1
|
Blockade of the Adenylate Cyclase Toxin Synergizes with Opsonizing Antibodies to Protect Mice against Bordetella pertussis. mBio 2022; 13:e0152722. [PMID: 35920558 PMCID: PMC9426472 DOI: 10.1128/mbio.01527-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bordetella produces an array of virulence factors, including the adenylate cyclase toxin (ACT), which is essential, immunogenic in humans, and highly conserved. Despite mediating immune-evasive functions as a leukotoxin, ACT’s potential role as a protective antigen is unclear. To better understand the contributions of humoral anti-ACT immunity, we evaluated protection against Bordetella pertussis by antibodies binding structurally defined ACT epitopes in a mouse pneumonia model. An ACT-neutralizing antibody, but not a nonneutralizing antibody or an isotype control, significantly increased mouse survival after lethal challenge with B. pertussis. When modified to impair Fc effector functions, the neutralizing antibody retained protective capabilities, indicating that protection was mediated by the blockade of the interactions of ACT with its αMβ2 integrin receptor. After infection with a lower bacterial dose, ACT neutralization synergistically reduced lung bacterial colonization levels when combined with an opsonic antibody binding the surface antigen pertactin. Notably, protection was significantly enhanced when antibodies were administered intranasally as opposed to systemically, indicating that local immune responses are key to antibody-mediated protection against ACT and pertactin. These data reconcile previous conflicting reports to indicate that neutralizing anti-ACT antibodies support the phagocytosis of opsonized B. pertussis and thereby contribute to pertussis protection in vivo.
Collapse
|
2
|
Abdous M, Hasannia S, Salmanian AH, Arab SS. Efficacy assessment of a triple anthrax chimeric antigen as a vaccine candidate in guinea pigs: challenge test with Bacillus anthracis 17 JB strain spores. Immunopharmacol Immunotoxicol 2021; 43:495-502. [PMID: 34259590 DOI: 10.1080/08923973.2021.1945087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Bacillus anthracis secretes a tripartite toxin comprising protective antigen (PA), edema factor (EF), and lethal factor (LF). The human anthrax vaccine is mainly composed of the anthrax protective antigen (PA). Considerable efforts are being directed towards improving the efficacy of vaccines because the use of commercial anthrax vaccines (human/veterinary) is associated with several limitations. OBJECTIVE In this study, a triple chimeric antigen referred to as ELP (gene accession no: MT590758) comprising highly immunogenic domains of PA, LF, and EF was designed, constructed, and assessed for the immunization capacity against anthrax in a guinea pig model. MATERIALS AND METHODS Immunization was carried out considering antigen titration and immunization protocol. The immunoprotective efficacy of the ELP was evaluated in guinea pigs and compared with the potency of veterinary anthrax vaccine using a challenge test with B. anthracis 17JB strain spores. RESULTS The results demonstrated that the ELP antigen induced strong humoral responses. The T-cell response of the ELP was found to be similar to PA, and showed that the ELP could protect 100%, 100%, 100%, 80% and 60% of the animals from 50, 70, 90, 100 and 120 times the minimum lethal dose (MLD, equal 5 × 105 spore/ml), respectively, which killed control animals within 48 h. DISCUSSION AND CONCLUSIONS It is concluded that the ELP antigen has the necessary requirement for proper immunization against anthrax and it can be used to develop an effective recombinant vaccine candidate against anthrax.
