1
|
Zahid A, Wilson JC, Grice ID, Peak IR. Otitis media: recent advances in otitis media vaccine development and model systems. Front Microbiol 2024; 15:1345027. [PMID: 38328427 PMCID: PMC10847372 DOI: 10.3389/fmicb.2024.1345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Otitis media is an inflammatory disorder of the middle ear caused by airways-associated bacterial or viral infections. It is one of the most common childhood infections as globally more than 80% of children are diagnosed with acute otitis media by 3 years of age and it is a common reason for doctor's visits, antibiotics prescriptions, and surgery among children. Otitis media is a multifactorial disease with various genetic, immunologic, infectious, and environmental factors predisposing children to develop ear infections. Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are the most common culprits responsible for acute otitis media. Despite the massive global disease burden, the pathogenesis of otitis media is still unclear and requires extensive future research. Antibiotics are the preferred treatment to cure middle ear infections, however, the antimicrobial resistance rate of common middle ear pathogens has increased considerably over the years. At present, pneumococcal and influenza vaccines are administered as a preventive measure against otitis media, nevertheless, these vaccines are only beneficial in preventing carriage and/or disease caused by vaccine serotypes. Otitis media caused by non-vaccine serotype pneumococci, non-typeable H. influenza, and M. catarrhalis remain an important healthcare burden. The development of multi-species vaccines is an arduous process but is required to reduce the global burden of this disease. Many novel vaccines against S. pneumoniae, non-typeable H. influenza, and M. catarrhalis are in preclinical trials. It is anticipated that these vaccines will lower the disease burden and provide better protection against otitis media. To study disease pathology the rat, mouse, and chinchilla are commonly used to induce experimental acute otitis media to test new therapeutics, including antibiotics and vaccines. Each of these models has its advantages and disadvantages, yet there is still a need to develop an improved animal model providing a better correlated mechanistic understanding of human middle ear infections, thereby underpinning the development of more effective otitis media therapeutics. This review provides an updated summary of current vaccines against otitis media, various animal models of otitis media, their limitations, and some future insights in this field providing a springboard in the development of new animal models and novel vaccines for otitis media.
Collapse
Affiliation(s)
- Ayesha Zahid
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jennifer C. Wilson
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
2
|
Zhang G, Han L, Li Z, Chen Y, Li Q, Wang S, Shi H. Screening of immunogenic proteins and evaluation of vaccine candidates against Mycoplasma synoviae. NPJ Vaccines 2023; 8:121. [PMID: 37582795 PMCID: PMC10427712 DOI: 10.1038/s41541-023-00721-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Mycoplasma synoviae (M. synoviae) is a serious avian pathogen that causes significant economic losses to chicken and turkey producers worldwide. The currently available live attenuated and inactivated vaccines provide limited protection. The objective of this study was to identify potential subunit vaccine candidates using immunoproteomics and reverse vaccinology analyses and to evaluate their preliminary protection. Twenty-four candidate antigens were identified, and five of them, namely RS01790 (a putative sugar ABC transporter lipoprotein), BMP (a substrate-binding protein of the BMP family ABC transporter), GrpE (a nucleotide exchange factor), RS00900 (a putative nuclease), and RS00275 (an uncharacterized protein), were selected to evaluate their immunogenicity and preliminary protection. The results showed that all five antigens had good immunogenicity, and they were localized on the M. synoviae cell membrane. The antigens induced specific humoral and cellular immune responses, and the vaccinated chickens exhibited significantly greater body weight gain and lower air sac lesion scores and tracheal mucosal thicknesses. Additionally, the vaccinated chickens had lower M. synoviae loads in throat swabs than non-vaccinated chickens. The protective effect of the RS01790, BMP, GrpE, and RS00900 vaccines was better than that of the RS00275 vaccine. In conclusion, our study demonstrates the potential of subunit vaccines as a new approach to developing M. synoviae vaccines, providing new ideas for controlling the spread of M. synoviae worldwide.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lejiabao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zewei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yifei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
3
|
