1
|
Ramm F, Kaser D, König I, Fellendorf J, Wenzel D, Zemella A, Papatheodorou P, Barth H, Schmidt H. Synthesis of biologically active Shiga toxins in cell-free systems. Sci Rep 2024; 14:6043. [PMID: 38472311 PMCID: PMC11636806 DOI: 10.1038/s41598-024-56190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Shiga toxins (Stx) produced by pathogenic bacteria can cause mild to severe diseases in humans. Thus, the analysis of such toxins is of utmost importance. As an AB5 toxin, Stx consist of a catalytic A-subunit acting as a ribosome-inactivating protein (RIP) and a B-pentamer binding domain. In this study we synthesized the subunits and holotoxins from Stx and Stx2a using different cell-free systems, namely an E. coli- and CHO-based cell-free protein synthesis (CFPS) system. The functional activity of the protein toxins was analyzed in two ways. First, activity of the A-subunits was assessed using an in vitro protein inhibition assay. StxA produced in an E. coli cell-free system showed significant RIP activity at concentrations of 0.02 nM, whereas toxins synthesized in a CHO cell-free system revealed significant activity at concentrations of 0.2 nM. Cell-free synthesized StxA2a was compared to StxA2a expressed in E. coli cells. Cell-based StxA2a had to be added at concentrations of 20 to 200 nM to yield a significant RIP activity. Furthermore, holotoxin analysis on cultured HeLa cells using an O-propargyl-puromycin assay showed significant protein translation reduction at concentrations of 10 nM and 5 nM for cell-free synthesized toxins derived from E. coli and CHO systems, respectively. Overall, these results show that Stx can be synthesized using different cell-free systems while remaining functionally active. In addition, we were able to use CFPS to assess the activity of different Stx variants which can further be used for RIPs in general.
Collapse
Affiliation(s)
- Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| | - Danny Kaser
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
- Institute of Nutritional Science - Nutritional Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Irina König
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Juliane Fellendorf
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Dana Wenzel
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany.
| |
Collapse
|
2
|
Abad-Fau A, Sevilla E, Oro A, Martín-Burriel I, Moreno B, Morales M, Bolea R. Multidrug resistance in pathogenic Escherichia coli isolates from urinary tract infections in dogs, Spain. Front Vet Sci 2024; 11:1325072. [PMID: 38585298 PMCID: PMC10996866 DOI: 10.3389/fvets.2024.1325072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Escherichia coli (E. coli) is a pathogen frequently isolated in cases of urinary tract infections (UTIs) in both humans and dogs and evidence exists that dogs are reservoirs for human infections. In addition, E. coli is associated to increasing antimicrobial resistance rates. This study focuses on the analysis of antimicrobial resistance and the presence of selected virulence genes in E. coli isolates from a Spanish dog population suffering from UTI. This collection of isolates showed an extremely high level of phenotypic resistance to 1st-3rd generation cephalosporins, followed by penicillins, fluoroquinolones and amphenicols. Apart from that, 13.46% of them were considered extended-spectrum beta-lactamase producers. An alarmingly high percentage (71.15%) of multidrug resistant isolates were also detected. There was a good correlation between the antimicrobial resistance genes found and the phenotypic resistance expressed. Most of the isolates were classified as extraintestinal pathogenic E. coli, and two others harbored virulence factors related to diarrheagenic pathotypes. A significant relationship between low antibiotic resistance and high virulence factor carriage was found, but the mechanisms behind it are still poorly understood. The detection of high antimicrobial resistance rates to first-choice treatments highlights the need of constant antimicrobial resistance surveillance, as well as continuous revision of therapeutic guidelines for canine UTI to adapt them to changes in antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Eloisa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Ainara Oro
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon, Universidad de Zaragoza, Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Mariano Morales
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Albéitar Laboratories, Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
3
|
Virulence genes, phylogenetic analysis, and antimicrobial resistance of Escherichia coli isolated from urinary tract infection in hospitalized patients and outpatients. J Appl Genet 2022; 63:805-813. [PMID: 35972677 DOI: 10.1007/s13353-022-00718-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection (UTI) in hospitalized and community patients. The aim was to compare the genetic characteristics of E. coli isolated from inpatients (IPs) and outpatients (OPs) with UTI regarding their phylogenies, virulence traits, and resistance trends. In this cross-sectional study, 130 epidemiologically unrelated E. coli isolates were collected from patients with UTI. Extended-spectrum beta-lactamase (ESBL) production was detected by the combination disk method. UPEC and intestinal pathogenic E. coli (IPEC) virulence genes were detected by polymerase chain reaction. The isolates were analyzed for phylogenetic grouping. A P value of < 0.05 was considered significant. Of the 130 isolates, 62.3% were from OPs and 37.7% from IPs. About 35.8% of the OPs and 49% of the IPs were ESBL positive. Moreover, 56.8% of the OPs and 59.2% of the IPs were positive for UPEC virulence genes. Notably, 50% of the isolates from each group exhibited IPEC virulence properties. The predominant phylogroup was B2 (43.2% in the OPs and 40.8% in the IPs). No significant difference was found between the IP and OP isolates (P > 0.05). Our results may indicate that consideration should also be given to hygienic standards in the community. The marked genetic plasticity of E. coli has allowed the emergence of strains showing arrays of genes from different pathotypes. Characterization of E. coli isolates in different areas may guide the selection of effective infection control strategies.