Collapse
Affiliation(s)
- Masoud Abdous
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadegh Hasannia
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Ali Hatef Salmanian
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed-Shahryar Arab
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Modi T, Gervais D, Smith S, Miller J, Subramaniam S, Thalassinos K, Shepherd A. Characterization of the UK anthrax vaccine and human immunogenicity. Hum Vaccin Immunother 2020; 17:747-758. [PMID: 32897798 PMCID: PMC7993152 DOI: 10.1080/21645515.2020.1799668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The manufacture of the UK Anthrax vaccine (AVP) focuses on the production of Protective Antigen (PA) from the Bacillus anthracis Sterne strain. Although used for decades, several of AVP’s fundamental properties are poorly understood, including its exact composition, the extent to which proteins other than PA may contribute to protection, and whether the degree of protection varies between individuals. This study involved three innovative investigations. Firstly, the composition of AVP was analyzed using liquid chromatography tandem mass-spectrometry (LC-MS/MS), requiring the development of a novel desorption method for releasing B. anthracis proteins from the vaccine’s aluminum-containing adjuvant. Secondly, computational MHC-binding predictions using NetMHCIIpan were made for the eight most abundant proteins of AVP, for the commonest HLA alleles in multiple ethnic groups, and for multiple B. anthracis strains. Thirdly, antibody levels and toxin neutralizing antibody (TNA) levels were measured in sera from AVP human vaccinees for both PA and Lethal Factor (LF). It was demonstrated that AVP is composed of at least 138 B. anthracis proteins, including PA (65%), LF (8%) and Edema Factor (EF) (3%), using LC-MS/MS. NetMHCIIpan predicted that peptides from all eight abundant proteins are likely to be presented to T cells, a pre-requisite for protection; however, the number of such peptides varied considerably between different HLA alleles. These analyses highlight two important properties of the AVP vaccine that have not been established previously. Firstly, the effectiveness of AVP within humans may not depend on PA alone; there is compelling evidence to suggest that LF has a protective role, with computational predictions suggesting that additional proteins may be important for individuals with specific HLA allele combinations. Secondly, in spite of differences in the sequences of key antigenic proteins from different B. anthracis strains, these are unlikely to affect the cross-strain protection afforded by AVP.
Collapse
Affiliation(s)
- Tapasvi Modi
- Porton Biopharma Limited, Development, Porton Down, Salisbury, Wiltshire, UK
| | - David Gervais
- Porton Biopharma Limited, Development, Porton Down, Salisbury, Wiltshire, UK
| | - Stuart Smith
- Porton Biopharma Limited, Development, Porton Down, Salisbury, Wiltshire, UK
| | - Julie Miller
- Porton Biopharma Limited, Development, Porton Down, Salisbury, Wiltshire, UK
| | - Shaan Subramaniam
- Institute of Structural and Molecular Biology, Division of Biosciences, Darwin Building Room 101A, University College London, London, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, Darwin Building Room 101A, University College London, London, UK.,Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Adrian Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| |
Collapse
|
4
|
Fox D, Mathur A, Xue Y, Liu Y, Tan WH, Feng S, Pandey A, Ngo C, Hayward JA, Atmosukarto II, Price JD, Johnson MD, Jessberger N, Robertson AAB, Burgio G, Tscharke DC, Fox EM, Leyton DL, Kaakoush NO, Märtlbauer E, Leppla SH, Man SM. Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome. Nat Commun 2020; 11:760. [PMID: 32029733 PMCID: PMC7005308 DOI: 10.1038/s41467-020-14534-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are important for host defence against pathogens and homeostasis with commensal microbes. Here, we show non-haemolytic enterotoxin (NHE) from the neglected human foodborne pathogen Bacillus cereus is an activator of the NLRP3 inflammasome and pyroptosis. NHE is a non-redundant toxin to haemolysin BL (HBL) despite having a similar mechanism of action. Via a putative transmembrane region, subunit C of NHE initiates binding to the plasma membrane, leading to the recruitment of subunit B and subunit A, thus forming a tripartite lytic pore that is permissive to efflux of potassium. NHE mediates killing of cells from multiple lineages and hosts, highlighting a versatile functional repertoire in different host species. These data indicate that NHE and HBL operate synergistically to induce inflammation and show that multiple virulence factors from the same pathogen with conserved function and mechanism of action can be exploited for sensing by a single inflammasome.
