1
|
Hou X, Shi Y, Kang X, Rousu Z, Li D, Wang M, Ainiwaer A, Zheng X, Wang M, Jiensihan B, Li L, Li J, Wang H, Zhang C. Echinococcus granulosus: The establishment of the metacestode in the liver is associated with control of the CD4+ T-cell-mediated immune response in patients with cystic echinococcosis and a mouse model. Front Cell Infect Microbiol 2022; 12:983119. [PMID: 36046744 PMCID: PMC9422084 DOI: 10.3389/fcimb.2022.983119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The larval stage of the tapeworm Echinococcus granulosus sensu lato (E. granulosus s.l.) caused a chronic infection, known as cystic echinococcosis (CE), which is a worldwide public health problem. The human secondary CE is caused by the dissemination of protoscoleces (PSCs) when fertile cysts are accidentally ruptured, followed by development of PSCs into new metacestodes. The local immune mechanisms responsible for the establishment and established phases after infection with E. granulosus s.l. are not clear. Here, we showed that T cells were involved in the formation of the immune environment in the liver in CE patients and Echinococcus granulosus sensu strict (E. granulosus s.s.)-infected mice, with CD4+ T cells being the dominant immune cells; this process was closely associated with cyst viability and establishment. Local T2-type responses in the liver were permissive for early infection establishment by E. granulosus s.s. between 4 and 6 weeks in the experimental model. CD4+ T-cell deficiency promoted PSC development into cysts in the liver in E. granulosus s.s.-infected mice. In addition, CD4+ T-cell-mediated cellular immune responses and IL-10-producing CD8+ T cells play a critical role in the establishment phase of secondary E. granulosus s.s. PSC infection. These data contribute to the understanding of local immune responses to CE and the design of new therapies by restoring effective immune responses and blocking evasion mechanisms during the establishment phase of infection.
Collapse
Affiliation(s)
- Xinling Hou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Yang Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Xuejiao Kang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Zibigu· Rousu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Dewei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Maolin Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abidan· Ainiwaer
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Xuran Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - MingKun Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Bahejiang· Jiensihan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, China
| | - Liang Li
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, China
- *Correspondence: Chuanshan Zhang, ; Hui Wang,
| | - Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and World Health Organization Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, China
- *Correspondence: Chuanshan Zhang, ; Hui Wang,
| |
Collapse
|
2
|
Reyes-Cruz EY, Limón-Flores AY, González-Mireles AF, Rodríguez-Serrato MA, López-Monteon A, Ramos-Ligonio A. Effect of immunosuppression by UV-B radiation on components of the innate immune response in skin lesions with Leishmania mexicana: Effect of UVB on the innate immune response in cutaneous infection by L. mexicana. Acta Trop 2022; 226:106272. [PMID: 34896324 DOI: 10.1016/j.actatropica.2021.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
Abstract
Cutaneous leishmaniasis is the most common form of leishmaniasis in humans, factors such as poverty, poor housing, inadequate domestic hygiene, malnutrition, mobility, and occupational exposure are risk factors associated with the condition, however, there are few studies focused on determining the immune mechanism involved in the resolution of cutaneous leishmaniasis caused by the species Leishmania mexicana, as well as possible environmental factors such as solar radiation, which could contribute to its establishment. through mechanisms immunosuppressants, of which to date is unknown. In this study, the effect of UV-B light was evaluated as a risk factor affecting components of the innate immune response 3 days after infection with L. mexicana. A delayed-type hypersensitivity reaction (DTH) was used to evaluate immunosuppression induced by UV-B light. Through a histological analysis, the skin lesions of the mice (Hematoxylin & Eosin) were evaluated, the presence of mast cells and their level of degranulation (toluidine blue staining), the presence of IL-10+ and MOMA2+ cells were analyzed by immunohistochemistry and finally, the cytokine profile was evaluated by qPCR in the skin lesions tissue. An alteration in the architecture of the tissue was observed, as well as a greater number of mast cells, both complete and degranulated, as well as an increase in IL-10+ and MOMA2+ cells in the skin lesions of the mice that were irradiated and subsequently infected, when compared with the lesions of infected mice (P> 0.0001), immunomodulation was also observed in the profile of cytokines expressed between both groups analyzed. This is the first study to demonstrate the effects of UV-B radiation on components of the innate immune response at short times of infection by L. mexicana.