Collapse
|
4
|
Riedl Khursigara M, Matsuda-Abedini M, Radhakrishnan S, Hladunewich MA, Lemaire M, Teoh CW, Noone D, Licht C. A Guide for Adult Nephrologists and Hematologists to Managing Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy in Teens Transitioning to Young Adults. Adv Chronic Kidney Dis 2022; 29:231-242. [PMID: 36084970 DOI: 10.1053/j.ackd.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
Atypical hemolytic uremic syndrome and C3 glomerulopathy/immune complex membranoproliferative glomerulonephritis are ultra-rare chronic, complement-mediated diseases with childhood manifestation in a majority of cases. Transition of clinical care of patients from pediatric to adult nephrologists-typically with controlled disease in native or transplant kidneys in case of atypical hemolytic uremic syndrome and often with chronic progressive disease despite treatment efforts in case of C3 glomerulopathy/immune complex membranoproliferative glomerulonephritis-identifies a challenging juncture in the journey of these patients. Raising awareness for the vulnerability of this patient cohort; providing education on disease pathophysiology and management including the use of new, high-precision complement antagonists; and establishing an ongoing dialog of patients, families, and all members of the health care team involved on either side of the age divide will be inevitable to ensure optimal patient outcomes and a safe transition of these patients to adulthood.
Collapse
Affiliation(s)
| | - Mina Matsuda-Abedini
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Seetha Radhakrishnan
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michelle A Hladunewich
- Division of Nephrology and Obstetric Medicine, Department of Medicine, Sunnybrook Health Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chia Wei Teoh
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
5
|
Tanabe RHS, Dias RCB, Orsi H, de Lira DRP, Vieira MA, dos Santos LF, Ferreira AM, Rall VLM, Mondelli AL, Gomes TAT, Camargo CH, Hernandes RT. Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli. Microorganisms 2022; 10:microorganisms10030645. [PMID: 35336220 PMCID: PMC8950336 DOI: 10.3390/microorganisms10030645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Pathogenic Escherichia coli are divided into two groups: diarrheagenic (DEC) and extraintestinal pathogenic (ExPEC) E. coli. ExPEC causing urinary tract infections (UTIs) are termed uropathogenic E. coli (UPEC) and are the most common cause of UTIs worldwide. (2) Methods: Here, we characterized 112 UPEC in terms of phylogroup, serotype, the presence of virulence factor-encoding genes, and antimicrobial resistance. (3) Results: The majority of the isolates were assigned into the phylogroup B2 (41.07%), and the serogroups O6 (12.5%) and O25 (8.9%) were the most frequent. Five hybrid UPEC (4.5%), with markers from two DEC pathotypes, i.e., atypical enteropathogenic (aEPEC) and enteroaggregative (EAEC) E. coli, were identified, and designated UPEC/aEPEC (one isolate) and UPEC/EAEC (four isolates), respectively. Three UPEC/EAEC harbored genes from the pap operon, and the UPEC/aEPEC carried ibeA. The highest resistance rates were observed for ampicillin (46.4%) and trimethoprim/sulfamethoxazole (34.8%), while 99.1% of the isolates were susceptible to nitrofurantoin and/or fosfomycin. Moreover, 9.8% of the isolates were identified as Extended Spectrum β-Lactamase producers, including one hybrid UPEC/EAEC. (4) Conclusion: Our data reinforce that hybrid UPEC/DEC are circulating in the city of Botucatu, Brazil, as uropathogens. However, how and whether these combinations of genes influence their pathogenicity is a question that remains to be elucidated.