Collapse
Affiliation(s)
- Daniel Fox
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anukriti Mathur
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Yansong Xue
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Yunqi Liu
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Wei Hong Tan
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shouya Feng
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Abhimanu Pandey
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Chinh Ngo
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jenni A Hayward
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ines I Atmosukarto
- Lipotek Pty Ltd. The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jason D Price
- Lipotek Pty Ltd. The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Matthew D Johnson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - David C Tscharke
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Denisse L Leyton
- Research School of Biology, The Australian National University, Canberra, Australia.,Medical School, The Australian National University, Canberra, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
5
|
Cui X, Xu W, Neupane P, Weiser-Schlesinger A, Weng R, Pockros B, Li Y, Moayeri M, Leppla SH, Fitz Y, Eichacker PQ. Bacillus anthracis lethal toxin, but not edema toxin, increases pulmonary artery pressure and permeability in isolated perfused rat lungs. Am J Physiol Heart Circ Physiol 2019; 316:H1076-H1090. [PMID: 30767685 DOI: 10.1152/ajpheart.00685.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although lethal toxin (LT) and edema toxin (ET) contribute to lethality during Bacillus anthracis infection, whether they increase vascular permeability and the extravascular fluid accumulation characterizing this infection is unclear. We employed an isolated perfused Sprague-Dawley rat lung model to investigate LT and ET effects on pulmonary vascular permeability. Lungs (n ≥ 6 per experimental group) were isolated, ventilated, suspended from a force transducer, and perfused. Lung weight and pulmonary artery (Ppa) and left atrial pressures were measured over 4 h, after which pulmonary capillary filtration coefficients (Kf.c) and lung wet-to-dry weight ratios (W/D) were determined. When compared with controls, LT increased Ppa over 4 h and Kf.c and W/D at 4 h (P < 0.0001). ET decreased Ppa in a significant trend (P = 0.09) but did not significantly alter Kf.c or W/D (P ≥ 0.29). Edema toxin actually blocked LT increases in Ppa but not LT increases in Kf.c and W/D. When Ppa was maintained at control levels, LT still increased Kf.c and W/D (P ≤ 0.004). Increasing the dose of each toxin five times significantly increased and a toxin-directed monoclonal antibody decreased the effects of each toxin (P ≤ 0.05). Two rho-kinase inhibitors (GSK269962 and Y27632) decreased LT increases in Ppa (P ≤ 0.02) but actually increased Kf.c and W/D in LT and control lungs (P ≤ 0.05). A vascular endothelial growth factor receptor inhibitor (ZM323881) had no significant effect (P ≥ 0.63) with LT. Thus, LT but not ET can increase pulmonary vascular permeability independent of increased Ppa and could contribute to pulmonary fluid accumulation during anthrax infection. However, pulmonary vascular dilation with ET could disrupt protective hypoxic vasoconstriction. NEW & NOTEWORTHY The most important findings from the present study are that Bacillus anthracis lethal toxin increases pulmonary artery pressure and pulmonary permeability independently in the isolated rat lung, whereas edema toxin decreases the former and does not increase permeability. Each effect could be a basis for organ dysfunction in patients with this lethal infection. These findings further support the need for adjunctive therapies that limit the effects of both toxins during infection.
Collapse
Affiliation(s)
- Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Wanying Xu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Pranita Neupane
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Andie Weiser-Schlesinger
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Ray Weng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Benjamin Pockros
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | - Yvonne Fitz
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Abdous M, Hasannia S, Salmanian AH, Shahryar Arab S, Shali A, Alizadeh GA, Hajizadeh A, Khafri A, Mohseni A. A new triple chimeric protein as a high immunogenic antigen against anthrax toxins: theoretical and experimental analyses. Immunopharmacol Immunotoxicol 2019; 41:25-31. [DOI: 10.1080/08923973.2018.1510419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Masoud Abdous
- National Institute of Genetic Engineering and Biotechnology, Institute of Medical Biotechnology, Tehran, Iran
| | - Sadegh Hasannia
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hatef Salmanian
- National Institute of Genetic Engineering and Biotechnology, Institute of Agricultural Biotechnology, Tehran, Iran
| | | | - Abbas Shali
- National Institute of Genetic Engineering and Biotechnology, Institute of Medical Biotechnology, Tehran, Iran
| | | | - Afshin Hajizadeh
- Department of Quality Control, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Abolfazl Khafri
- Department of Quality Control, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Ammar Mohseni
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat Microbiol 2018; 4:362-374. [PMID: 30531979 DOI: 10.1038/s41564-018-0318-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022]
Abstract
Host recognition of microbial components is essential in mediating an effective immune response. Cytosolic bacteria must secure entry into the host cytoplasm to facilitate replication and, in doing so, liberate microbial ligands that activate cytosolic innate immune sensors and the inflammasome. Here, we identified a multicomponent enterotoxin, haemolysin BL (HBL), that engages activation of the inflammasome. This toxin is highly conserved among the human pathogen Bacillus cereus. The three subunits of HBL bind to the cell membrane in a linear order, forming a lytic pore and inducing activation of the NLRP3 inflammasome, secretion of interleukin-1β and interleukin-18, and pyroptosis. Mechanistically, the HBL-induced pore results in the efflux of potassium and triggers the activation of the NLRP3 inflammasome. Furthermore, HBL-producing B. cereus induces rapid inflammasome-mediated mortality. Pharmacological inhibition of the NLRP3 inflammasome using MCC950 prevents B. cereus-induced lethality. Overall, our results reveal that cytosolic sensing of a toxin is central to the innate immune recognition of infection. Therapeutic modulation of this pathway enhances host protection against deadly bacterial infections.
