMC6097206 DOI: 10.1186/s13099-018-0262-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background Diarrheagenic Escherichia coli (DEC) is one of the most important etiological agents of diarrheal diseases. In this study we investigated the prevalence, virulence gene profiles, antimicrobial resistance, and molecular genetic characteristics of DEC at a hospital in western China. Methods A total of 110 Escherichia coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, antimicrobial susceptibility test, pulsed-field gel electrophoresis and multilocus sequence typing were used in this study. Results Molecular analysis of six DEC pathotype marker genes showed that 13 of the 110 E. coli isolates (11.82%) were DEC including nine (8.18%) diffusely adherent Escherichia coli (DAEC) and four (3.64%) enteroaggregative Escherichia coli (EAEC). The adherence genes fimC and fimH were present in all DAEC and EAEC isolates. All nine DAEC isolates harbored the virulence genes fyuA and irp2 and four (44.44%) also carried the hlyA and sat genes. The virulence genes fyuA, irp2, cnf1, hlyA, and sat were found in 100%, 100%, 75%, 50%, and 50% of EAEC isolates, respectively. In addition, all DEC isolates were multidrug resistant and had high frequencies of antimicrobial resistance. Molecular genetic characterization showed that the 13 DEC isolates were divided into 11 pulsed-field gel electrophoresis patterns and 10 sequence types. Conclusions To the best of our knowledge, this study provides the first report of DEC, including DAEC and EAEC, in western China. Our analyses identified the virulence genes present in E. coli from a hospital indicating their role in the isolated DEC strains’ pathogenesis. At the same time, the analyses revealed, the antimicrobial resistance pattern of the DEC isolates. Thus, DAEC and EAEC among the DEC strains should be considered a significant risk to humans in western China due to their evolved pathogenicity and antimicrobial resistance pattern.
Collapse
Affiliation(s)
- Dan Li
- 1Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China.,2School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Min Shen
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Ying Xu
- 4Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Chao Liu
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Wen Wang
- 5West China School of Public Health, Sichuan University, Chengdu, 610041 Sichuan China
| | - Jinyan Wu
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Xianmei Luo
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Xu Jia
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Yongxin Ma
- 1Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| |
Collapse
|
38
|
Munhoz DD, Nara JM, Freitas NC, Moraes CTP, Nunes KO, Yamamoto BB, Vasconcellos FM, Martínez-Laguna Y, Girón JA, Martins FH, Abe CM, Elias WP, Piazza RMF. Distribution of Major Pilin Subunit Genes Among Atypical Enteropathogenic Escherichia coli and Influence of Growth Media on Expression of the ecp Operon. Front Microbiol 2018; 9:942. [PMID: 29867850 PMCID: PMC5962669 DOI: 10.3389/fmicb.2018.00942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) strains are unable to produce the bundle-forming pilus (BFP), which is responsible for the localized adherence pattern, a characteristic of the pathogenicity of typical EPEC strains. The lack of BFP in aEPEC strains suggests that other fimbrial or non-fimbrial adhesins are involved in their adhesion to the host cells. The aim of this study was to investigate the distribution of major subunit fimbrial genes known to be important adherence factors produced by several E. coli pathotypes in a collection of 72 aEPEC strains. Our results demonstrate that a high percentage (94–100%) of aEPEC strains harbored ecpA, fimA, hcpA, and lpfA fimbrial genes. Other fimbrial genes including pilS, pilV, sfpA, daaC, papA, and sfa were detected at lower frequencies (1–8%). Genes encoding fimbrial subunits, which are characteristic of enteroaggregative E. coli or enterotoxigenic E. coli were not found. No correlation was found between fimbrial gene profiles and adherence phenotypes. Since all aEPEC strains contained ecpA, the major pilin gene of the E. coli common pilus (ECP), a subset of ecpA+ strains was analyzed for transcription of ecpRABCDE and production of ECP upon growth in three different culture conditions at 37°C. Transcription of ecpRABCDE occurred in all conditions; however, ECP production was medium dependent. In all, the data suggest that aEPEC strains are highly heterogeneous in terms of their fimbrial gene profiles. Despite lacking BFP production, other mechanisms of cell adherence exist in aEPEC strains to ensure host colonization, e.g., mediated by other prevalent pili such as ECP. Moreover, the production of ECP by aEPEC strains might be influenced by yet unknown post-transcriptional factors.
