1
|
Navarro-Garcia F. Serine proteases autotransporter of Enterobacteriaceae: Structures, subdomains, motifs, functions, and targets. Mol Microbiol 2023; 120:178-193. [PMID: 37392318 DOI: 10.1111/mmi.15116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors, resembling the trypsin-like superfamily of serine proteases. SPATEs accomplish multiple functions associated to disease development of their hosts, which could be the consequence of SPATE cleavage of host cell components. SPATEs have been divided into class-1 and class-2 based on structural differences and biological effects, including similar substrate specificity, cytotoxic effects on cultured cells, and enterotoxin activity on intestinal tissues for class-1 SPATEs, whereas most class-2 SPATEs exhibit a lectin-like activity with a predilection to degrade a variety of mucins, including leukocyte surface O-glycoproteins and soluble host proteins, resulting in mucosal colonization and immune modulation. In this review, the structure of class-1 and class-2 are analyzed, making emphasis on their putative functional subdomains as well as a description of their function is provided, including prototypical mechanism of action.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, Mexico
| |
Collapse
|
2
|
Montero DA, Garcia-Betancourt R, Vidal RM, Velasco J, Palacios PA, Schneider D, Vega C, Gómez L, Montecinos H, Soto-Shara R, Oñate Á, Carreño LJ. A chimeric protein-based vaccine elicits a strong IgG antibody response and confers partial protection against Shiga toxin-producing Escherichia coli in mice. Front Immunol 2023; 14:1186368. [PMID: 37575242 PMCID: PMC10413102 DOI: 10.3389/fimmu.2023.1186368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that causes gastrointestinal infections, ranging from acute diarrhea and dysentery to life-threatening diseases such as Hemolytic Uremic Syndrome. Currently, a vaccine to prevent STEC infection is an unmet medical need. Results We developed a chimeric protein-based vaccine targeting seven virulence factors of STEC, including the Stx2B subunit, Tir, Intimin, EspA, Cah, OmpT, and AggA proteins. Immunization of mice with this vaccine candidate elicited significant humoral and cellular immune responses against STEC. High levels of specific IgG antibodies were found in the serum and feces of immunized mice. However, specific IgA antibodies were not detected in either serum or feces. Furthermore, a significantly higher percentage of antigen-specific CD4+ T cells producing IFN-γ, IL-4, and IL-17 was observed in the spleens of immunized mice. Notably, the immunized mice showed decreased shedding of STEC O157:H7 and STEC O91:H21 strains and were protected against weight loss during experimental infection. Additionally, infection with the STEC O91:H21 strain resulted in kidney damage in control unimmunized mice; however, the extent of damage was slightly lower in immunized mice. Our findings suggest that IgG antibodies induced by this vaccine candidate may have a role in inhibiting bacterial adhesion and complement-mediated killing. Conclusion This study provides evidence that IgG responses are involved in the host defense against STEC. However, our results do not rule out that other classes of antibodies also participate in the protection against this pathogen. Additional work is needed to improve the protection conferred by our vaccine candidate and to elucidate the relevant immune responses that lead to complete protection against this pathogen.
Collapse
Affiliation(s)
- David A. Montero
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Richard Garcia-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto M. Vidal
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. Palacios
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Schneider
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina Vega
- Plataforma Experimental, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Leonardo Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Hernán Montecinos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Soto-Shara
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ángel Oñate
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Clarke KR, Hor L, Pilapitiya A, Luirink J, Paxman JJ, Heras B. Phylogenetic Classification and Functional Review of Autotransporters. Front Immunol 2022; 13:921272. [PMID: 35860281 PMCID: PMC9289746 DOI: 10.3389/fimmu.2022.921272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.