Collapse
|
3
|
Rodríguez-Serrato MA, Salinas-Carmona MC, Limón-Flores AY. Immune response to Leishmania mexicana: the host-parasite relationship. Pathog Dis 2020; 78:5917983. [PMID: 33016312 DOI: 10.1093/femspd/ftaa060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/01/2020] [Indexed: 11/12/2022] Open
Abstract
Leishmaniosis is currently considered a serious public health problem and it is listed as a neglected tropical disease by World Health Organization (WHO). Despite the efforts of the scientific community, it has not been possible to develop an effective vaccine. Current treatment consists of antimonials that is expensive and can cause adverse effects. It is essential to fully understand the immunopathogenesis of the disease to develop new strategies to prevent, treat and eradicate the disease. Studies on animal models have shown a new paradigm in the resolution or establishment of infection by Leishmania mexicana where a wide range of cytokines, antibodies and cells are involved. In recent years, the possibility of a new therapy with monoclonal antibodies has been considered, where isotype, specificity and concentration are critical for effective therapy. Would be better to create/generate a vaccine to induce host protection or produce passive immunization with engineering monoclonal antibodies to a defined antigen? This review provides an overview that includes the current known information on the immune response that are involved in the complex host-parasite relationship infection caused by L. mexicana.
Collapse
Affiliation(s)
- Mayra A Rodríguez-Serrato
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| | - Mario C Salinas-Carmona
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| | - Alberto Yairh Limón-Flores
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| |
Collapse
|
4
|
Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X 2020; 2:100041. [PMID: 33604563 PMCID: PMC7885870 DOI: 10.1016/j.cytox.2020.100041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania are protozoan parasites that predominantly reside in myeloid cells within their mammalian hosts. Monocytes and macrophages play a central role in the pathogenesis of all forms of leishmaniasis, including cutaneous and visceral leishmaniasis. The present review will highlight the diverse roles of macrophages in leishmaniasis as initial replicative niche, antimicrobial effectors, immunoregulators and as safe hideaway for parasites persisting after clinical cure. These multiplex activities are either ascribed to defined subpopulations of macrophages (e.g., Ly6ChighCCR2+ inflammatory monocytes/monocyte-derived dendritic cells) or result from different activation statuses of tissue macrophages (e.g., macrophages carrying markers of of classical [M1] or alternative activation [M2]). The latter are shaped by immune- and stromal cell-derived cytokines (e.g., IFN-γ, IL-4, IL-10, TGF-β), micro milieu factors (e.g., hypoxia, tonicity, amino acid availability), host cell-derived enzymes, secretory products and metabolites (e.g., heme oxygenase-1, arginase 1, indoleamine 2,3-dioxygenase, NOS2/NO, NOX2/ROS, lipids) as well as by parasite products (e.g., leishmanolysin/gp63, lipophosphoglycan). Exciting avenues of current research address the transcriptional, epigenetic and translational reprogramming of macrophages in a Leishmania species- and tissue context-dependent manner.