Collapse
Affiliation(s)
| | - Júlia M Nara
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | | | - Kamila O Nunes
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Bruno B Yamamoto
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | | | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Cecilia M Abe
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
39
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
40
|
Novel Segment- and Host-Specific Patterns of Enteroaggregative Escherichia coli Adherence to Human Intestinal Enteroids. mBio 2018; 9:mBio.02419-17. [PMID: 29463660 PMCID: PMC5821088 DOI: 10.1128/mbio.02419-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important diarrheal pathogen and a cause of both acute and chronic diarrhea. It is a common cause of pediatric bacterial diarrhea in developing countries. Despite its discovery in 1987, the intestinal tropism of the pathogen remains unknown. Cell lines used to study EAEC adherence include the HEp-2, T-84, and Caco-2 lines, but they exhibit abnormal metabolism and large variations in gene expression. Animal models either do not faithfully manifest human clinical symptoms or are cumbersome and expensive. Using human intestinal enteroids derived from all four segments of the human intestine, we find that EAEC demonstrates aggregative adherence to duodenal and ileal enteroids, with donor-driven differences driving a sheet-like and layered pattern. This contrasts with the colon, where segment-specific tropisms yielded a mesh-like adherence pattern dominated by interconnecting filaments. Very little to no aggregative adherence to jejunal enteroids was observed, regardless of the strain or donor, in contrast to a strong duodenal association across all donors and strains. These unique patterns of intestinal segment- or donor-specific adherence, but not the overall numbers of associated bacteria, were dependent on the major subunit protein of aggregative adherence fimbriae II (AafA), implying that the morphology of adherent clusters and the overall intestinal cell association of EAEC occur by different mechanisms. Our results suggest that we must give serious consideration to inter- and intrapatient variations in what is arguably the first step in pathogenesis, that of adherence, when considering the clinical manifestation of these infections. EAEC is a leading cause of pediatric bacterial diarrhea and a common cause of diarrhea among travelers and immunocompromised individuals. Heterogeneity in EAEC strains and lack of a good model system are major roadblocks to the understanding of its pathogenesis. Utilizing human intestinal enteroids to study the adherence of EAEC, we demonstrate that unique patterns of adherence are largely driven by unidentified factors present in different intestinal segments and from different donors. These patterns are also dependent on aggregative adherence fimbriae II encoded by EAEC. These results imply that we must also consider the contribution of the host to understand the pathogenesis of EAEC-induced inflammation and diarrhea.
Collapse
|
41
|
Kampmeier S, Berger M, Mellmann A, Karch H, Berger P. The 2011 German Enterohemorrhagic Escherichia Coli O104:H4 Outbreak-The Danger Is Still Out There. Curr Top Microbiol Immunol 2018; 416:117-148. [PMID: 30062592 DOI: 10.1007/82_2018_107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are Shiga toxin (Stx) producing bacteria causing a disease characterized by bloody (or non-bloody) diarrhea, which might progress to hemolytic uremic syndrome (HUS). EHEC O104:H4 caused the largest ever recorded EHEC outbreak in Germany in 2011, which in addition showed the so far highest incidence rate of EHEC-related HUS worldwide. The aggressive outbreak strain carries an unusual combination of virulence traits characteristic to both EHEC-a chromosomally integrated Stx-encoding bacteriophage, and enteroaggregative Escherichia coli-pAA plasmid-encoded aggregative adherence fimbriae mediating its tight adhesion to epithelia cells. There are currently still open questions regarding the 2011 EHEC outbreak, e.g., with respect to the exact molecular mechanisms resulting in the hypervirulence of the strain, the natural reservoir of EHEC O104:H4, and suitable therapeutic strategies. Nevertheless, our knowledge on these issues has substantially expanded since 2011. Here, we present an overview of the epidemiological, clinical, microbiological, and molecular biological data available on the 2011 German EHEC O104:H4 outbreak.