Collapse
Affiliation(s)
- Rodrigo H. S. Tanabe
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Regiane C. B. Dias
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Henrique Orsi
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Daiany R. P. de Lira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Melissa A. Vieira
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Luís F. dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, SP, Brazil; (L.F.d.S.); (C.H.C.)
| | - Adriano M. Ferreira
- Hospital das Clínicas da Faculdade de Medicina de Botucatu, Botucatu 18607-741, SP, Brazil;
| | - Vera L. M. Rall
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
| | - Alessandro L. Mondelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista (UNESP), Botucatu 18618-970, SP, Brazil;
| | - Tânia A. T. Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP-EPM), São Paulo 04023-062, SP, Brazil;
| | - Carlos H. Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo 01246-902, SP, Brazil; (L.F.d.S.); (C.H.C.)
| | - Rodrigo T. Hernandes
- Departamento de Ciências Químicas e Biológicas (Setor de Microbiologia e Imunologia), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, SP, Brazil; (R.H.S.T.); (R.C.B.D.); (H.O.); (D.R.P.d.L.); (M.A.V.); (V.L.M.R.)
- Correspondence: ; Tel.: +55-14-3880-0446
| |
Collapse
|
6
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
7
|
Santos ACDM, Santos FF, Silva RM, Gomes TAT. Diversity of Hybrid- and Hetero-Pathogenic Escherichia coli and Their Potential Implication in More Severe Diseases. Front Cell Infect Microbiol 2020; 10:339. [PMID: 32766163 PMCID: PMC7381148 DOI: 10.3389/fcimb.2020.00339] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
Although extraintestinal pathogenic Escherichia coli (ExPEC) are designated by their isolation site and grouped based on the type of host and the disease they cause, most diarrheagenic E. coli (DEC) are subdivided into several pathotypes based on the presence of specific virulence traits directly related to disease development. This scenario of a well-categorized E. coli collapsed after the German outbreak of 2011, caused by one strain bearing the virulence factors of two different DEC pathotypes (enteroaggregative E. coli and Shiga toxin-producing E. coli). Since the outbreak, many studies have shown that this phenomenon is more frequent than previously realized. Therefore, the terms hybrid- and hetero-pathogenic E. coli have been coined to describe new combinations of virulence factors among the classic E. coli pathotypes. In this review, we provide an overview of these classifications and highlight the E. coli genomic plasticity that results in some mixed E. coli pathotypes displaying novel pathogenic strategies, which lead to a new symptomatology related to E. coli diseases. In addition, as the capacity for genome interrogation has grown in the last few years, it is clear that genes encoding some virulence factors, such as Shiga toxin, are found among different E. coli pathotypes to which they have not traditionally been associated, perhaps foreshowing their emergence in new and severe outbreaks caused by such hybrid strains. Therefore, further studies regarding hetero-pathogenic and hybrid-pathogenic E. coli isolates are necessary to better understand and control the spread of these pathogens.