Collapse
|
8
|
Caldwell M, Hathcock T, Brock KV. Passive protection against anthrax in mice with plasma derived from horses hyper-immunized against Bacillus anthracis Sterne strain. PeerJ 2017; 5:e3907. [PMID: 29259839 PMCID: PMC5733894 DOI: 10.7717/peerj.3907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/19/2017] [Indexed: 11/20/2022] Open
Abstract
In this study, equine source polyclonal anti-Bacillus anthracis immunoglobulins were generated and utilized to demonstrate passive protection of mice in a lethal challenge assay. Four horses were hyper-immunized with B. anthracis Sterne strain for approximately one year. The geometric mean anti-PA titer in the horses at maximal response following immunization was 1:77,936 (Log2 mean titer 16.25, SEM ± 0.25 95% CI [15.5 -17.0]). The geometric mean neutralizing titer at maximal response was 1:128 (Log2 mean titer 7, SEM ± 0.0, 95% CI 7). Treatment with hyper-immune plasma or purified immunoglobulins was successful in passively protecting A/J mice from a lethal B. anthracis Sterne strain challenge. The treatment of mice with hyper-immune plasma at time 0 h and 24 h post-infection had no effect on survival, but did significantly increase mean time to death (p < 0.0001). Mice treated with purified immunoglobulins at time 0 h and 24 h post-infection in showed significant increase in survival rate (p < 0.001). Bacterial loads in lung, liver and spleen tissue were also assessed and were not significantly different in mice treated with hyper-immune plasma from placebo treated control mice. Mice treated with purified antibodies demonstrated mean colony forming units/gram tissue fourfold less than mice receiving placebo treatment (p < 0.0001). Immunotherapeutics harvested from horses immunized against B. anthracis Sterne strain represent a rapidly induced, inexpensive and effective expansion to the arsenal of treatments against anthrax.
Collapse
Affiliation(s)
- Marc Caldwell
- Department of Pathobiology, Auburn University, Auburn, AL, United States of America
| | - Terri Hathcock
- Department of Pathobiology, Auburn University, Auburn, AL, United States of America
| | - Kenny V. Brock
- Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
9
|
Suffredini DA, Cui X, Xu W, Li Y, Eichacker PQ. The Potential Pathogenic Contributions of Endothelial Barrier and Arterial Contractile Dysfunction to Shock Due to B. anthracis Lethal and Edema Toxins. Toxins (Basel) 2017; 9:toxins9120394. [PMID: 29210983 PMCID: PMC5744114 DOI: 10.3390/toxins9120394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shock with B. anthracis infection is particularly resistant to conventional cardiovascular support and its mortality rate appears higher than with more common bacterial pathogens. As opposed to many bacteria that lack exotoxins directly depressing hemodynamic function, lethal and edema toxin (LT and ET respectively) both cause shock and likely contribute to the high lethality rate with B. anthracis. Selective inhibition of the toxins is protective in infection models, and administration of either toxin alone in animals produces hypotension with accompanying organ injury and lethality. Shock during infection is typically due to one of two mechanisms: (i) intravascular volume depletion related to disruption of endothelial barrier function; and (ii) extravasation of fluid and/or maladaptive dilation of peripheral resistance arteries. Although some data suggests that LT can produce myocardial dysfunction, growing evidence demonstrates that it may also interfere with endothelial integrity thereby contributing to the extravasation of fluid that helps characterize severe B. anthracis infection. Edema toxin, on the other hand, while known to produce localized tissue edema when injected subcutaneously, has potent vascular relaxant effects that could lead to pathologic arterial dilation. This review will examine recent data supporting a role for these two pathophysiologic mechanisms underlying the shock LT and ET produce. Further research and a better understanding of these mechanisms may lead to improved management of B. anthracis in patients.