Prevalence of Moraxella Catarrhalis as a Nasal Flora among Healthy Kindergarten Children in Bhaktapur, Nepal. Interdiscip Perspect Infect Dis 2022; 2022:3989781. [PMID: 35378873 PMCID: PMC8976674 DOI: 10.1155/2022/3989781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/12/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Moraxella catarrhalis causes mild to severe disease in all age groups, mainly in children. This study investigates the prevalence of M. catarrhalis, its cocolonization with other common nasal flora, and associated risk factors in kindergarten children in Bhaktapur. Method A cross-sectional study was conducted among 136 healthy school-going children from four kindergartens of Bhaktapur Municipality. Nasal swabs were examined for identification and isolation of M. catarrhalis and its antibiotic susceptibility pattern. Additionally, further analysis was performed for cocolonization and associated risk factors. Results Out of 136 students, M. catarrhalis was detected in 80 (58.8%) children. Using bivariate and multivariate analysis, the associated risk factors with significantly high carriage rates were age group of 3–4 years, classroom occupancy with 15–30 children, and antibiotic consumption within 6 months, with a p value of ≤0.05 in each of the cases. Multiple logistic regression analysis of bacterial coexistence depicted M. catarrhalis to be positively associated with Streptococcus pneumoniae and Haemophilus influenzae and negatively associated with Staphylococcus aureus. Furthermore, the highest double colonization occurred among M. catarrhalis and S. aureus and the highest triple colonization occurred among M. catarrhalis, S. aureus, and S. pneumoniae. The antibiogram pattern showed the target organisms to be highly resistant to amoxycillin/clavulanate (18.8%) and most sensitive to chloramphenicol (100%). Conclusion This study shows a high prevalence of M. catarrhalis in healthy kindergarten children and is positively associated with other nasal isolates like S. pneumoniae and H. influenzae.
Collapse
|
4
|
Perez AC, Murphy TF. A Moraxella catarrhalis vaccine to protect against otitis media and exacerbations of COPD: An update on current progress and challenges. Hum Vaccin Immunother 2017; 13:2322-2331. [PMID: 28853985 PMCID: PMC5647992 DOI: 10.1080/21645515.2017.1356951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 01/03/2023] Open
Abstract
Moraxella catarrhalis is a major cause of morbidity and mortality worldwide, especially causing otitis media in young children and exacerbations of chronic obstructive pulmonary disease in adults. This pathogen uses several virulence mechanisms to colonize and survive in its host, including adherence and invasion of host cells, formation of polymicrobial biofilms with other bacterial pathogens, and production of β-lactamase. Given the global impact of otitis media and COPD, an effective vaccine to prevent M. catarrhalis infection would have a huge impact on the quality of life in both patient populations by preventing disease, thus reducing morbidity and health care costs. A number of promising vaccine antigens have been identified for M. catarrhalis. The development of improved animal models of M. catarrhalis disease and identification of a correlate of protection are needed to accelerate vaccine development. This review will discuss the current state of M. catarrhalis vaccine development, and the challenges that must be addressed to succeed.
Collapse
Affiliation(s)
- Antonia C. Perez
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Timothy F. Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Microbiology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
5
|
Blakeway LV, Tan A, Peak IRA, Seib KL. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development. MICROBIOLOGY-SGM 2017; 163:1371-1384. [PMID: 28893369 DOI: 10.1099/mic.0.000523] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Moraxella catarrhalis is a human-restricted opportunistic bacterial pathogen of the respiratory mucosa. It frequently colonizes the nasopharynx asymptomatically, but is also an important causative agent of otitis media (OM) in children, and plays a significant role in acute exacerbations of chronic obstructive pulmonary disease (COPD) in adults. As the current treatment options for M. catarrhalis infection in OM and exacerbations of COPD are often ineffective, the development of an efficacious vaccine is warranted. However, no vaccine candidates for M. catarrhalis have progressed to clinical trials, and information regarding the distribution of M. catarrhalis virulence factors and vaccine candidates is inconsistent in the literature. It is largely unknown if virulence is associated with particular strains or subpopulations of M. catarrhalis, or if differences in clinical manifestation can be attributed to the heterogeneous expression of specific M. catarrhalis virulence factors in the circulating population. Further investigation of the distribution of M. catarrhalis virulence factors in the context of carriage and disease is required so that vaccine development may be targeted at relevant antigens that are conserved among disease-causing strains. The challenge of determining which of the proposed M. catarrhalis virulence factors are relevant to human disease is amplified by the lack of a standardized M. catarrhalis typing system to facilitate direct comparisons of worldwide isolates. Here we summarize and evaluate proposed relationships between M. catarrhalis subpopulations and specific virulence factors in the context of colonization and disease, as well as the current methods used to infer these associations.