Collapse
Affiliation(s)
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Helge Karch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster, Münster, Germany.
| |
Collapse
|
42
|
Razaghi M, Tajeddin E, Ganji L, Alebouyeh M, Alizadeh AHM, Sadeghi A, Zali MR. Colonization, resistance to bile, and virulence properties of Escherichia coli strains: Unusual characteristics associated with biliary tract diseases. Microb Pathog 2017; 111:262-268. [PMID: 28867623 DOI: 10.1016/j.micpath.2017.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/23/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022]
Abstract
Escherichia coli is the species that is most frequently isolated from bile of patients with biliary tract diseases. This study was aimed to investigate any association between resistance and virulence properties of these isolates with occurrence of the diseases. A total of 102 bile samples were obtained from patients subjected to endoscopic retrograde cholangiopancreatography for different biliary diseases. Clinical data were collected and culture of the bile samples was done on selective media. Resistance of characterized Escherichia coli isolates to deoxycholate sodium (0-7%) and nineteen antibiotics was determined and PCR using 16 pairs of primers targeting stx1, stx2, exhA, eae, bfp, agg, pcvd432, lt, st, ipaH, pic, pet, ast, set, sen, and cdtB genes was done. Our results showed a statistically significant association between E. coli colonization and existence of common bile duct and gallbladder stones (p value 0.028). Out of the 22 E. coli strains (22/102) multidrug resistance phenotype was present in 95.45%. None of the strains belonged to common E. coli pathotypes. However, bfp + EhxA-hly, bfp + astA, bfp + EhxA-hly + pic, and EhxA-hly + pic + astA, bfp, and astA genotypes were detected in these strains. bfp (7/22, 31.8%) and astA (5/22, 22.7%) were among most frequent virulence factors in these strains. Results of this study showed significant association between colonization of E. coli and choledocholithiasis. Unusual existence of virulence gene combinations in these strains and their resistance to DOC and multiple classes of antibiotics could be considered as possible causes of their persistence in this harsh microenvironment.
Collapse
Affiliation(s)
- Maryam Razaghi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Tajeddin
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ganji
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Amir Houshang Mohammad Alizadeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Reza Zali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
43
|
Havt A, Lima IF, Medeiros PH, Clementino MA, Santos AK, Amaral MS, Veras HN, Prata MM, Lima NL, Di Moura A, Leite ÁM, Soares AM, Filho JQ, Houpt ER, Nataro JP, Guerrant RL, Lima AA. Prevalence and virulence gene profiling of enteroaggregative Escherichia coli in malnourished and nourished Brazilian children. Diagn Microbiol Infect Dis 2017; 89:98-105. [PMID: 28780245 PMCID: PMC5608016 DOI: 10.1016/j.diagmicrobio.2017.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 01/07/2023]
Abstract
The impact of enteroaggregative E. coli (EAEC) infection on childhood malnutrition and inflammation has been suggested, regardless of diarrhea. We investigated whether EAEC and its virulence-related genes (VRGs) are associated with malnutrition in a case-control study. Children aged 6-24 months from Brazil were enrolled as malnourished if weight-for-age Z-score (WAZ) ≤ -2 and nourished if WAZ > -1. Stools were cultured and examined for E. coli. DNA was extracted from fecal isolates and tested for EAEC by polymerase chain reaction (PCR). Positive samples were analyzed by 5 multiplex PCRs to identify 20 EAEC VRGs. Biomarkers of intestinal barrier function and inflammation were measured. The prevalence of EAEC was 39.94%. Samples that presented both aaiC and aatA genes were associated with malnutrition (P = 0.045). A high prevalence of VRGs was observed and the aafC gene was significantly associated with malnourished (P = 0.0101). Strains lacking aar and pic genes were associated with malnutrition (P = 0.018), while the concomitant presence of aar, pic, agg4A, and capU genes was associated with nourished (P = 0.031). These data reinforce the EAEC impact on malnutrition, the importance of aar as negative regulator and the great contribution of AAF/II fimbria for the pathobiology of EAEC.
