1
|
Fasciano AC, Dasanayake GS, Estes MK, Zachos NC, Breault DT, Isberg RR, Tan S, Mecsas J. Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes 2022; 13:1988390. [PMID: 34793276 PMCID: PMC8604394 DOI: 10.1080/19490976.2021.1988390] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many pathogens use M cells to access the underlying Peyer's patches and spread to systemic sites via the lymph as demonstrated by ligated loop murine intestinal models. However, the study of interactions between M cells and microbial pathogens has stalled due to the lack of cell culture systems. To overcome this obstacle, we use human ileal enteroid-derived monolayers containing five intestinal cell types including M cells to study the interactions between the enteric pathogen, Yersinia pseudotuberculosis (Yptb), and M cells. The Yptb type three secretion system (T3SS) effector Yops inhibit host defenses including phagocytosis and are critical for colonization of the intestine and Peyer's patches. Therefore, it is not understood how Yptb traverses through M cells to breach the epithelium. By growing Yptb under two physiological conditions that mimic the early infectious stage (low T3SS-expression) or host-adapted stage (high T3SS-expression), we found that large numbers of Yptb specifically associated with M cells, recapitulating murine studies. Transcytosis through M cells was significantly higher by Yptb expressing low levels of T3SS, because YopE and YopH prevented Yptb uptake. YopE also caused M cells to extrude from the epithelium without inducing cell-death or disrupting monolayer integrity. Sequential infection with early infectious stage Yptb reduced host-adapted Yptb association with M cells. These data underscore the strength of enteroids as a model by discovering that Yops impede M cell function, indicating that early infectious stage Yptb more effectively penetrates M cells while the host may defend against M cell penetration of host-adapted Yptb.
Collapse
Affiliation(s)
- Alyssa C. Fasciano
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA
| | - Gaya S. Dasanayake
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Nicholas C. Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Ralph R. Isberg
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, USA,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA,CONTACT Joan Mecsas Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, USA
| |
Collapse
|
2
|
Phenotypic Diversification of Microbial Pathogens—Cooperating and Preparing for the Future. J Mol Biol 2019; 431:4645-4655. [DOI: 10.1016/j.jmb.2019.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
|
3
|
Sadana P, Geyer R, Pezoldt J, Helmsing S, Huehn J, Hust M, Dersch P, Scrima A. The invasin D protein from Yersinia pseudotuberculosis selectively binds the Fab region of host antibodies and affects colonization of the intestine. J Biol Chem 2018. [PMID: 29535184 DOI: 10.1074/jbc.ra117.001068] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Yersinia pseudotuberculosis is a Gram-negative bacterium and zoonotic pathogen responsible for a wide range of diseases, ranging from mild diarrhea, enterocolitis, lymphatic adenitis to persistent local inflammation. The Y. pseudotuberculosis invasin D (InvD) molecule belongs to the invasin (InvA)-type autotransporter proteins, but its structure and function remain unknown. In this study, we present the first crystal structure of InvD, analyzed its expression and function in a murine infection model, and identified its target molecule in the host. We found that InvD is induced at 37 °C and expressed in vivo 2-4 days after infection, indicating that InvD is a virulence factor. During infection, InvD was expressed in all parts of the intestinal tract, but not in deeper lymphoid tissues. The crystal structure of the C-terminal adhesion domain of InvD revealed a distinct Ig-related fold that, apart from the canonical β-sheets, comprises various modifications of and insertions into the Ig-core structure. We identified the Fab fragment of host-derived IgG/IgA antibodies as the target of the adhesion domain. Phage display panning and flow cytometry data further revealed that InvD exhibits a preferential binding specificity toward antibodies with VH3/VK1 variable domains and that it is specifically recruited to a subset of B cells. This finding suggests that InvD modulates Ig functions in the intestine and affects direct interactions with a subset of cell surface-exposed B-cell receptors. In summary, our results provide extensive insights into the structure of InvD and its specific interaction with the target molecule in the host.
Collapse
Affiliation(s)
- Pooja Sadana
- From the Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins
| | | | - Joern Pezoldt
- Experimental Immunology, Helmholtz-Centre for Infection Research, 38124 Braunschweig and
| | - Saskia Helmsing
- the Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität, 38106 Braunschweig, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz-Centre for Infection Research, 38124 Braunschweig and
| | - Michael Hust
- the Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität, 38106 Braunschweig, Germany
| | - Petra Dersch
- the Departments of Molecular Infection Biology and
| | - Andrea Scrima
- From the Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins,
| |
Collapse
|
4
|
Wrobel A, Ottoni C, Leo JC, Gulla S, Linke D. The repeat structure of two paralogous genes, Yersinia ruckeri invasin (yrInv) and a "Y. ruckeri invasin-like molecule", (yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen. J Struct Biol 2017; 201:171-183. [PMID: 28888816 DOI: 10.1016/j.jsb.2017.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
Abstract
Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen.