Collapse
Affiliation(s)
- Kaitlin R. Clarke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| |
Collapse
|
4
|
Hu Z, Peng Z, Zhang X, Li Z, Jia C, Li X, Lv Y, Tan C, Chen H, Wang X. Prevalence and Molecular Characterization of Antimicrobial-Resistant Escherichia coli in Pig Farms, Slaughterhouses, and Terminal Markets in Henan Province of China. Foodborne Pathog Dis 2021; 18:733-743. [PMID: 34143653 DOI: 10.1089/fpd.2021.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli is an important foodborne pathogen and also plays key roles in dissemination of antimicrobial resistance genes (ARGs). However, current data on the prevalence of antimicrobial-resistant E. coli at different nodes of the pork supplying chain are still limited. Herein, we investigated drug-resistant phenotypes and molecular characteristics of E. coli strains isolated from different pig farms, slaughterhouses, and terminal markets in the Henan Province of China. A total of 191 (70.74%), 140 (35.09%), and 77 (30.20%) E. coli strains were isolated from 270, 399, and 255 samples collected from pig farms, slaughterhouses, and retailing markets, respectively. Antimicrobial susceptibility testing revealed that these 408 strains showed severe antimicrobial resistance profiles. Approximately 93.19% (178/191), 66.43% (93/140), and 67.53% (52/77) of the isolates from farms, slaughterhouses, and terminal markets were resistant to three of the nine antibiotic classes tested, respectively. Multilocus sequence typing showed that sequence types (STs) 10 and ST101 were commonly identified among the isolates from farms, slaughterhouses, and terminal markets. Isolates belonging to these two STs carried multiple ARGs, conferring resistance to the antibiotics tested. Two important ARGs with great public health concerns (mcr-1 and blaNDM-1) were found from these two STs. Isolates belonging to these two STs also carried several virulence factor-encoding genes, including astA, tsh, and traT, which might contribute to the pathogenesis of these isolates. The wide prevalence and distribution of these two STs in different nodes of pork supplying chain might represent a big public health threat and should receive more attention.
Collapse
Affiliation(s)
- Zizhe Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiaoxue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Zugang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Chaoying Jia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiaosong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Yujin Lv
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
5
|
Velásquez F, Marín-Rojas J, Soto-Rifo R, Torres A, Del Canto F, Valiente-Echeverría F. Escherichia coli HS and Enterotoxigenic Escherichia coli Hinder Stress Granule Assembly. Microorganisms 2020; 9:microorganisms9010017. [PMID: 33374562 PMCID: PMC7822485 DOI: 10.3390/microorganisms9010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli, one of the most abundant bacterial species in the human gut microbiota, has developed a mutualistic relationship with its host, regulating immunological responses. In contrast, enterotoxigenic E. coli (ETEC), one of the main etiologic agents of diarrheal morbidity and mortality in children under the age of five in developing countries, has developed mechanisms to reduce the immune-activator effect to carry out a successful infection. Following infection, the host cell initiates the shutting-off of protein synthesis and stress granule (SG) assembly. This is mostly mediated by the phosphorylation of translation initiator factor 2α (eIF2α). We therefore evaluated the ability of a non-pathogenic E. coli strain (E. coli HS) and an ETEC strain (ETEC 1766a) to induce stress granule assembly, even in response to exogenous stresses. In this work, we found that infection with E. coli HS or ETEC 1766a prevents SG assembly in Caco-2 cells treated with sodium arsenite (Ars) after infection. We also show that this effect occurs through an eIF2α phosphorylation (eIF2α-P)-dependent mechanism. Understanding how bacteria counters host stress responses will lay the groundwork for new therapeutic strategies to bolster host cell immune defenses against these pathogens.
Collapse
Affiliation(s)
- Felipe Velásquez
- Molecular and Cellular Virology Laboratory, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, 8380453 Santiago, Chile; (F.V.); (J.M.-R.); (R.S.-R.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
| | - Josefina Marín-Rojas
- Molecular and Cellular Virology Laboratory, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, 8380453 Santiago, Chile; (F.V.); (J.M.-R.); (R.S.-R.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, 8380453 Santiago, Chile; (F.V.); (J.M.-R.); (R.S.-R.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
| | - Alexia Torres
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, 8380453 Santiago, Chile; (A.T.); (F.D.C.)
| | - Felipe Del Canto
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, 8380453 Santiago, Chile; (A.T.); (F.D.C.)