Collapse
Affiliation(s)
- Dante A Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Wanying Xu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Building 10, Room 2C145, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Anthrax Vaccine Precipitated Induces Edema Toxin-Neutralizing, Edema Factor-Specific Antibodies in Human Recipients. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00165-17. [PMID: 28877928 DOI: 10.1128/cvi.00165-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/28/2017] [Indexed: 01/22/2023]
Abstract
Edema toxin (ET), composed of edema factor (EF) and protective antigen (PA), is a virulence factor of Bacillus anthracis that alters host immune cell function and contributes to anthrax disease. Anthrax vaccine precipitated (AVP) contains low but detectable levels of EF and can elicit EF-specific antibodies in human recipients of AVP. Active and passive vaccination of mice with EF can contribute to protection from challenge with Bacillus anthracis spores or ET. This study compared humoral responses to ET in recipients of AVP (n = 33) versus anthrax vaccine adsorbed (AVA; n = 66), matched for number of vaccinations and time postvaccination, and further determined whether EF antibodies elicited by AVP contribute to ET neutralization. AVP induced higher incidence (77.8%) and titer (229.8 ± 58.6) of EF antibodies than AVA (4.2% and 7.8 ± 8.3, respectively), reflecting the reported low but detectable presence of EF in AVP. In contrast, PA IgG levels and ET neutralization measured using a luciferase-based cyclic AMP reporter assay were robust and did not differ between the two vaccine groups. Multiple regression analysis failed to detect an independent contribution of EF antibodies to ET neutralization in AVP recipients; however, EF antibodies purified from AVP sera neutralized ET. Serum samples from at least half of EF IgG-positive AVP recipients bound to nine decapeptides located in EF domains II and III. Although PA antibodies are primarily responsible for ET neutralization in recipients of AVP, increased amounts of an EF component should be investigated for the capacity to enhance next-generation, PA-based vaccines.
Collapse
|
11
|
Vrentas CE, Moayeri M, Keefer AB, Greaney AJ, Tremblay J, O'Mard D, Leppla SH, Shoemaker CB. A Diverse Set of Single-domain Antibodies (VHHs) against the Anthrax Toxin Lethal and Edema Factors Provides a Basis for Construction of a Bispecific Agent That Protects against Anthrax Infection. J Biol Chem 2016; 291:21596-21606. [PMID: 27539858 DOI: 10.1074/jbc.m116.749184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
Infection with Bacillus anthracis, the causative agent of anthrax, can lead to persistence of lethal secreted toxins in the bloodstream, even after antibiotic treatment. VHH single-domain antibodies have been demonstrated to neutralize diverse bacterial toxins both in vitro and in vivo, with protein properties such as small size and high stability that make them attractive therapeutic candidates. Recently, we reported on VHHs with in vivo activity against the protective antigen component of the anthrax toxins. Here, we characterized a new set of 15 VHHs against the anthrax toxins that act by binding to the edema factor (EF) and/or lethal factor (LF) components. Six of these VHHs are cross-reactive against both EF and LF and recognize the N-terminal domain (LFN, EFN) of their target(s) with subnanomolar affinity. The cross-reactive VHHs block binding of EF/LF to the protective antigen C-terminal binding interface, preventing toxin entry into the cell. Another VHH appears to recognize the LF C-terminal domain and exhibits a kinetic effect on substrate cleavage by LF. A subset of the VHHs neutralized against EF and/or LF in murine macrophage assays, and the neutralizing VHHs that were tested improved survival of mice in a spore model of anthrax infection. Finally, a bispecific VNA (VHH-based neutralizing agent) consisting of two linked toxin-neutralizing VHHs, JMN-D10 and JMO-G1, was fully protective against lethal anthrax spore infection in mice as a single dose. This set of VHHs should facilitate development of new therapeutic VNAs and/or diagnostic agents for anthrax.
Collapse
Affiliation(s)
- Catherine E Vrentas
- From the Department of Biology, Frostburg State University, Frostburg, Maryland 50010.,Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Andrea B Keefer
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Allison J Greaney
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Jacqueline Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Maryland 01536
| | - Danielle O'Mard
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Maryland 01536
| |
Collapse
|
12
|
Xiong S, Tang Q, Liang X, Zhou T, Yang J, Liu P, Chen Y, Wang C, Feng Z, Zhu J. A Novel Chimeric Anti-PA Neutralizing Antibody for Postexposure Prophylaxis and Treatment of Anthrax. Sci Rep 2015; 5:11776. [PMID: 26134518 PMCID: PMC4488766 DOI: 10.1038/srep11776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Anthrax is a highly lethal infectious disease caused by the bacterium Bacillus anthracis, and the associated shock is closely related to the lethal toxin (LeTx) produced by the bacterium. The central role played by the 63 kDa protective antigen (PA63) region of LeTx in the pathophysiology of anthrax makes it an excellent therapeutic target. In the present study, a human/murine chimeric IgG mAb, hmPA6, was developed by inserting murine antibody variable regions into human constant regions using antibody engineering technology. hmPA6 expressed in 293F cells could neutralize LeTx both in vitro and in vivo. At a dose of 0.3 mg/kg, it could protect all tested rats from a lethal dose of LeTx. Even administration of 0.6 mg/kg hmPA6 48 h before LeTx challenge protected all tested rats. The results indicate that hmPA6 is a potential candidate for clinical application in anthrax treatment.