Collapse
Affiliation(s)
- Luke V Blakeway
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ian R A Peak
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
6
|
Murphy TF, Brauer AL, Johnson A, Wilding GE, Koszelak-Rosenblum M, Malkowski MG. A Cation-Binding Surface Protein as a Vaccine Antigen To Prevent Moraxella catarrhalis Otitis Media and Infections in Chronic Obstructive Pulmonary Disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00130-17. [PMID: 28659326 PMCID: PMC5585693 DOI: 10.1128/cvi.00130-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 02/05/2023]
Abstract
Moraxella catarrhalis is an exclusively human respiratory tract pathogen that is a common cause of otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. A vaccine to prevent these infections would have a major impact on reducing the substantial global morbidity and mortality in these populations. Through a genome mining approach, we identified AfeA, an ∼32-kDa substrate binding protein of an ABC transport system, as an excellent candidate vaccine antigen. Recombinant AfeA was expressed and purified and binds ferric, ferrous, manganese, and zinc ions, as demonstrated by thermal shift assays. It is a highly conserved protein that is present in all strains of M. catarrhalis Immunization with recombinant purified AfeA induces high-titer antibodies that recognize the native M. catarrhalis protein. AfeA expresses abundant epitopes on the bacterial surface and induces protective responses in the mouse pulmonary clearance model following aerosol challenge with M. catarrhalis Finally, AfeA is expressed during human respiratory tract infection of adults with chronic obstructive pulmonary disease (COPD). Based on these observations, AfeA is an excellent vaccine antigen to be included in a vaccine to prevent infections caused by M. catarrhalis.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Department of Microbiology and Immunology, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Aimee L Brauer
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Antoinette Johnson
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Gregory E Wilding
- Department of Biostatistics, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Mary Koszelak-Rosenblum
- Department of Structural Biology, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Michael G Malkowski
- Department of Structural Biology, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| |
Collapse
|
7
|
Pettigrew MM, Alderson MR, Bakaletz LO, Barenkamp SJ, Hakansson AP, Mason KM, Nokso-Koivisto J, Patel J, Pelton SI, Murphy TF. Panel 6: Vaccines. Otolaryngol Head Neck Surg 2017; 156:S76-S87. [PMID: 28372533 DOI: 10.1177/0194599816632178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective To review the literature on progress regarding (1) effectiveness of vaccines for prevention of otitis media (OM) and (2) development of vaccine antigens for OM bacterial and viral pathogens. Data Sources PubMed database of the National Library of Science. Review Methods We performed literature searches in PubMed for OM pathogens and candidate vaccine antigens, and we restricted the searches to articles in English that were published between July 2011 and June 2015. Panel members reviewed literature in their area of expertise. Conclusions Pneumococcal conjugate vaccines (PCVs) are somewhat effective for the prevention of pneumococcal OM, recurrent OM, OM visits, and tympanostomy tube insertions. Widespread use of PCVs has been associated with shifts in pneumococcal serotypes and bacterial pathogens associated with OM, diminishing PCV effectiveness against AOM. The 10-valent pneumococcal vaccine containing Haemophilus influenzae protein D (PHiD-CV) is effective for pneumococcal OM, but results from studies describing the potential impact on OM due to H influenzae have been inconsistent. Progress in vaccine development for H influenzae, Moraxella catarrhalis, and OM-associated respiratory viruses has been limited. Additional research is needed to extend vaccine protection to additional pneumococcal serotypes and other otopathogens. There are likely to be licensure challenges for protein-based vaccines, and data on correlates of protection for OM vaccine antigens are urgently needed. Implications for Practice OM continues to be a significant health care burden globally. Prevention is preferable to treatment, and vaccine development remains an important goal. As a polymicrobial disease, OM poses significant but not insurmountable challenges for vaccine development.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- 1 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven Connecticut, USA
| | | | - Lauren O Bakaletz
- 3 Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | - Kevin M Mason
- 3 Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | - Janak Patel
- 7 University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephen I Pelton
- 8 Boston University School of Medicine, Boston, Massachusetts, USA
| | - Timothy F Murphy
- 9 University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
8
|
Pereira CT, Roesler C, Faria JN, Fessel MR, Balan A. Sulfate-Binding Protein (Sbp) from Xanthomonas citri: Structure and Functional Insights. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:578-588. [PMID: 28562158 DOI: 10.1094/mpmi-02-17-0032-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The uptake and transport of sulfate in bacteria is mediated by an ATP-binding cassette transporter (ABC transporter) encoded by sbpcysUWA genes, whose importance has been widely demonstrated due to their relevance in cysteine synthesis and bacterial growth. In Xanthomonas citri, the causative agent of canker disease, the expression of components from this ABC transporter and others related to uptake of organic sulfur sources has been shown during in vitro growth cultures. In this work, based on gene reporter and proteomics analyses, we showed the activation of the promoter that controls the sbpcysUWA operon in vitro and in vivo and the expression of sulfate-binding protein (Sbp), a periplasmic-binding protein, indicating that this protein plays an important function during growth and that the transport system is active during Citrus sinensis infection. To characterize Sbp, we solved its three-dimensional structure bound to sulfate at 1.14 Å resolution and performed biochemical and functional characterization. The results revealed that Sbp interacts with sulfate without structural changes, but the interaction induces a significant increasing of protein thermal stability. Altogether, the results presented in this study show the evidence of the functionality of the ABC transporter for sulfate in X. citri and its relevance during infection.