Collapse
Key Words
- (L)CL, (localized) cutaneous leishmaniasis
- AHR, aryl hydrocarbon receptor
- AMP, antimicrobial peptide
- Arg, arginase
- Arginase
- CAMP, cathelicidin-type antimicrobial peptide
- CR, complement receptor
- DC, dendritic cells
- DCL, diffuse cutaneous leishmaniasis
- HO-1, heme oxygenase 1
- Hypoxia
- IDO, indoleamine-2,3-dioxygenase
- IFN, interferon
- IFNAR, type I IFN (IFN-α/β) receptor
- IL, interleukin
- Interferon-α/β
- Interferon-γ
- JAK, Janus kinase
- LPG, lipophosphoglycan
- LRV1, Leishmania RNA virus 1
- Leishmaniasis
- Macrophages
- Metabolism
- NCX1, Na+/Ca2+ exchanger 1
- NFAT5, nuclear factor of activated T cells 5
- NK cell, natural killer cell
- NO, nitric oxide
- NOS2 (iNOS), type 2 (or inducible) nitric oxide synthase
- NOX2, NADPH oxidase 2 (gp91 or cytochrome b558 β-subunit of Phox)
- Nitric oxide
- OXPHOS, mitochondrial oxidative phosphorylation
- PKDL, post kala-azar dermal leishmaniasis
- Phagocyte NADPH oxidase
- Phox, phagocyte NADPH oxidase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOCS, suppressor of cytokine signaling
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-beta
- TLR, toll-like receptor
- Th1 (Th2), type 1 (type2) T helper cell
- Tonicity
- VL, visceral leishmaniasis
- mTOR, mammalian/mechanistic target of rapamycin
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
5
|
Krayem I, Lipoldová M. Role of host genetics and cytokines in Leishmania infection. Cytokine 2020; 147:155244. [PMID: 33059974 DOI: 10.1016/j.cyto.2020.155244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022]
Abstract
Cytokines and chemokines are important regulators of innate and specific responses in leishmaniasis, a disease that currently affects 12 million people. We overviewed the current information about influences of genetically engineered mouse models of cytokine and chemokine on leishmaniasis. We found that genetic background of the host, parasite species and sub-strain, as well as experimental design often modify effects of genetically engineered cytokine genes. Next we analyzed genes and QTLs (quantitative trait loci) that control response to Leishmania species in mouse in order to establish relationship between genetic control of cytokine expression and organ pathology. These studies revealed a network-like complexity of the combined effects of the multiple functionally diverse QTLs and their individual specificity. Genetic control of organ pathology and systemic immune response overlap only partially. Some QTLs control both organ pathology and systemic immune response, but the effects of genes and loci with the strongest impact on disease are cytokine-independent, whereas several loci modify cytokines levels in serum without influencing organ pathology. Understanding this genetic control might be important in development of vaccines designed to stimulate certain cytokine spectrum.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01 Kladno, Czech Republic.
| |
Collapse
|
6
|
Beiter KJ, Wentlent ZJ, Hamouda AR, Thomas BN. Nonconventional opponents: a review of malaria and leishmaniasis among United States Armed Forces. PeerJ 2019; 7:e6313. [PMID: 30701136 PMCID: PMC6348955 DOI: 10.7717/peerj.6313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/19/2018] [Indexed: 01/10/2023] Open
Abstract
As the United States military engage with different countries and cultures throughout the world, personnel become exposed to new biospheres as well. There are many infectious pathogens that are not endemic to the US, but two of particular importance are Plasmodium and Leishmania, which respectively cause malaria and leishmaniasis. These parasites are both known to cause significant disease burden in their endemic locales, and thus pose a threat to military travelers. This review introduces readers to basic life cycle and disease mechanisms for each. Local and military epidemiology are described, as are the specific actions taken by the US military for prevention and treatment purposes. Complications of such measures with regard to human health are also discussed, including possible chemical toxicities. Additionally, poor recognition of these diseases upon an individual's return leading to complications and treatment delays in the United States are examined. Information about canine leishmaniasis, poorly studied relative to its human manifestation, but of importance due to the utilization of dogs in military endeavors is presented. Future implications for the American healthcare system regarding malaria and leishmaniasis are also presented.
Collapse
Affiliation(s)
- Kaylin J Beiter
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Zachariah J Wentlent
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Adrian R Hamouda
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| |
Collapse
|
7
|
Finding a model for the study of Leishmania (Leishmania) mexicana infection: The Yucatan Deer mouse (Peromyscus yucatanicus) as a suitable option. Acta Trop 2018; 187:158-164. [PMID: 30092224 DOI: 10.1016/j.actatropica.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 11/24/2022]
Abstract
For more than four decades, the murine model has been employed extensively to understand immunological mechanisms associated with Leishmania infection. Although the use of laboratory mice has been very informative, mainly for L. (L.) major infection, the extrapolation to other Leishmania species and more importantly to human disease has been limited. Particularly in the case of L. (L.) mexicana, most infected mouse strains are highly susceptible and never presented asymptomatic infection, which is the main outcome in human. Thus, we postulated the use of Peromyscus yucatanicus, a primary reservoir of L. (L.) mexicana in the Yucatan Peninsula of Mexico, as an experimental model to study Leishmania infection. This rodent species can produce both asymptomatic and clinical infections therefore they seem more appropriate for studying host-pathogen interactions. In this review, we recapitulate the immunological findings observed in the traditional murine model of L. (L.) mexicana highlighting the differences with humans' infection and demonstrate the pertinence of P. yucatanicus as the experimental model for studying L. (L.) mexicana infection.