Collapse
Affiliation(s)
- Ana Carolina de Mello Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa Maria Silva
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tânia Aparecida Tardelli Gomes
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Wyrsch ER, Chowdhury PR, Wallis L, Cummins ML, Zingali T, Brandis KJ, Djordjevic SP. Whole-genome sequence analysis of environmental Escherichia coli from the faeces of straw-necked ibis ( Threskiornis spinicollis) nesting on inland wetlands. Microb Genom 2020; 6:e000385. [PMID: 32519939 PMCID: PMC7371105 DOI: 10.1099/mgen.0.000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Wildlife, and birds in particular, play an increasingly recognized role in the evolution and transmission of Escherichia coli that pose a threat to humans. To characterize these lineages and their potential threat from an evolutionary perspective, we isolated and performed whole-genome sequencing on 11 sequence types (STs) of E. coli recovered from the desiccated faeces of straw-necked ibis (Threskiornis spinicollis) nesting on inland wetlands located in geographically different regions of New South Wales, Australia. Carriage of virulence-associated genes was limited, and no antimicrobial resistance genes were detected, but novel variants of an insertion element that plays an important role in capturing and mobilizing antibiotic resistance genes, IS26, were identified and characterized. The isolates belonged to phylogroups B1 and D, including types known to cause disease in humans and animals. Specifically, we found E. coli ST58, ST69, ST162, ST212, ST446, ST906, ST2520, ST6096 and ST6241, and a novel phylogroup D strain, ST10208. Notably, the ST58 strain hosted significant virulence gene carriage. The sequences of two plasmids hosting putative virulence-associated factors with incompatibility groups I1 and Y, an extrachromosomal integrative/conjugative element, and a variant of a large Escherichia phage of the family Myoviridae, were additionally characterized. We identified multiple epidemiologically relevant gene signatures that link the ibis isolates to sequences from international sources, plus novel variants of IS26 across different sequence types and in different contexts.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Louise Wallis
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Max L. Cummins
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tiziana Zingali
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kate J. Brandis
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, 2052 NSW, Australia
| | - Steven P. Djordjevic
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
9
|
Abstract
The discovery of bacteria in the female urinary bladder has fundamentally changed current dogma regarding the urinary tract and related urinary disorders. Previous research characterized many of the bacterial components of the female urinary tract, but the viral fraction of this community is largely unknown. Viruses within the human microbiota far outnumber bacterial cells, with the most abundant viruses being those that infect bacteria (bacteriophages). Similar to observations within the microbiota of the gut and oral cavity, preliminary surveys of the urinary tract and bladder microbiota indicate a rich diversity of uncharacterized bacteriophage (phage) species. Phages are vital members of the microbiota, having critical roles in shaping bacterial metabolism and community structure. Although phages have been discovered in the urinary tract, such as phages that infect Escherichia coli, sampling them is challenging owing to low biomass, possible contamination when using non-invasive methods and the invasiveness of methods that reduce the potential for contamination. Phages could influence bladder health, but an understanding of the association between phage communities, bacterial populations and bladder health is in its infancy. However, evidence suggests that phages can defend the host against pathogenic bacteria and, therefore, modulation of the microbiome using phages has therapeutic potential for lower urinary tract symptoms. Furthermore, as natural predators of bacteria, phages have garnered renewed interest for their use as antimicrobial agents, for instance, in the treatment of urinary tract infections.
Collapse
|
10
|
Detzner J, Gloerfeld C, Pohlentz G, Legros N, Humpf HU, Mellmann A, Karch H, Müthing J. Structural Insights into Escherichia coli Shiga Toxin (Stx) Glycosphingolipid Receptors of Porcine Renal Epithelial Cells and Inhibition of Stx-Mediated Cellular Injury Using Neoglycolipid-Spiked Glycovesicles. Microorganisms 2019; 7:microorganisms7110582. [PMID: 31752441 PMCID: PMC6920957 DOI: 10.3390/microorganisms7110582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin (Stx) producing Escherichia coli (STEC) cause the edema disease in pigs by releasing the swine-pathogenic Stx2e subtype as the key virulence factor. Stx2e targets endothelial cells of animal organs including the kidney harboring the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer). Since the involvement of renal epithelial cells in the edema disease is unknown, in this study, we analyzed the porcine kidney epithelial cell lines, LLC-PK1 and PK-15, regarding the presence of Stx-binding GSLs, their sensitivity towards Stx2e, and the inhibitory potential of Gb3- and Gb4-neoglycolipids, carrying phosphatidylethanolamine (PE) as the lipid anchor, towards Stx2e. Immunochemical and mass spectrometric analysis revealed various Gb3Cer and Gb4Cer lipoforms as the dominant Stx-binding GSLs in both LLC-PK1 and PK-15 cells. A dihexosylceramide with proposed Galα1-4Gal-sequence (Gal2Cer) was detected in PK-15 cells, whereas LLC-PK1 cells lacked this compound. Both cell lines were susceptible towards Stx2e with LLC-PK1 representing an extremely Stx2e-sensitive cell line. Gb3-PE and Gb4-PE applied as glycovesicles significantly reduced the cytotoxic activity of Stx2e towards LLC-PK1 cells, whereas only Gb4-PE exhibited some protection against Stx2e for PK-15 cells. This is the first report identifying Stx2e receptors of porcine kidney epithelial cells and providing first data on their Stx2e-mediated damage suggesting possible involvement in the edema disease.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Caroline Gloerfeld
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Nadine Legros
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, University of Münster, 48149 Münster, Germany;
| | - Alexander Mellmann
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Helge Karch
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
- Correspondence: ; Tel.: +49-(0)251-8355192
| |
Collapse
|
11
|
Bally S, Fourcade J, Frémeaux-Bacchi V. Haemolytic uraemic syndrome associated with non shiga toxin-producing Escherichia coli bacteraemia: a case report. BMC Nephrol 2019; 20:157. [PMID: 31064333 PMCID: PMC6505115 DOI: 10.1186/s12882-019-1357-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/25/2019] [Indexed: 11/26/2022] Open
Abstract
Background Haemolytic uraemic syndrome (HUS) is a thrombotic microangiopathy (TMA) characterized by predominant renal involvement. Several types of HUS can be distinguished: the most frequent « typical » HUS, due to shiga toxin producing Escherichia coli (STEC), “atypical” HUS due to complement alternative pathway dysregulation and “secondary” HUS associated with various diseases/conditions, the classification of which is still subject to debate. Case presentation We report a case of HUS following E.coli prostatitis and bacteraemia in an adult male. He presented with severe renal and neurological involvement. Initially considered as a “typical” HUS, the condition was treated by antibiotics. No other specific treatment for HUS was administered. The outcome was favorable. We eventually identified a non shiga toxin producing E.coli. Genetic testing of the complement alternative pathway revealed a rare – potentially pathogenic – variant of factor H. This constitutes a possible factor of susceptibility for atypical HUS, suggesting that E.coli infection may be the trigger. Conclusion This case raises the question of complement exploration for HUS associated with infections, in order to classify such cases of HUS in accordance with their underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Stéphane Bally
- Service de Néphrologie Dialyse, Centre Hospitalier Métropole Savoie, Place Lucien Biset, BP 31125, 73 011, Chambery, Cedex, France.
| | - Jacques Fourcade
- Service de Néphrologie Dialyse, Centre Hospitalier Métropole Savoie, Place Lucien Biset, BP 31125, 73 011, Chambery, Cedex, France
| | - Véronique Frémeaux-Bacchi
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (AP-HP), 20 rue Leblanc, 75 908, Paris, Cedex 15, France
| |
Collapse
|
12
|
Derakhshan S, Farhadifar F, Roshani D, Ahmadi A, Haghi F. Study on the presence of resistant diarrheagenic pathotypes in Escherichia coli isolated from patients with urinary tract infection. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:348-357. [PMID: 31749924 PMCID: PMC6820833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
AIM This article aimed to analyze the diarrheagenic potential of E. coli isolated from urinary tract infection (UTI) and to recognize the presence of antibiotic resistance genes. BACKGROUND The marked genome plasticity of Escherichia coli has allowed the emergence of resistant pathogenic strains displaying an unusual arrangement of genes. METHODS In this cross-sectional study, 110 E. coli were isolated from patients with the symptoms of UTI in Sanandaj, west of Iran between July and September - 2015. The isolates were examined by the disk diffusion method for antibiotic susceptibility test and by polymerase chain reaction for the presence of genes characteristic of diarrheagenic E. coli (DEC), Uropathogenic E. coli (UPEC) virulence genes, extended-spectrum β-lactamase bla CTX-M and plasmid-mediated quinolone resistance determinants, qnrA, qnrB, and qnrS. RESULTS The most and the least effective antibiotics were nitrofurantoin and cefotaxime (96.4% and 27.3% sensitivity, respectively). Of the 110 UTI isolates, 57.3% carried diarrheagenic genes. The bundle-forming pilus bfpA was the most prevalent diarrheagenic gene (39.1%). The most commonly detected DEC pathotype was enterotoxigenic E. coli (-ETEC, 12.7%). All the pathotypes carried the bla CTX-M and qnr. The -UPEC hly hemolysin and pap adhesin genes were mainly detected among ETEC isolates. CONCLUSION Our results indicated the presence of resistant diarrheagenic pathotypes in UTI-associated E. coli. Such isolates may have the capacity of causing both extraintestinal and intestinal infections. Based on our knowledge, this is the first report of the presence of qnr in ETEC from urine.