Collapse
Affiliation(s)
- Siping Xiong
- 1] Department of Pathology, Nanjing Medical University, Nanjing 210029, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Xudong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
| | - Tingting Zhou
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Jin Yang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Peng Liu
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Ya Chen
- 1] Department of Pathology, Nanjing Medical University, Nanjing 210029, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Changjun Wang
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Zhenqing Feng
- 1] Department of Pathology, Nanjing Medical University, Nanjing 210029, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Jin Zhu
- 1] Huadong Medical Institute of Biotechniques, Nanjing 210002, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
13
|
Diamant E, Torgeman A, Ozeri E, Zichel R. Monoclonal Antibody Combinations that Present Synergistic Neutralizing Activity: A Platform for Next-Generation Anti-Toxin Drugs. Toxins (Basel) 2015; 7:1854-81. [PMID: 26035486 PMCID: PMC4488679 DOI: 10.3390/toxins7061854] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
Monoclonal antibodies (MAbs) are among the fastest-growing therapeutics and are being developed for a broad range of indications, including the neutralization of toxins, bacteria and viruses. Nevertheless, MAbs potency is still relatively low when compared to conventional polyclonal Ab preparations. Moreover, the efficacy of an individual neutralizing MAb may significantly be hampered by the potential absence or modification of its target epitope in a mutant or subtype of the infectious agent. These limitations of individual neutralizing MAbs can be overcome by using oligoclonal combinations of several MAbs with different specificities to the target antigen. Studies conducted in our lab and by others show that such combined MAb preparation may present substantial synergy in its potency over the calculated additive potency of its individual MAb components. Moreover, oligoclonal preparation is expected to be better suited to compensating for reduced efficacy due to epitope variation. In this review, the synergistic neutralization properties of combined oligoclonal Ab preparations are described. The effect of Ab affinity, autologous Fc fraction, and targeting a critical number of epitopes, as well as the unexpected contribution of non-neutralizing clones to the synergistic neutralizing effect are presented and discussed.
Collapse
Affiliation(s)
- Eran Diamant
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Amram Torgeman
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Eyal Ozeri
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| |
Collapse
|
14
|
Ohanjanian L, Remy KE, Li Y, Cui X, Eichacker PQ. An overview of investigational toxin-directed therapies for the adjunctive management of Bacillus anthracis infection and sepsis. Expert Opin Investig Drugs 2015; 24:851-65. [PMID: 25920540 DOI: 10.1517/13543784.2015.1041587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sepsis with Bacillus anthracis infection has a very high mortality rate despite appropriate antibiotic and supportive therapies. Over the past 15 years, recent outbreaks in the US and in Europe, coupled with anthrax's bioterrorism weapon potential, have stimulated efforts to develop adjunctive therapies to improve clinical outcomes. Since lethal toxin and edema toxin (LT and ET) make central contributions to the pathogenesis of B. anthracis, these have been major targets in this effort. AREAS COVERED Here, the authors review different investigative biopharmaceuticals that have been recently identified for their therapeutic potential as inhibitors of LT or ET. Among these inhibitors are two antibody preparations that have been included in the Strategic National Stockpile (SNS) and several more that have reached Phase I testing. Presently, however, many of these candidate agents have only been studied in vitro and very few tested in bacteria-challenged models. EXPERT OPINION Although a large number of drugs have been identified as potential therapeutic inhibitors of LT and ET, in most cases their testing has been limited. The use of the two SNS antibody therapies during a large-scale exposure to B. anthracis will be difficult. Further testing and development of agents with oral bioavailability and relatively long shelf lives should be a focus for future research.