Collapse
|
8
|
Nevárez-Garza AM, Castillo-Velázquez U, Soto-Domínguez A, Montes-de-Oca-Luna R, Zamora-Ávila DE, Wong-González A, Rodríguez-Tovar LE. Quantitative analysis of TNF-α, IL-4, and IL-10 expression, nitric oxide response, and apoptosis in Encephalitozoon cuniculi-infected rabbits. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:235-243. [PMID: 29229442 DOI: 10.1016/j.dci.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
The expression of tumor necrosis factor (TNF) -α, interleukin (IL) -4 and IL-10, as well as apoptosis and nitric oxide (NO) levels were measured in the brain and kidneys of immunocompetent and immunosuppressed New Zealand White rabbits infected with Encephalitozoon cuniculi. All of the animals had clinical signs histopathological lesions compatible with encephalitozoonosis and were E. cuniculi-positive by using a carbon immunoassay test. Encephalitozoon cuniculi infection promoted the expression of TNF-α and NO production in the kidneys of infected rabbits, and a synergic effect was observed in animal treated with dexamethasone. The IL-4 expression was similar in the brain and kidneys of infected rabbits, regardless of their immunologic status. The IL-10 mRNA expression in the brain of infected immunosuppressed rabbits was elevated when compared with positive controls. Apoptosis of granuloma mononuclear-like cells was detected in immunocompetent E. cuniculi-infected rabbits, but it was more evident in infected-immunosuppressed animals. Nitric oxide levels were elevated both in immunocompetent and immunosuppressed infected animals, but it was more apparent in the kidneys. These data suggest that modulation of the immune response by E. cuniculi could contribute to the survival of the parasite within phagocytic cells in granulomas via an as yet undetermined mechanism.
Collapse
Affiliation(s)
- Alicia M Nevárez-Garza
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L., C.P. 66050, Mexico
| | - Uziel Castillo-Velázquez
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L., C.P. 66050, Mexico
| | - Adolfo Soto-Domínguez
- Cuerpo Académico de Morfología, Facultad de Medicina, UANL, Monterrey, N. L., C.P. 64460, Mexico
| | - R Montes-de-Oca-Luna
- Cuerpo Académico de Morfología, Facultad de Medicina, UANL, Monterrey, N. L., C.P. 64460, Mexico
| | - Diana E Zamora-Ávila
- Cuerpo Académico de Epidemiología Veterinaria, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L., C.P. 66050, Mexico
| | - Alfredo Wong-González
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L., C.P. 66050, Mexico
| | - Luis E Rodríguez-Tovar
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L., C.P. 66050, Mexico.
| |
Collapse
|
9
|
Garde E, Ramírez L, Corvo L, Solana JC, Martín ME, González VM, Gómez-Nieto C, Barral A, Barral-Netto M, Requena JM, Iborra S, Soto M. Analysis of the Antigenic and Prophylactic Properties of the Leishmania Translation Initiation Factors eIF2 and eIF2B in Natural and Experimental Leishmaniasis. Front Cell Infect Microbiol 2018; 8:112. [PMID: 29675401 PMCID: PMC5895769 DOI: 10.3389/fcimb.2018.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 02/05/2023] Open
Abstract
Different members of intracellular protein families are recognized by the immune system of the vertebrate host infected by parasites of the genus Leishmania. Here, we have analyzed the antigenic and immunogenic properties of the Leishmania eIF2 and eIF2B translation initiation factors. An in silico search in Leishmania infantum sequence databases allowed the identification of the genes encoding the α, β, and γ subunits and the α, β, and δ subunits of the putative Leishmania orthologs of the eukaryotic initiation factors F2 (LieIF2) or F2B (LieIF2B), respectively. The antigenicity of these factors was analyzed by ELISA using recombinant versions of the different subunits. Antibodies against the different LieIF2 and LieIF2B subunits were found in the sera from human and canine visceral leishmaniasis patients, and also in the sera from hamsters experimentally infected with L. infantum. In L. infantum (BALB/c) and Leishmania major (BALB/c or C57BL/6) challenged mice, a moderate humoral response against these protein factors was detected. Remarkably, these proteins elicited an IL-10 production by splenocytes derived from infected mice independently of the Leishmania species employed for experimental challenge. When DNA vaccines based on the expression of the LieIF2 or LieIF2B subunit encoding genes were administered in mice, an antigen-specific secretion of IFN-γ and IL-10 cytokines was observed. Furthermore, a partial protection against murine CL development due to L. major infection was generated in the vaccinated mice. Also, in this work we show that the LieIF2α subunit and the LieIF2Bβ and δ subunits have the capacity to stimulate IL-10 secretion by spleen cells from naïve mice. B-lymphocytes were identified as the major producers of this anti-inflammatory cytokine. Taking into account the data found in this study, it may be hypothesized that these proteins act as virulence factors implicated in the induction of humoral responses as well as in the production of the down-regulatory IL-10 cytokine, favoring a pathological outcome. Therefore, these proteins might be considered markers of disease.