Collapse
Affiliation(s)
- Safoura Derakhshan
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fariba Farhadifar
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Daem Roshani
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amjad Ahmadi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Fakhri Haghi
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Hemolytic-uremic syndrome after Escherichia coli urinary tract infection in humans: systematic review of the literature. J Nephrol 2018; 31:919-924. [PMID: 30328581 DOI: 10.1007/s40620-018-0543-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/29/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Intestinal infections caused by a shigatoxin-positive Escherichia coli (mostly of the serogroups O26, O45, O103, O111, O121, O145 and especially O157) are a common cause of hemolytic-uremic syndrome. Hemolytic-uremic syndrome was first linked with an E. coli urinary tract infection 40 years ago. METHODS We conducted a systematic review of the literature addressing the association between E. coli urinary tract infection and hemolytic-uremic syndrome. RESULTS For the final analysis, we retained 23 original reports published since 1979. Five unselected pediatric case series addressed the possible occurrence of hemolytic-uremic syndrome after an acute symptomatic E. coli urinary tract infection among 266 cases and found the mentioned association in 8 (3.0%) cases. We also found 28 individual cases (17 females and 11 males) of hemolytic-uremic syndrome preceded by an E. coli urinary tract infection: 16 children aged from 2 days to 6.0 years and 12 adults aged from 22 to 75 years. Testing for shigatoxin, performed in 19 cases, was positive in 15 cases. E. coli serotyping was performed in 18 cases: testing for serotype O157, O103 and O145 was positive in one, one and two cases, respectively, while testing for serotype O26, O45, O111 and O121 was always negative. CONCLUSIONS Hemolytic-uremic syndrome rarely occurs after an acute E. coli urinary tract infection. It affects both children and adults and is mostly caused by germs that are shigatoxin-positive.
Collapse
|
14
|
The Frequency of Shiga Toxin Producing Escherichia coli in Patients with Urinary Tract Infection in Iran: Systematic Review and Meta-Analysis. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2018. [DOI: 10.5812/pedinfect.78816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
A Novel Protective Vaccine Antigen from the Core Escherichia coli Genome. mSphere 2016; 1:mSphere00326-16. [PMID: 27904885 PMCID: PMC5120174 DOI: 10.1128/msphere.00326-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
E. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics to identify putative broadly protective vaccine antigens. One such antigen was identified that was highly immunogenic and induced protection in a mouse model of bacteremia. Overall, our study provides a genomic and proteomic framework for the selection of novel vaccine antigens that could mediate broad protection against pathogenic E. coli. Escherichia coli is a versatile pathogen capable of causing intestinal and extraintestinal infections that result in a huge burden of global human disease. The diversity of E. coli is reflected by its multiple different pathotypes and mosaic genome composition. E. coli strains are also a major driver of antibiotic resistance, emphasizing the urgent need for new treatment and prevention measures. Here, we used a large data set comprising 1,700 draft and complete genomes to define the core and accessory genome of E. coli and demonstrated the overlapping relationship between strains from different pathotypes. In combination with proteomic investigation, this analysis revealed core genes that encode surface-exposed or secreted proteins that represent potential broad-coverage vaccine antigens. One of these antigens, YncE, was characterized as a conserved immunogenic antigen able to protect against acute systemic infection in mice after vaccination. Overall, this work provides a genomic blueprint for future analyses of conserved and accessory E. coli genes. The work also identified YncE as a novel antigen that could be exploited in the development of a vaccine against all pathogenic E. coli strains—an important direction given the high global incidence of infections caused by multidrug-resistant strains for which there are few effective antibiotics. IMPORTANCEE. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics to identify putative broadly protective vaccine antigens. One such antigen was identified that was highly immunogenic and induced protection in a mouse model of bacteremia. Overall, our study provides a genomic and proteomic framework for the selection of novel vaccine antigens that could mediate broad protection against pathogenic E. coli.