Collapse
Affiliation(s)
- Alexandre Havt
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil.
| | - Ila Fn Lima
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Pedro Hqs Medeiros
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Marco Af Clementino
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Ana Ks Santos
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Marília Smg Amaral
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Herlice N Veras
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Mara Mg Prata
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Noélia L Lima
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Alessandra Di Moura
- Institute for the Promotion of Nutrition and Human Development, 15 Professor Carlos Lobo, 60281-740, Fortaleza, Ceará, Brazil
| | - Álvaro M Leite
- Institute for the Promotion of Nutrition and Human Development, 15 Professor Carlos Lobo, 60281-740, Fortaleza, Ceará, Brazil
| | - Alberto M Soares
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - José Q Filho
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil
| | - Eric R Houpt
- Center for Global Health & Division of Infectious Diseases and International Health and Department of Pediatrics, University of Virginia, 1400 W Main Street, 22908-1379, Charlottesville, VA, USA
| | - James P Nataro
- Center for Global Health & Division of Infectious Diseases and International Health and Department of Pediatrics, University of Virginia, 1400 W Main Street, 22908-1379, Charlottesville, VA, USA
| | - Richard L Guerrant
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil; Center for Global Health & Division of Infectious Diseases and International Health and Department of Pediatrics, University of Virginia, 1400 W Main Street, 22908-1379, Charlottesville, VA, USA
| | - Aldo Am Lima
- Institute of Biomedicine for Brazilian Semiarid, Federal University of Ceará, 1315 Coronel Nunes de Melo, 60430-270, Fortaleza, Brazil; Center for Global Health & Division of Infectious Diseases and International Health and Department of Pediatrics, University of Virginia, 1400 W Main Street, 22908-1379, Charlottesville, VA, USA
| |
Collapse
|
44
|
Enteroaggregative Escherichia coli Adherence Fimbriae Drive Inflammatory Cell Recruitment via Interactions with Epithelial MUC1. mBio 2017; 8:mBio.00717-17. [PMID: 28588132 PMCID: PMC5461410 DOI: 10.1128/mbio.00717-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) causes diarrhea and intestinal inflammation worldwide. EAEC strains are characterized by the presence of aggregative adherence fimbriae (AAF), which play a key role in pathogenesis by mediating attachment to the intestinal mucosa and by triggering host inflammatory responses. Here, we identify the epithelial transmembrane mucin MUC1 as an intestinal host cell receptor for EAEC, demonstrating that AAF-mediated interactions between EAEC and MUC1 facilitate enhanced bacterial adhesion. We further demonstrate that EAEC infection also causes elevated expression of MUC1 in inflamed human intestinal tissues. Moreover, we find that MUC1 facilitates AAF-dependent migration of neutrophils across the epithelium in response to EAEC infection. Thus, we show for the first time a proinflammatory role for MUC1 in the host response to an intestinal pathogen. EAEC is a clinically important intestinal pathogen that triggers intestinal inflammation and diarrheal illness via mechanisms that are not yet fully understood. Our findings provide new insight into how EAEC triggers host inflammation and underscores the pivotal role of AAFs—the principal adhesins of EAEC—in driving EAEC-associated disease. Most importantly, our findings add a new dimension to the signaling properties of the transmembrane mucin MUC1. Mostly studied for its role in various forms of cancer, MUC1 is widely regarded as playing an anti-inflammatory role in response to infection with bacterial pathogens in various tissues. However, the role of MUC1 during intestinal infections has not been previously explored, and our results describe the first report of MUC1 as a proinflammatory factor following intestinal infection.
Collapse
|
45
|
Kubomura A, Misaki T, Homma S, Matsuo C, Okabe N. Phenotypic and Molecular Characterization of Enteroaggregative Escherichia coli Isolated in Kawasaki, Japan. Jpn J Infect Dis 2017; 70:507-512. [PMID: 28367879 DOI: 10.7883/yoken.jjid.2016.387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC), an enteric pathogen, causes persistent diarrhea in children, HIV-infected individuals, and travelers in economically developing countries. However, the pathogenesis of EAEC infection is not well understood. This study aimed to characterize EAEC in Japan. Between 2012 and 2014, we identified 40 EAEC strains carrying the aggR gene at the Kawasaki City Institute for Public Health, Japan. We characterized these strains using O:H-antigen typing, polymerase chain reaction (for pCVD432, astA, extended-spectrum beta-lactamase, and 4 aggregative adherence fimbriae genes), HEp-2 cell adherence, clump formation, and antimicrobial susceptibility testing. We were able to classify the 40 EAEC strains into 20 O:H types. Although specific O:H types were not correlated with HEp-2 cell aggregative adherence, all the O99:H10, O131:H27, and O176:H34 EAEC strains that were the most frequent O:H types detected in this study showed co-resistance to ampicillin, sulfamethoxazole-trimethoprim, and tetracycline. Based on results of the adhesion assay and detection of virulence-related genes, no significant difference was found between asymptomatic and symptomatic cases. Irrespective of the origin, their potential for virulence was retained. Further characterization is vital to determine whether EAEC is virulent in Japan.