Collapse
Affiliation(s)
- Agnieszka Wrobel
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Claudio Ottoni
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316, Norway
| | - Jack C Leo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Snorre Gulla
- Norwegian Veterinary Institute, 0454 Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
5
|
Abstract
The human pathogens
Yersinia pseudotuberculosis and
Yersinia enterocolitica cause enterocolitis, while
Yersinia pestis is responsible for pneumonic, bubonic, and septicaemic plague. All three share an infection strategy that relies on a virulence factor arsenal to enable them to enter, adhere to, and colonise the host while evading host defences to avoid untimely clearance. Their arsenal includes a number of adhesins that allow the invading pathogens to establish a foothold in the host and to adhere to specific tissues later during infection. When the host innate immune system has been activated, all three pathogens produce a structure analogous to a hypodermic needle. In conjunction with the translocon, which forms a pore in the host membrane, the channel that is formed enables the transfer of six ‘effector’ proteins into the host cell cytoplasm. These proteins mimic host cell proteins but are more efficient than their native counterparts at modifying the host cell cytoskeleton, triggering the host cell suicide response. Such a sophisticated arsenal ensures that yersiniae maintain the upper hand despite the best efforts of the host to counteract the infecting pathogen.
Collapse
Affiliation(s)
- Steve Atkinson
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Chauhan N, Wrobel A, Skurnik M, Leo JC. Yersinia adhesins: An arsenal for infection. Proteomics Clin Appl 2016; 10:949-963. [PMID: 27068449 DOI: 10.1002/prca.201600012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process.
Collapse
Affiliation(s)
- Nandini Chauhan
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Agnieszka Wrobel
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Central Hospital Laboratory Diagnostics, Helsinki University, Helsinki, Finland
| | - Jack C Leo
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Erhardt M, Dersch P. Regulatory principles governing Salmonella and Yersinia virulence. Front Microbiol 2015; 6:949. [PMID: 26441883 PMCID: PMC4563271 DOI: 10.3389/fmicb.2015.00949] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process.
Collapse
Affiliation(s)
- Marc Erhardt
- Young Investigator Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
8
|
Nuss AM, Heroven AK, Waldmann B, Reinkensmeier J, Jarek M, Beckstette M, Dersch P. Transcriptomic profiling of Yersinia pseudotuberculosis reveals reprogramming of the Crp regulon by temperature and uncovers Crp as a master regulator of small RNAs. PLoS Genet 2015; 11:e1005087. [PMID: 25816203 PMCID: PMC4376681 DOI: 10.1371/journal.pgen.1005087] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022] Open
Abstract
One hallmark of pathogenic yersiniae is their ability to rapidly adjust their life-style and pathogenesis upon host entry. In order to capture the range, magnitude and complexity of the underlying gene control mechanisms we used comparative RNA-seq-based transcriptomic profiling of the enteric pathogen Y. pseudotuberculosis under environmental and infection-relevant conditions. We identified 1151 individual transcription start sites, multiple riboswitch-like RNA elements, and a global set of antisense RNAs and previously unrecognized trans-acting RNAs. Taking advantage of these data, we revealed a temperature-induced and growth phase-dependent reprogramming of a large set of catabolic/energy production genes and uncovered the existence of a thermo-regulated ‘acetate switch’, which appear to prime the bacteria for growth in the digestive tract. To elucidate the regulatory architecture linking nutritional status to virulence we also refined the CRP regulon. We identified a massive remodelling of the CRP-controlled network in response to temperature and discovered CRP as a transcriptional master regulator of numerous conserved and newly identified non-coding RNAs which participate in this process. This finding highlights a novel level of complexity of the regulatory network in which the concerted action of transcriptional regulators and multiple non-coding RNAs under control of CRP adjusts the control of Yersinia fitness and virulence to the requirements of their environmental and virulent life-styles. Many bacterial pathogens cycle between environmental sources and mammalian hosts. Adaptation to the different natural habitats and host niches is achieved through complex regulatory networks which adjust synthesis of the large repertoire of crucial virulence factors and fitness determinants. To uncover underlying control circuits, we determined the first in-depth single-nucleotide resolution transcriptome of Yersinia. This revealed important novel genetic information, such as global locations of transcriptional start sites, non-coding RNAs, potential riboswitches and provided a set of virulence-relevant expression profiles, which constitute a valuable tool for the research community. The analysis further uncovered a temperature-induced global reprogramming of central metabolic functions, likely to support intestinal colonization of the pathogen. This is accompanied by a major reorganization of the CRP regulon, which involves a multitude of regulatory RNAs. The primary consequence is a fine-tuned, coordinated control of metabolism and virulence through a plethora of environmentally controlled regulatory RNAs allowing rapid adaptation and high flexibility during life-style changes.