Collapse
|
16
|
Intracellular d-Serine Accumulation Promotes Genetic Diversity via Modulated Induction of RecA in Enterohemorrhagic Escherichia coli. J Bacteriol 2016; 198:3318-3328. [PMID: 27698085 DOI: 10.1128/jb.00548-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/27/2016] [Indexed: 01/28/2023] Open
Abstract
We recently discovered that exposure of enterohemorrhagic Escherichia coli (EHEC) to d-serine resulted in accumulation of this unusual amino acid, induction of the SOS regulon, and downregulation of the type III secretion system that is essential for efficient colonization of the host. Here, we have investigated the physiological relevance of this elevated SOS response, which is of particular interest given the presence of Stx toxin-carrying lysogenic prophages on the EHEC chromosome that are activated during the SOS response. We found that RecA elevation in response to d-serine, while being significant, was heterogeneous and not capable of activating stx expression or stx phage transduction to a nonlysogenic recipient. This "SOS-like response" was, however, capable of increasing the mutation frequency associated with low-level RecA activity, thus promoting genetic diversity. Furthermore, this response was entirely dependent on RecA and enhanced in the presence of a DNA-damaging agent, indicating a functional SOS response, but did not result in observable cleavage of the LexA repressor alone, indicating a controlled mechanism of induction. This work demonstrates that environmental factors not usually associated with DNA damage are capable of promoting an SOS-like response. We propose that this modulated induction of RecA allows EHEC to adapt to environmental insults such as d-serine while avoiding unwanted phage-induced lysis. IMPORTANCE The SOS response is a global stress network that is triggered by the presence of DNA damage due to breakage or stalled replication forks. Activation of the SOS response can trigger the replication of lytic bacteriophages and promote genetic diversification through error-prone polymerases. We have demonstrated that the host-associated metabolite d-serine contributes to Escherichia coli niche specification and accumulates inside cells that cannot catabolize it. This results in a modulated activation of the SOS antirepressor RecA that is insufficient to trigger lytic bacteriophage but capable of increasing the SOS-associated mutation frequency. These findings describe how relevant signals not normally associated with DNA damage can hijack the SOS response, promoting diversity as E. coli strains adapt while avoiding unwanted phage lysis.
Collapse
|
17
|
|
18
|
Diarrhea, Urosepsis and Hemolytic Uremic Syndrome Caused by the Same Heteropathogenic Escherichia coli Strain. Pediatr Infect Dis J 2016; 35:1045-7. [PMID: 27195604 DOI: 10.1097/inf.0000000000001226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We describe an 8-month-old girl with diarrhea, urosepsis and hemolytic uremic syndrome caused by Escherichia coli. Typing of cultured E. coli strains from urine and blood revealed the presence of virulence factors from multiple pathotypes of E. coli. This case exemplifies the genome plasticity of E. coli and the resulting heteropathogenic strains.
Collapse
|
19
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Behzadi P, Najafi A, Behzadi E, Ranjbar R. Microarray long oligo probe designing for Escherichia coli: an in-silico DNA marker extraction. Cent European J Urol 2016; 69:105-11. [PMID: 27123336 PMCID: PMC4846717 DOI: 10.5173/ceju.2016.654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 12/21/2015] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Urinary tract infections are predominant diseases which may be caused by different pathogenic microorganisms, particularly Escherichia coli (E.coli). DNA microarray technology is an accurate, rapid, sensitive, and specific diagnostic tool which may lead to definite diagnosis and treatment of several infectious diseases. DNA microarray is a multi-process method in which probe designing plays an important. Therefore, the authors of the present study have tried to design a range of effective and proper long oligo microarray probes for detection and identification of different strains of pathogenic E.coli and in particular, uropathogenic E.coli (UPEC). MATERIAL AND METHODS E.coli O26 H11 11368 uid41021 was selected as the standard strain for probe designing. This strain encompasses the largest nucleotide sequence and the most number of genes among other pathogenic strains of E.coli. For performing this in silico survey, NCBI database, GReview Server, PanSeq Server, Oligoanalyzer tool, and AlleleID 7.7 were used to design accurate, appropriate, effective, and flexible long oligo microarray probes. Moreover, the genome of E.coli and its closely related microorganisms were compared. RESULTS In this study, 15 long oligo microarray probes were designed for detecting and identifying different strains of E.coli such as UPEC. These probes possessed the best physico-chemical characteristics. The functional and structural properties of the designed probes were recognized by practical tools and softwares. CONCLUSIONS The use of reliable advanced technologies and methodologies for probe designing guarentees the high quality of microarray probes and makes DNA microarray technology more flexible and an effective diagnostic technique.