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, 8380453 Santiago, Chile; (F.V.); (J.M.-R.); (R.S.-R.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, 8380453 Santiago, Chile
- Correspondence:
| |
Collapse
|
6
|
Deciphering Additional Roles for the EF-Tu, l-Asparaginase II and OmpT Proteins of Shiga Toxin-Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8081184. [PMID: 32759661 PMCID: PMC7464798 DOI: 10.3390/microorganisms8081184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes outbreaks and sporadic cases of gastroenteritis. STEC O157:H7 is the most clinically relevant serotype in the world. The major virulence determinants of STEC O157:H7 are the Shiga toxins and the locus of enterocyte effacement. However, several accessory virulence factors, mainly outer membrane proteins (OMPs) that interact with the host cells may contribute to the virulence of this pathogen. Previously, the elongation factor thermo unstable (EF-Tu), l-asparaginase II and OmpT proteins were identified as antigens in OMP extracts of STEC. The known subcellular location of EF-Tu and l-asparaginase II are the cytoplasm and periplasm, respectively. Therefore, we investigate whether these two proteins may localize on the surface of STEC and, if so, what roles they have at this site. On the other hand, the OmpT protein, a well characterized protease, has been described as participating in the adhesion of extraintestinal pathogenic E. coli strains. Thus, we investigate whether OmpT has this role in STEC. Our results show that the EF-Tu and l-asparaginase II are secreted by O157:H7 and may also localize on the surface of this bacterium. EF-Tu was identified in outer membrane vesicles (OMVs), suggesting it as a possible export mechanism for this protein. Notably, we found that l-asparaginase II secreted by O157:H7 inhibits T-lymphocyte proliferation, but the role of EF-Tu at the surface of this bacterium remains to be elucidated. In the case of OmpT, we show its participation in the adhesion of O157:H7 to human epithelial cells. Thus, this study extends the knowledge of the pathogenic mechanisms of STEC.
Collapse
|
7
|
León Y, Zapata L, Salas-Burgos A, Oñate A. In silico design of a vaccine candidate based on autotransporters and HSP against the causal agent of shigellosis, Shigella flexneri. Mol Immunol 2020; 121:47-58. [DOI: 10.1016/j.molimm.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
|
8
|
Habouria H, Pokharel P, Maris S, Garénaux A, Bessaiah H, Houle S, Veyrier FJ, Guyomard-Rabenirina S, Talarmin A, Dozois CM. Three new serine-protease autotransporters of Enterobacteriaceae (SPATEs) from extra-intestinal pathogenic Escherichia coli and combined role of SPATEs for cytotoxicity and colonization of the mouse kidney. Virulence 2020; 10:568-587. [PMID: 31198092 PMCID: PMC6592367 DOI: 10.1080/21505594.2019.1624102] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted proteins that contribute to virulence and function as proteases, toxins, adhesins, and/or immunomodulators. An extra-intestinal pathogenic E. coli (ExPEC) O1:K1 strain, QT598, isolated from a turkey, was shown to contain vat, tsh, and three uncharacterized SPATE-encoding genes. Uncharacterized SPATEs: Sha (Serine-protease hemagglutinin autotransporter), TagB and TagC (tandem autotransporter genes B and C) were tested for activities including hemagglutination, autoaggregation, and cytotoxicity when expressed in E. coli K-12. Sha and TagB conferred autoaggregation and hemagglutination activities. TagB, TagC, and Sha all exhibited cytopathic effects on a bladder epithelial cell line. In QT598, tagB and tagC are tandemly encoded on a genomic island, and were present in 10% of UTI isolates and 4.7% of avian E. coli. Sha is encoded on a virulence plasmid and was present in 1% of UTI isolates and 20% of avian E. coli. To specifically examine the role of SPATEs for infection, the 5 SPATE genes were deleted from strain QT598 and tested for cytotoxicity. Loss of all five SPATEs abrogated the cytopathic effect on bladder epithelial cells, although derivatives producing any of the 5 SPATEs retained cytopathic activity. In mouse infections, sha gene-expression was up-regulated a mean of sixfold in the bladder compared to growth in vitro. Loss of either tagBC or sha did not reduce urinary tract colonization. Deletion of all 5 SPATEs, however, significantly reduced competitive colonization of the kidney supporting a cumulative role of SPATEs for QT598 in the mouse UTI model.