Collapse
Affiliation(s)
- Lernik Ohanjanian
- National Institutes of Health, Clinical Center, Critical Care Medicine Department , Building 10, Room 2C145, Bethesda, MD 20892 , USA +1 301 402 2914 ; +1 301 402 1213 ;
| | | | | | | | | |
Collapse
|
15
|
Abstract
INTRODUCTION Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded 'for the development of multiscale models for complex chemical systems' once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial-and-error approach to a minimum. The intentional dissemination of Bacillus anthracis spores in 2001 via the so-called anthrax letters has led to increased efforts, politically and scientifically, to develop medical countermeasures that will protect people from the threat of anthrax bioterrorism. AREAS COVERED This article provides an overview of the recent rational drug design approaches for discovering inhibitors of anthrax toxin. The review also directs the readers to the vast literature on the recognized advances and future possibilities in the field. EXPERT OPINION Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (protective antigen-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, the situation, in our view, is still insecure. Further, the FDA's animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Better identification and validation of anthrax toxin therapeutic targets at the molecular level as well as elucidation of the parameters determining the corresponding therapeutic windows are still necessary for more effective therapeutic options.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- The Catholic University of America, Department of Biology , Washington, DC , USA +1 202 319 6723 ;
| | | |
Collapse
|
16
|
Leysath CE, Phillips DD, Crown D, Fattah RJ, Moayeri M, Leppla SH. Anthrax edema factor toxicity is strongly mediated by the N-end rule. PLoS One 2013; 8:e74474. [PMID: 24015319 PMCID: PMC3755998 DOI: 10.1371/journal.pone.0074474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022] Open
Abstract
Anthrax edema factor (EF) is a calmodulin-dependent adenylate cyclase that converts adenosine triphosphate (ATP) into 3’–5’-cyclic adenosine monophosphate (cAMP), contributing to the establishment of Bacillus anthracis infections and the resulting pathophysiology. We show that EF adenylate cyclase toxin activity is strongly mediated by the N-end rule, and thus is dependent on the identity of the N-terminal amino acid. EF variants having different N-terminal residues varied by more than 100-fold in potency in cultured cells and mice. EF variants having unfavorable, destabilizing N-terminal residues showed much greater activity in cells when the E1 ubiquitin ligase was inactivated or when proteasome inhibitors were present. Taken together, these results show that EF is uniquely affected by ubiquitination and/or proteasomal degradation.
Collapse
Affiliation(s)
- Clinton E. Leysath
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Damilola D. Phillips
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Devorah Crown
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rasem J. Fattah
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen H. Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Small-molecule inhibitors of lethal factor protease activity protect against anthrax infection. Antimicrob Agents Chemother 2013; 57:4139-45. [PMID: 23774434 DOI: 10.1128/aac.00941-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, manifests its pathogenesis through the action of two secreted toxins. The bipartite lethal and edema toxins, a combination of lethal factor or edema factor with the protein protective antigen, are important virulence factors for this bacterium. We previously developed small-molecule inhibitors of lethal factor proteolytic activity (LFIs) and demonstrated their in vivo efficacy in a rat lethal toxin challenge model. In this work, we show that these LFIs protect against lethality caused by anthrax infection in mice when combined with subprotective doses of either antibiotics or neutralizing monoclonal antibodies that target edema factor. Significantly, these inhibitors provided protection against lethal infection when administered as a monotherapy. As little as two doses (10 mg/kg) administered at 2 h and 8 h after spore infection was sufficient to provide a significant survival benefit in infected mice. Administration of LFIs early in the infection was found to inhibit dissemination of vegetative bacteria to the organs in the first 32 h following infection. In addition, neutralizing antibodies against edema factor also inhibited bacterial dissemination with similar efficacy. Together, our findings confirm the important roles that both anthrax toxins play in establishing anthrax infection and demonstrate the potential for small-molecule therapeutics targeting these proteins.
Collapse
|
18
|
Li Y, Cui X, Solomon SB, Remy K, Fitz Y, Eichacker PQ. B. anthracis edema toxin increases cAMP levels and inhibits phenylephrine-stimulated contraction in a rat aortic ring model. Am J Physiol Heart Circ Physiol 2013; 305:H238-50. [PMID: 23585140 DOI: 10.1152/ajpheart.00185.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
B. anthracis edema toxin (ET) and lethal toxin (LT) are each composed of protective antigen (PA), necessary for toxin uptake by host cells, and their respective toxic moieties, edema factor (EF) and lethal factor (LF). Although both toxins likely contribute to shock during infection, their mechanisms are unclear. To test whether ET and LT produce arterial relaxation, their effects on phenylephrine (PE)-stimulated contraction in a Sprague-Dawley rat aortic ring model were measured. Rings were prepared and connected to pressure transducers. Their viability was confirmed, and peak contraction with 60 mM KCl was determined. Compared with PA pretreatment (control, 60 min), ET pretreatment at concentrations similar to those noted in vivo decreased the mean (±SE) maximum contractile force (MCF; percent peak contraction) in rings generated during stimulation with increasing PE concentrations (96.2 ± 7.0 vs. 57.3 ± 9.1) and increased the estimated PE concentration producing half the MCF (EC50; 10(-7) M, 1.1 ± 0.3 vs. 3.7 ± 0.8, P ≤ 0.002). ET inhibition with PA-directed monoclonal antibodies, selective EF inhibition with adefovir, or removal of the ring endothelium inhibited the effects of ET on MCF and EC50 (P ≤ 0.02). Consistent with its adenyl cyclase activity, ET increased tissue cAMP in endothelium-intact but not endothelium-denuded rings (P < 0.0001 and 0.25, respectively). LT pretreatment, even in high concentrations, did not significantly decrease MCF or increase EC50 (all P > 0.05). In rings precontracted with PE compared with posttreatment with PA (90 min), ET posttreatment produced progressive reductions in contractile force and increases in relaxation in endothelium-intact rings (P < 0.0001) but not endothelium-denuded rings (P = 0.51). Thus, ET may contribute to shock by producing arterial relaxation.