Collapse
Affiliation(s)
- Cristiane Tambascia Pereira
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
- 3 Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cássia Roesler
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
| | - Jéssica Nascimento Faria
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
| | - Melissa Regina Fessel
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Andrea Balan
- 3 Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Perez AC, Murphy TF. Potential impact of a Moraxella catarrhalis vaccine in COPD. Vaccine 2017; 37:5551-5558. [PMID: 28185742 DOI: 10.1016/j.vaccine.2016.12.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022]
Abstract
Moraxella catarrhalis is the second most common cause of exacerbations in adults with COPD, resulting in enormous morbidity and mortality in this clinical setting. Vaccine development for M. catarrhalis has lagged behind the other two important causes of exacerbations in COPD, nontypeable Haemophilus influenzae and Streptococcus pneumoniae. While no licensed vaccine is currently available for M. catarrhalis, several promising candidate vaccine antigens have been identified and characterized and are close to entering clinical trials. Key steps that are required to advance vaccines for M. catarrhalis along the translational pipeline include standardization of assay systems to assess candidate antigens, identification of a reliable correlate of protection and expansion of partnerships between industry, academia and government to overcome regulatory hurdles. A vaccine to prevent M. catarrhalis infections in COPD would have a major impact in reducing morbidity, mortality and healthcare costs in COPD.
Collapse
Affiliation(s)
- Antonia C Perez
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Department of Microbiology, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
10
|
Otsuka T, Brauer AL, Kirkham C, Sully EK, Pettigrew MM, Kong Y, Geller BL, Murphy TF. Antimicrobial activity of antisense peptide-peptide nucleic acid conjugates against non-typeable Haemophilus influenzae in planktonic and biofilm forms. J Antimicrob Chemother 2016; 72:137-144. [PMID: 27986898 DOI: 10.1093/jac/dkw384] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antisense peptide nucleic acids (PNAs) are synthetic polymers that mimic DNA/RNA and inhibit bacterial gene expression in a sequence-specific manner. METHODS To assess activity against non-typeable Haemophilus influenzae (NTHi), we designed six PNA-peptides that target acpP, encoding an acyl carrier protein. MICs and minimum biofilm eradication concentrations (MBECs) were determined. Resistant strains were selected by serial passages on media with a sub-MIC concentration of acpP-PNA. RESULTS The MICs of six acpP-PNA-peptides were 2.9-11 mg/L (0.63-2.5 μmol/L) for 20 clinical isolates, indicating susceptibility of planktonic NTHi. By contrast, MBECs were up to 179 mg/L (40 μmol/L). Compared with one original PNA-peptide (acpP-PNA1-3'N), an optimized PNA-peptide (acpP-PNA14-5'L) differs in PNA sequence and has a 5' membrane-penetrating peptide with a linker between the PNA and peptide. The optimized PNA-peptide had an MBEC ranging from 11 to 23 mg/L (2.5-5 μmol/L), indicating susceptibility. A resistant strain that was selected by the original acpP-PNA1-3'N had an SNP that introduced a stop codon in NTHI0044, which is predicted to encode an ATP-binding protein of a conserved ABC transporter. Deletion of NTHI0044 caused resistance to the original acpP-PNA1-3'N, but showed no effect on susceptibility to the optimized acpP-PNA14-5'L. The WT strain remained susceptible to the optimized PNA-peptide after 30 serial passages on media containing the optimized PNA-peptide. CONCLUSIONS A PNA-peptide that targets acpP, has a 5' membrane-penetrating peptide and has a linker shows excellent activity against planktonic and biofilm NTHi and is associated with a low risk for induction of resistance.