Collapse
|
46
|
Jønsson R, Liu B, Struve C, Yang Y, Jørgensen R, Xu Y, Jenssen H, Krogfelt KA, Matthews S. Structural and functional studies of Escherichia coli aggregative adherence fimbriae (AAF/V) reveal a deficiency in extracellular matrix binding. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:304-311. [PMID: 27939608 PMCID: PMC5289312 DOI: 10.1016/j.bbapap.2016.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging cause of acute and persistent diarrhea worldwide. The pathogenesis of different EAEC stains is complicated, however, the early essential step begins with attachment of EAEC to intestinal mucosa via aggregative adherence fimbriae (AAFs). Currently, five different variants have been identified, which all share a degree of similarity in the gene organization of their operons and sequences. Here, we report the solution structure of Agg5A from the AAF/V variant. While preserving the major structural features shared by all AAF members, only Agg5A possesses an inserted helix at the beginning of the donor strand, which together with altered surface electrostatics, renders the protein unable to interact with fibronectin. Hence, here we characterize the first AAF variant with a binding mode that varies from previously described AAFs.
Collapse
Affiliation(s)
- Rie Jønsson
- Institute for Science and Environment, Roskilde University, Roskilde, Denmark; Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Bing Liu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Yi Yang
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - René Jørgensen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Håvard Jenssen
- Institute for Science and Environment, Roskilde University, Roskilde, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | - Steve Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom.
| |
Collapse
|
47
|
Jønsson R, Struve C, Boll EJ, Boisen N, Joensen KG, Sørensen CA, Jensen BH, Scheutz F, Jenssen H, Krogfelt KA. A Novel pAA Virulence Plasmid Encoding Toxins and Two Distinct Variants of the Fimbriae of Enteroaggregative Escherichia coli. Front Microbiol 2017; 8:263. [PMID: 28275371 PMCID: PMC5320562 DOI: 10.3389/fmicb.2017.00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an increasingly recognized pathogen associated with acute and persistent diarrhea worldwide. While EAEC strains are considered highly heterogeneous, aggregative adherence fimbriae (AAFs) are thought to play a pivotal role in pathogenicity by facilitating adherence to the intestinal mucosa. In this study, we optimized an existing multiplex PCR to target all known AAF variants, which are distinguished by differences in their pilin subunits. We applied the assay on a collection of 162 clinical Danish EAEC strains and interestingly found six, by SNP analysis phylogenetically distinct, strains harboring the major pilin subunits from both AAF/III and AAF/V. Whole-genome and plasmid sequencing revealed that in these six strains the agg3A and agg5A genes were located on a novel pAA plasmid variant. Moreover, the plasmid also encoded several other virulence genes including some not previously found on pAA plasmids. Thus, this plasmid endows the host strains with a remarkably high number of EAEC associated virulence genes hereby likely promoting strain pathogenicity.