Collapse
Affiliation(s)
- Esther Garde
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Ramírez
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Corvo
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José C. Solana
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - M. Elena Martín
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Víctor M. González
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carlos Gómez-Nieto
- Parasitology Unit, LeishmanCeres Laboratory, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil
| | - José M. Requena
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Health Research Institute (imas12), Ciudad Universitaria, Madrid, Spain
- *Correspondence: Salvador Iborra
| | - Manuel Soto
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Manuel Soto
| |
Collapse
|
10
|
Terreros MJS, de Luna LAV, Giorgio S. Long-term cell culture isolated from lesions of mice infected with Leishmania amazonensis: a new approach to study mononuclear phagocyte subpopulations during the infection. Pathog Dis 2017; 75:4554384. [DOI: 10.1093/femspd/ftx114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/13/2017] [Indexed: 11/14/2022] Open
|
11
|
Pereira JC, Ramos TD, Silva JD, de Mello MF, Pratti JES, da Fonseca-Martins AM, Firmino-Cruz L, Kitoko JZ, Chaves SP, Gomes DCDO, Diaz BL, Rocco PRM, de Matos Guedes HL. Effects of Bone Marrow Mesenchymal Stromal Cell Therapy in Experimental Cutaneous Leishmaniasis in BALB/c Mice Induced by Leishmania amazonensis. Front Immunol 2017; 8:893. [PMID: 28848541 PMCID: PMC5554126 DOI: 10.3389/fimmu.2017.00893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022] Open
Abstract
Cutaneous leishmaniasis remains both a public health and a therapeutic challenge. To date, no ideal therapy for cutaneous leishmaniasis has been identified, and no universally accepted therapeutic regimen and approved vaccines are available. Due to the mesenchymal stromal cell (MSC) immunomodulatory capacity, they have been applied in a wide variety of disorders, including infectious, inflammatory, and allergic diseases. We evaluated the potential effects of bone marrow MSC therapy in a murine model of cutaneous leishmaniasis. In vitro, coculture of infected macrophages with MSC increased parasite load on macrophages in comparison with controls (macrophages without MSCs). In vivo, BALB/c mice were infected with 2 × 106Leishmania amazonensis (Josefa strain) promastigotes in the footpad. 7 and 37 days after infection, animals were treated with 1 × 105 MSCs, either intralesional (i.l.), i.e., in the same site of infection, or intravenously (i.v.), through the external jugular vein. Control animals received the same volume (50 µL) of phosphate-buffered saline by i.l. or i.v. routes. The lesion progression was assessed by its thickness measured by pachymetry. Forty-two days after infection, animals were euthanized and parasite burden in the footpad and in the draining lymph nodes was quantified by the limiting dilution assay (LDA), and spleen cells were phenotyped by flow cytometry. No significant difference was observed in lesion progression, regardless of the MSC route of administration. However, animals treated with i.v. MSCs presented a significant increase in parasite load in comparison with controls. On the other hand, no harmful effect due to MSCs i.l. administered was observed. The spleen cellular profile analysis showed an increase of IL-10 producing T CD4+ and TCD8+ cells in the spleen only in mice treated with i.v. MSC. The excessive production of IL-10 could be associated with the disease-aggravating effects of MSC therapy when intravenously administered. As a conclusion, in the current murine model of L. amazonensis-induced cutaneous disease, MSCs did not control the damage of cutaneous disease and, depending on the administration route, it could result in deleterious effects.