Collapse
Affiliation(s)
- Taketo Otsuka
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Aimee L Brauer
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Erin K Sully
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
| | - Bruce L Geller
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA .,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA.,Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
11
|
Murphy TF, Kirkham C, Johnson A, Brauer AL, Koszelak-Rosenblum M, Malkowski MG. Sulfate-binding protein, CysP, is a candidate vaccine antigen of Moraxella catarrhalis. Vaccine 2016; 34:3855-61. [PMID: 27265455 DOI: 10.1016/j.vaccine.2016.05.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/13/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
Moraxella catarrhalis causes otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease (COPD). A vaccine to prevent M. catarrhalis infections would have an enormous impact globally in preventing morbidity caused by M. catarrhalis in these populations. Using a genome mining approach we have identified a sulfate binding protein, CysP, of an ATP binding cassette (ABC) transporter system as a novel candidate vaccine antigen. CysP expresses epitopes on the bacterial surface and is highly conserved among strains. Immunization with CysP induces potentially protective immune responses in a murine pulmonary clearance model. In view of these features that indicate CysP is a promising vaccine antigen, we conducted further studies to elucidate its function. These studies demonstrated that CysP binds sulfate and thiosulfate ions, plays a nutritional role for the organism and functions in intracellular survival of M. catarrhalis in human respiratory epithelial cells. The observations that CysP has features of a vaccine antigen and also plays an important role in growth and survival of the organism indicate that CysP is an excellent candidate vaccine antigen to prevent M. catarrhalis otitis media and infections in adults with COPD.
Collapse
Affiliation(s)
- Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Department of Microbiology, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Charmaine Kirkham
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Antoinette Johnson
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Aimee L Brauer
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Mary Koszelak-Rosenblum
- Department of Structural Biology, University at Buffalo, The State University of New York, 700 Ellicott Street, Buffalo, NY 14203, USA; Hauptman Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Michael G Malkowski
- Department of Structural Biology, University at Buffalo, The State University of New York, 700 Ellicott Street, Buffalo, NY 14203, USA; Hauptman Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
12
|
Murphy TF, Brauer AL, Johnson A, Kirkham C. ATP-Binding Cassette (ABC) Transporters of the Human Respiratory Tract Pathogen, Moraxella catarrhalis: Role in Virulence. PLoS One 2016; 11:e0158689. [PMID: 27391026 PMCID: PMC4938438 DOI: 10.1371/journal.pone.0158689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022] Open
Abstract
Moraxella catarrhalis is a human respiratory tract pathogen that causes otitis media (middle ear infections) in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. In view of the huge global burden of disease caused by M. catarrhalis, the development of vaccines to prevent these infections and better approaches to treatment have become priorities. In previous work, we used a genome mining approach that identified three substrate binding proteins (SBPs) of ATP-binding cassette (ABC) transporters as promising candidate vaccine antigens. In the present study, we performed a comprehensive assessment of 19 SBPs of 15 ABC transporter systems in the M. catarrhalis genome by engineering knockout mutants and studying their role in assays that assess mechanisms of infection. The capacity of M. catarrhalis to survive and grow in the nutrient-limited and hostile environment of the human respiratory tract, including intracellular growth, account in part for its virulence. The results show that ABC transporters that mediate uptake of peptides, amino acids, cations and anions play important roles in pathogenesis by enabling M. catarrhalis to 1) grow in nutrient-limited conditions, 2) invade and survive in human respiratory epithelial cells and 3) persist in the lungs in a murine pulmonary clearance model. The knockout mutants of SBPs and ABC transporters showed different patterns of activity in the assay systems, supporting the conclusion that different SBPs and ABC transporters function at different stages in the pathogenesis of infection. These results indicate that ABC transporters are nutritional virulence factors, functioning to enable the survival of M catarrhalis in the diverse microenvironments of the respiratory tract. Based on the role of ABC transporters as virulence factors of M. catarrhalis, these molecules represent potential drug targets to eradicate the organism from the human respiratory tract.