Collapse
Affiliation(s)
- Rie Jønsson
- Department of Science and Environment, Roskilde UniversityRoskilde, Denmark; Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Erik J Boll
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Nadia Boisen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Katrine G Joensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Camilla A Sørensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Betina H Jensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Flemming Scheutz
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University Roskilde, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| |
Collapse
|
48
|
Miri ST, Dashti A, Mostaan S, Kazemi F, Bouzari S. Identification of different Escherichia coli pathotypes in north and north-west provinces of Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2017; 9:33-37. [PMID: 28775821 PMCID: PMC5534002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Diarrhea is one of the most prevalent diseases in the world, specially in developing countries. One of the most important causative agents of bacterial diarrhea is diarrheagenic Escherichia coli (DEC) which causes gastroenteritis and this group involving enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), enterohemoragic E. coli (EHEC), enteroinvasive E. coli (EIEC), diffusely adherence E. coli (DAEC). The aim of this study was to identify different E. coli pathotypes in north and north-west of Iran, among the clinical isolates. MATERIALS AND METHODS In this study for identification of E. coli, 170 fecal samples were cultured on MacConkey agar and identified by biochemical tests. Samples with E. coli characteristics were selected (145 samples) and their genomes were purified by phenol-chloroform method. After extraction of genomes, lt and sta genes identified by PCR for ETEC, eae gene for atypical and eae and bfp for typical EPEC, AA region for EAEC, stx1 and stx2 and eae genes for EHEC (stx1 or stx2 or both for STEC) and invE for EIEC. RESULTS Finally 10 samples identified as ETEC (%5.88), 18 (%10.58) EPEC, 6 (%3.52) EHEC and 12 (7.05%) samples were STEC. None of the samples were positive for EAEC and EIEC. CONCLUSION The results obtained in this study showed that ETEC, EPEC, EHEC and STEC are prevalent bacterial agents in north and north-west of Iran. Complementary studies to identify these pathotypes in other seasons can help to adopt necessary policies against outbreaks in Iran.
Collapse
Affiliation(s)
| | | | | | | | - Saeid Bouzari
- Corresponding author: Saeid Bouzari Ph.D, Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, Iran. Tel: +98-21-66953311-8, Fax: +98-21-66492619,
| |
Collapse
|
49
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|
50
|
Seidman JC, Johnson LB, Levens J, Mkocha H, Muñoz B, Silbergeld EK, West SK, Coles CL. Longitudinal Comparison of Antibiotic Resistance in Diarrheagenic and Non-pathogenic Escherichia coli from Young Tanzanian Children. Front Microbiol 2016; 7:1420. [PMID: 27656179 PMCID: PMC5013055 DOI: 10.3389/fmicb.2016.01420] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023] Open
Abstract
Enteroaggregative, enteropathogenic, and enterotoxigenic Escherichia coli contribute significantly to the burden of diarrheal infections particularly in developing countries. Antibiotic resistance is increasingly common among bacterial pathogens including pathogenic E. coli. We assessed the relationship between pathogenic E. coli carriage and resistance to six antibiotics in E. coli isolated from young children in rural Tanzania. We surveyed temporal stability in antibiotic resistance in 2492 E. coli isolated from fecal samples obtained from young children in rural Tanzania collected over a 6 months period. Approximately half of the 377 children sampled were exposed to an azithromycin mass treatment program for trachoma control and half resided in control villages. Children were sampled at baseline, 1-, 3-, and 6 months following azithromycin treatment. We compared resistance to six antibiotics in pathogenic and non-pathogenic strains at the population level, within fecal specimens, and within individuals over time using chi-square tests, paired odds ratios, and logistic regression, respectively. Resistance to ampicillin and trimethoprim/sulfamethoxazole was highly prevalent (>65%). Resistance to 5 of 6 antibiotics tested and multi-drug resistance occurred more frequently in pathogenic isolates (p ≤ 0.001) within fecal specimens and overall. Azithromycin mass treatment exposure was significantly associated with increased odds of carriage of isolates resistant to erythromycin (OR 3.64, p < 0.001) and trimethoprim/sulfamethoxazole (OR 1.60, p < 0.05). Pathogenic isolates were approximately twice as likely to be resistant to erythromycin, ampicillin, or trimethoprim/sulfamethoxazole compared to non-pathogenic isolates from the same fecal specimen. The potential linkage between resistance and virulence in E. coli suggests hygiene and sanitation interventions aimed at reducing disease burden could play a role in controlling transmission of antibiotic resistance.
Collapse
Affiliation(s)
- Jessica C Seidman
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD USA
| | | | | | | | - Beatriz Muñoz
- Dana Center for Preventive Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD USA
| | - Ellen K Silbergeld
- Department of Environmental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Sheila K West
- Dana Center for Preventive Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD USA
| | - Christian L Coles
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| |
Collapse
|