Collapse
Affiliation(s)
- Joyce Carvalho Pereira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Diniz Ramos
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johnatas Dutra Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mirian França de Mello
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Elena Silveira Pratti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luan Firmino-Cruz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jamil Zola Kitoko
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suzana Passos Chaves
- Laboratório Integrado de Imunoparasitologia, Campus Macaé - Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Daniel Claudio De Oliveira Gomes
- Laboratório de Imunobiologia, Núcleo de Doenças Infecciosas/Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Bruno Lourenço Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert Leonel de Matos Guedes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Núcleo Multidisciplinar de Pesquisa UFRJ - Xerém em Biologia (NUMPEX-BIO), Polo Avançado de Xerém - Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil.,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Figliuolo VR, Chaves SP, Savio LEB, Thorstenberg MLP, Machado Salles É, Takiya CM, D'Império-Lima MR, de Matos Guedes HL, Rossi-Bergmann B, Coutinho-Silva R. The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control. Purinergic Signal 2016; 13:143-152. [PMID: 27866341 DOI: 10.1007/s11302-016-9544-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 10/25/2016] [Indexed: 11/28/2022] Open
Abstract
Leishmania amazonensis is the etiological agent of diffuse cutaneous leishmaniasis. The immunopathology of leishmaniasis caused by L. amazonensis infection is dependent on the pathogenic role of effector CD4+ T cells. Purinergic signalling has been implicated in resistance to infection by different intracellular parasites. In this study, we evaluated the role of the P2X7 receptor in modulating the immune response and susceptibility to infection by L. amazonensis. We found that P2X7-deficient mice are more susceptible to L. amazonensis infection than wild-type (WT) mice. P2X7 deletion resulted in increased lesion size and parasite load. Our histological analysis showed an increase in cell infiltration in infected footpads of P2X7-deficient mice. Analysis of the cytokine profile in footpad homogenates showed increased levels of IFN-γ and decreased TGF-β production in P2X7-deficient mice, suggesting an exaggerated pro-inflammatory response. In addition, we observed that CD4+ and CD8+ T cells from infected P2X7-deficient mice exhibit a higher proliferative capacity than infected WT mice. These data suggest that P2X7 receptor plays a key role in parasite control by regulating T effector cells and inflammation during L. amazonensis infection.
Collapse
Affiliation(s)
- Vanessa Ribeiro Figliuolo
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Suzana Passos Chaves
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Maria Luiza Prates Thorstenberg
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Christina Maeda Takiya
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Herbert Leonel de Matos Guedes
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Bartira Rossi-Bergmann
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil. .,Instituto de Biofísica Carlos Chagas Filho - UFRJ, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
13
|
Distinct courses of infection with Leishmania (L.) amazonensis are observed in BALB/c, BALB/c nude and C57BL/6 mice. Parasitology 2016; 143:692-703. [PMID: 26892342 DOI: 10.1017/s003118201600024x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Leishmania (L.) amazonensis [L. (L.) amazonensis] is widely distributed in Brazil and its symptomatic infections usually lead to few localized lesions and sometimes to diffuse cutaneous form, with nodules throughout the body, anergy to parasite antigens and poor therapeutic response. The variability of these manifestations draws attention to the need for studies on the pathophysiology of infection by this species. In this study, we analysed the course and immunological aspects of L. (L.) amazonensis infection in BALB/c and C57BL/6 strains, both susceptible, but displaying different clinical courses, and athymic BALB/c nude, to illustrate the role of T cell dependent responses. We analysed footpad thickness and parasite burden by in vivo imaging. Furthermore, we evaluated the cellular profile and cytokine production in lymph nodes and the inflammatory infiltrates of lesions. Nude mice showed delayed lesion development and less inflammatory cells in lesions, but higher parasite burden than BALB/c and C57BL/6. BALB/c and C57BL/6 mice had similar parasite burdens, lesion sizes and infiltrates until 6 weeks after infection, and after that C57BL/6 mice controlled the infection. Small differences in parasite numbers were observed in C57BL/6 macrophages in vitro, indicating that in vivo milieu accounts for most differences in infection. We believe our results shed light on the role of host immune system in the course of L. (L.) amazonensis infection by comparing three mouse strains that differ in parasitaemia and inflammatory cells.
Collapse
|