Collapse
Affiliation(s)
- Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- Department of Microbiology, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- * E-mail:
| | - Aimee L. Brauer
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
| | - Antoinette Johnson
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
| | - Charmaine Kirkham
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
| |
Collapse
|
13
|
Otsuka T, Kirkham C, Brauer A, Koszelak-Rosenblum M, Malkowski MG, Murphy TF. The Vaccine Candidate Substrate Binding Protein SBP2 Plays a Key Role in Arginine Uptake, Which Is Required for Growth of Moraxella catarrhalis. Infect Immun 2016; 84:432-8. [PMID: 26597985 PMCID: PMC4730574 DOI: 10.1128/iai.00799-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/13/2015] [Indexed: 01/10/2023] Open
Abstract
Moraxella catarrhalis is an exclusively human pathogen that is an important cause of otitis media in children and lower respiratory tract infections in adults with chronic obstructive pulmonary disease. A vaccine to prevent M. catarrhalis infections would have an enormous global impact in reducing morbidity resulting from these infections. Substrate binding protein 2 (SBP2) of an ABC transporter system has recently been identified as a promising vaccine candidate antigen on the bacterial surface of M. catarrhalis. In this study, we showed that SBP1, -2, and -3 individually bind different basic amino acids with exquisite specificity. We engineered mutants that each expressed a single SBP from this gene cluster and showed in growth experiments that SBP1, -2, and -3 serve a nutritional function through acquisition of amino acids for the bacterium. SBP2 mediates uptake of arginine, a strict growth requirement of M. catarrhalis. Adherence and invasion assays demonstrated that SBP1 and SBP3 play a role in invasion of human respiratory epithelial cells, consistent with a nutritional role in intracellular survival in the human respiratory tract. This work demonstrates that the SBPs of an ABC transporter system function in the uptake of basic amino acids to support growth of M. catarrhalis. The critical role of SBP2 in arginine uptake may contribute to its potential as a vaccine antigen.
Collapse
Affiliation(s)
- Taketo Otsuka
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Aimee Brauer
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Mary Koszelak-Rosenblum
- Department of Structural Biology, University at Buffalo, State University of New York, Buffalo, New York, USA Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Michael G Malkowski
- Department of Structural Biology, University at Buffalo, State University of New York, Buffalo, New York, USA Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York, USA Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
14
|
Dwivedi P, Alam SI, Kumar O, Kumar RB. Lipoproteins from Clostridium perfringens and their protective efficacy in mouse model. INFECTION GENETICS AND EVOLUTION 2015; 34:434-43. [DOI: 10.1016/j.meegid.2015.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/10/2023]
|
15
|
Zaheer R, Klima CL, McAllister TA. Expeditious screening of candidate proteins for microbial vaccines. J Microbiol Methods 2015; 116:53-9. [PMID: 26149626 DOI: 10.1016/j.mimet.2015.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 11/18/2022]
Abstract
Advancements in high-throughput "omics" technologies have revolutionized the way vaccine candidates are identified. Now every surface expressed protein that an organism produces can be identified in silico and possibly made available for the rapid development of recombinant/subunit vaccines. However, evaluating the antigenicity of a large number of candidate proteins is an immense challenge, typically requiring cloning of several hundred candidates followed by immunogenicity screening. Here we report the development of a rapid, high-throughput method for screening candidate proteins for vaccines. This method involves utilizing a coupled, cell-free transcription-translation system to screen tagged proteins that are captured at the C-termini using appropriate ligand coated wells in 96 well ELISA plates. The template DNA for the cell-free expression is generated by two sequential PCRs and includes gene coding sequences, promoter, terminator, other necessary cis-acting elements and appropriate tag sequences. The process generates expressible candidate proteins containing two different peptide tags at the N- and the C-termini of the protein molecules. Proteins are screened in parallel for their quantity and immunoreactivity with N-terminal tag antibodies and antisera raised against the pathogen of interest, respectively. Normalization against the total detectable bound protein in the control wells allows for the identification of highly immunoreactive candidates. For this study we selected 30 representatives of >300 potential candidate proteins from Mannheimia haemolytica, a bacterial agent of pneumonia in feedlot cattle for expression with N-terminal Strep-II and C-terminal His(x6)-tag and evaluated their relative immunoreactivities using Strep-tactin-HRP and rabbit antisera generated against M. haemolytica. Using this system we were able to swiftly and quantitatively analyze and rank the suitability of proteins to identify potentially viable vaccine candidates, with the majority of the high ranking candidates being associated with virulence and pathogenicity. The system is adaptable to any bacterial target and presents an alternative to conventional laborious cloning, expression and screening procedures.
Collapse
Affiliation(s)
- Rahat Zaheer
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1 Canada
| | - Cassidy L Klima
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1 Canada
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1 Canada.
| |
Collapse
|