Collapse
Affiliation(s)
- Payam Behzadi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence. PLoS Pathog 2016; 12:e1005359. [PMID: 26727373 PMCID: PMC4699771 DOI: 10.1371/journal.ppat.1005359] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023] Open
Abstract
The ability of any organism to sense and respond to challenges presented in the environment is critically important for promoting or restricting colonization of specific sites. Recent work has demonstrated that the host metabolite D-serine has the ability to markedly influence the outcome of infection by repressing the type III secretion system of enterohaemorrhagic Escherichia coli (EHEC) in a concentration-dependent manner. However, exactly how EHEC monitors environmental D-serine is not understood. In this work, we have identified two highly conserved members of the E. coli core genome, encoding an inner membrane transporter and a transcriptional regulator, which collectively help to "sense" levels of D-serine by regulating its uptake from the environment and in turn influencing global gene expression. Both proteins are required for full expression of the type III secretion system and diversely regulated prophage-encoded effector proteins demonstrating an important infection-relevant adaptation of the core genome. We propose that this system acts as a key safety net, sampling the environment for this metabolite, thereby promoting colonization of EHEC to favorable sites within the host.
Collapse
|
22
|
Steil D, Schepers CL, Pohlentz G, Legros N, Runde J, Humpf HU, Karch H, Müthing J. Shiga toxin glycosphingolipid receptors of Vero-B4 kidney epithelial cells and their membrane microdomain lipid environment. J Lipid Res 2015; 56:2322-36. [PMID: 26464281 DOI: 10.1194/jlr.m063040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Shiga toxins (Stxs) are produced by enterohemorrhagic Escherichia coli (EHEC), which cause human infections with an often fatal outcome. Vero cell lines, derived from African green monkey kidney, represent the gold standard for determining the cytotoxic effects of Stxs. Despite their global use, knowledge about the exact structures of the Stx receptor glycosphingolipids (GSLs) and their assembly in lipid rafts is poor. Here we present a comprehensive structural analysis of Stx receptor GSLs and their distribution to detergent-resistant membranes (DRMs), which were prepared from Vero-B4 cells and used as lipid raft equivalents. We identified globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) as the GSL receptors for Stx1a, Stx2a, and Stx2e subtypes using TLC overlay detection combined with MS. The uncommon Stx receptor, globopentaosylceramide (Gb5Cer, Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), which was specifically recognized (in addition to Gb3Cer and Gb4Cer) by Stx2e, was fully structurally characterized. Lipoforms of Stx receptor GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:0/C24:1 or C16:0 fatty acid. Moreover, co-occurrence with lipid raft markers, SM and cholesterol, in DRMs suggested GSL association with membrane microdomains. This study provides the basis for further exploring the functional impact of lipid raft-associated Stx receptors for toxin-mediated injury of Vero-B4 cells.
Collapse
Affiliation(s)
- Daniel Steil
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany
| | | | | | - Nadine Legros
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany
| | - Jana Runde
- Food Chemistry, University of Münster, D-48149 Münster, Germany
| | | | - Helge Karch
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
23
|
Nyholm O, Halkilahti J, Wiklund G, Okeke U, Paulin L, Auvinen P, Haukka K, Siitonen A. Comparative Genomics and Characterization of Hybrid Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains. PLoS One 2015; 10:e0135936. [PMID: 26313149 PMCID: PMC4551483 DOI: 10.1371/journal.pone.0135936] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022] Open
Abstract
Background Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor. Methods The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied. Results The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only. Conclusions This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.
Collapse
Affiliation(s)
- Outi Nyholm
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
- * E-mail:
| | - Jani Halkilahti
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Gudrun Wiklund
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Uche Okeke
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kaisa Haukka
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anja Siitonen
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|