Collapse
Affiliation(s)
- Hajer Habouria
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Pravil Pokharel
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Segolène Maris
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Amélie Garénaux
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Hicham Bessaiah
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Sébastien Houle
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Frédéric J Veyrier
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,c Institut Pasteur International Network
| | - Stéphanie Guyomard-Rabenirina
- c Institut Pasteur International Network.,d Unité Environnement Santé , Institut Pasteur de Guadeloupe , Les Abymes , Guadeloupe , France
| | - Antoine Talarmin
- c Institut Pasteur International Network.,d Unité Environnement Santé , Institut Pasteur de Guadeloupe , Les Abymes , Guadeloupe , France
| | - Charles M Dozois
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA).,c Institut Pasteur International Network
| |
Collapse
|
9
|
Pokharel P, Habouria H, Bessaiah H, Dozois CM. Serine Protease Autotransporters of the Enterobacteriaceae (SPATEs): Out and About and Chopping It Up. Microorganisms 2019; 7:E594. [PMID: 31766493 PMCID: PMC6956023 DOI: 10.3390/microorganisms7120594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Autotransporters are secreted proteins with multiple functions produced by a variety of Gram-negative bacteria. In Enterobacteriaceae, a subgroup of these autotransporters are the SPATEs (serine protease autotransporters of Enterobacteriaceae). SPATEs play a crucial role in survival and virulence of pathogens such as Escherichia coli and Shigella spp. and contribute to intestinal and extra-intestinal infections. These high molecular weight proteases are transported to the external milieu by the type Va secretion system and function as proteases with diverse substrate specificities and biological functions including adherence and cytotoxicity. Herein, we provide an overview of SPATEs and discuss recent findings on the biological roles of these secreted proteins, including proteolysis of substrates, adherence to cells, modulation of the immune response, and virulence in host models. In closing, we highlight recent insights into the regulation of expression of SPATEs that could be exploited to understand fundamental SPATE biology.
Collapse
Affiliation(s)
- Pravil Pokharel
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hajer Habouria
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
10
|
Montero DA, Velasco J, Del Canto F, Puente JL, Padola NL, Rasko DA, Farfán M, Salazar JC, Vidal R. Locus of Adhesion and Autoaggregation (LAA), a pathogenicity island present in emerging Shiga Toxin-producing Escherichia coli strains. Sci Rep 2017; 7:7011. [PMID: 28765569 PMCID: PMC5539235 DOI: 10.1038/s41598-017-06999-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/22/2017] [Indexed: 02/03/2023] Open
Abstract
Shiga Toxin-producing Escherichia coli (STEC) are a group of foodborne pathogens associated with diarrhea, dysentery, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Shiga toxins are the major virulence factor of these pathogens, however adhesion and colonization to the human intestine is required for STEC pathogenesis. A subset of STEC strains carry the Locus of Enterocyte Effacement (LEE) pathogenicity island (PAI), which encodes genes that mediate the colonization of the human intestine. While LEE-positive STEC strains have traditionally been associated with human disease, the burden of disease caused by STEC strains that lacks LEE (LEE-negative) has increased recently in several countries; however, in the absence of LEE, the molecular pathogenic mechanisms by STEC strains are unknown. Here we report a 86-kb mosaic PAI composed of four modules that encode 80 genes, including novel and known virulence factors associated with adherence and autoaggregation. Therefore, we named this PAI as Locus of Adhesion and Autoaggregation (LAA). Phylogenomic analysis using whole-genome sequences of STEC strains available in the NCBI database indicates that LAA PAI is exclusively present in a subset of emerging LEE-negative STEC strains, including strains isolated from HC and HUS cases. We suggest that the acquisition of this PAI is a recent evolutionary event, which may contribute to the emergence of these STEC.
Collapse
Affiliation(s)
- David A Montero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Servicio de Urgencia Infantil, Hospital Clínico de la Universidad de Chile "Dr. José Joaquín Aguirre", Santiago, Chile
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jose L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Nora L Padola
- Centro de Investigación Veterinaria Tandil, CONICET-CIC, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - David A Rasko
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mauricio Farfán
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan C Salazar
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
12
|
The serine protease autotransporter Tsh contributes to the virulence of Edwardsiella tarda. Vet Microbiol 2016; 189:68-74. [DOI: 10.1016/j.vetmic.2016.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/30/2022]
|
13
|
Abreu AG, Abe CM, Nunes KO, Moraes CTP, Chavez-Dueñas L, Navarro-Garcia F, Barbosa AS, Piazza RMF, Elias WP. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli. Gut Microbes 2016; 7:115-25. [PMID: 26963626 PMCID: PMC4856457 DOI: 10.1080/19490976.2015.1136775] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system.
Collapse
Affiliation(s)
- Afonso G. Abreu
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil,Programa de Pós-Graduação em Ciências da Saúde, Federal University of Maranhão, São Luís, Brazil
| | - Cecilia M. Abe
- Laboratory of Cell Biology, Butantan Institute, São Paulo, Brazil
| | - Kamila O. Nunes
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | | | - Lucia Chavez-Dueñas
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico DF, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico DF, Mexico
| | | | | | - Waldir P. Elias
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|