Collapse
Affiliation(s)
- Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
19
|
Wein AN, Williams BN, Liu S, Ermolinsky B, Provenzano D, Abagyan R, Orry A, Leppla SH, Peredelchuk M. Small molecule inhibitors of Bacillus anthracis protective antigen proteolytic activation and oligomerization. J Med Chem 2012; 55:7998-8006. [PMID: 22954387 DOI: 10.1021/jm300804e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protective antigen (PA), lethal factor, and edema factor, the protein toxins of Bacillus anthracis , are among its most important virulence factors and play a key role in infection. We performed a virtual ligand screen of a library of 10000 members to identify compounds predicted to bind to PA and prevent its oligomerization. Four of these compounds slowed PA association in a FRET-based oligomerization assay, and two of those protected cells from intoxication at concentrations of 1-10 μM. Exploration of the protective mechanism by Western blot showed decreased SDS-resistant PA oligomer on cells and, surprisingly, decreased amounts of activated PA. In vitro assays showed that one of the inhibitors blocked furin-mediated cleavage of PA, apparently through its binding to the PA substrate. Thus, we have identified inhibitors that can independently block both PA's cleavage by furin and its subsequent oligomerization. Lead optimization on these two backbones may yield compounds with high activity and specificity for the anthrax toxins.
Collapse
Affiliation(s)
- Alexander N Wein
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Göttle M, Dove S, Seifert R. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Toxins (Basel) 2012; 4:505-35. [PMID: 22852066 PMCID: PMC3407890 DOI: 10.3390/toxins4070505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-727-1678; Fax: +1-404-727-3157
| | - Stefan Dove
- Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany;
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
21
|
Chow SK, Casadevall A. Monoclonal antibodies and toxins--a perspective on function and isotype. Toxins (Basel) 2012; 4:430-54. [PMID: 22822456 PMCID: PMC3398419 DOI: 10.3390/toxins4060430] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins—Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)—and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.
Collapse
Affiliation(s)
- Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-718-430-2811; Fax: +1-718-430-8711
| |
Collapse
|
22
|
Cheung GYC, Otto M. The potential use of toxin antibodies as a strategy for controlling acute Staphylococcus aureus infections. Expert Opin Ther Targets 2012; 16:601-12. [PMID: 22530584 DOI: 10.1517/14728222.2012.682573] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The pandemic human pathogen, Staphylococcus aureus, displays high levels of antibiotic resistance and is a major cause of hospital- and community-associated infections. S. aureus disease manifestation is to a great extent due to the production of a large arsenal of virulence factors, which include a series of secreted toxins. Antibodies to S. aureus toxins are found in people who are infected or asymptomatically colonized with S. aureus. Immunotherapies consisting of neutralizing anti-toxin antibodies could provide immediate aid to patients with impaired immune systems or in advanced stages of disease. AREAS COVERED Important S. aureus toxins, their roles in pathogenesis, rationales for selecting S. aureus toxins for immunization efforts, and caveats associated with monoclonal antibody-based passive immunization are discussed. This review will focus on hyper-virulent community-associated methicillin-resistant S. aureus because of their recent surge and clinical importance. EXPERT OPINION Antibodies against genome-encoded toxins may be more broadly applicable than those directed against toxins found only in a sub-population of S. aureus isolates. Furthermore, there is substantial functional redundancy among S. aureus toxins. Thus, an optimal anti-S. aureus formulation may consist of multiple antibodies directed against a series of key S. aureus genome-encoded toxins.
Collapse
Affiliation(s)
- Gordon Y C Cheung
- Laboratory of Human Bacterial Pathogenesis, NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|