Collapse
Affiliation(s)
- Aaron M. Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Barbara Waldmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jan Reinkensmeier
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Germany
| | - Michael Jarek
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
9
|
Zhang L, Yan L, Jiang J, Wang Y, Jiang Y, Yan T, Cao Y. The structure and retrotransposition mechanism of LTR-retrotransposons in the asexual yeast Candida albicans. Virulence 2014; 5:655-64. [PMID: 25101670 PMCID: PMC4139406 DOI: 10.4161/viru.32180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Retrotransposons constitute a major part of the genome in a number of eukaryotes. Long-terminal repeat (LTR) retrotransposons are one type of the retrotransposons. Candida albicans have 34 distinct LTR-retrotransposon families. They respectively belong to the Ty1/copia and Ty3/gypsy groups which have been extensively studied in the model yeast Saccharomyces cerevisiae. LTR-retrotransposons carry two LTRs flanking a long internal protein-coding domain, open reading frames. LTR-retrotransposons use RNA as intermediate to synthesize double-stranded DNA copies. In this article, we describe the structure feature, retrotransposition mechanism and the influence on organism diversity of LTR retrotransposons in C. albicans. We also discuss the relationship between pathogenicity and LTR retrotransposons in C. albicans.
Collapse
Affiliation(s)
- Lulu Zhang
- Research and Develop Center of New Drug; School of Pharmacy; Second Military Medical University; Shanghai, PR China
| | - Lan Yan
- Research and Develop Center of New Drug; School of Pharmacy; Second Military Medical University; Shanghai, PR China
| | - Jingchen Jiang
- Department of Pharmacology; School of Pharmacy; China Pharmaceutical University; Nanjing, PR China
| | - Yan Wang
- Research and Develop Center of New Drug; School of Pharmacy; Second Military Medical University; Shanghai, PR China
| | - Yuanying Jiang
- Research and Develop Center of New Drug; School of Pharmacy; Second Military Medical University; Shanghai, PR China
| | - Tianhua Yan
- Department of Pharmacology; School of Pharmacy; China Pharmaceutical University; Nanjing, PR China
| | - Yongbing Cao
- Research and Develop Center of New Drug; School of Pharmacy; Second Military Medical University; Shanghai, PR China
| |
Collapse
|
10
|
Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 2012; 8:e1002518. [PMID: 22359501 PMCID: PMC3280987 DOI: 10.1371/journal.ppat.1002518] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
Expression of all Yersinia pathogenicity factors encoded on the virulence plasmid, including the yop effector and the ysc type III secretion genes, is controlled by the transcriptional activator LcrF in response to temperature. Here, we show that a protein- and RNA-dependent hierarchy of thermosensors induce LcrF synthesis at body temperature. Thermally regulated transcription of lcrF is modest and mediated by the thermo-sensitive modulator YmoA, which represses transcription from a single promoter located far upstream of the yscW-lcrF operon at moderate temperatures. The transcriptional response is complemented by a second layer of temperature-control induced by a unique cis-acting RNA element located within the intergenic region of the yscW-lcrF transcript. Structure probing demonstrated that this region forms a secondary structure composed of two stemloops at 25°C. The second hairpin sequesters the lcrF ribosomal binding site by a stretch of four uracils. Opening of this structure was favored at 37°C and permitted ribosome binding at host body temperature. Our study further provides experimental evidence for the biological relevance of an RNA thermometer in an animal model. Following oral infections in mice, we found that two different Y. pseudotuberculosis patient isolates expressing a stabilized thermometer variant were strongly reduced in their ability to disseminate into the Peyer's patches, liver and spleen and have fully lost their lethality. Intriguingly, Yersinia strains with a destabilized version of the thermosensor were attenuated or exhibited a similar, but not a higher mortality. This illustrates that the RNA thermometer is the decisive control element providing just the appropriate amounts of LcrF protein for optimal infection efficiency.
Collapse
|
11
|
Regulation of virulence gene expression by regulatory RNA elements in Yersinia pseudotuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:315-23. [PMID: 22782778 DOI: 10.1007/978-1-4614-3561-7_39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
In vivo-induced InvA-like autotransporters Ifp and InvC of Yersinia pseudotuberculosis promote interactions with intestinal epithelial cells and contribute to virulence. Infect Immun 2011; 80:1050-64. [PMID: 22158741 DOI: 10.1128/iai.05715-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Yersinia pseudotuberculosis Ifp and InvC molecules are putative autotransporter proteins with a high homology to the invasin (InvA) protein. To characterize the function of these surface proteins, we expressed both factors in Escherichia coli K-12 and demonstrated the attachment of Ifp- and InvC-expressing bacteria to human-, mouse-, and pig-derived intestinal epithelial cells. Ifp also was found to mediate microcolony formation and internalization into polarized human enterocytes. The ifp and invC genes were not expressed under in vitro conditions but were found to be induced in the Peyer's patches of the mouse intestinal tract. In a murine coinfection model, the colonization of the Peyer's patches and the mesenteric lymph nodes of mice by the ifp-deficient strain was significantly reduced, and considerably fewer bacteria reached liver and spleen. The absence of InvC did not have a severe influence on bacterial colonization in the murine infection model, and it resulted in only a slightly reduced number of invC mutants in the Peyer's patches. The analysis of the host immune response demonstrated that the presence of Ifp and InvC reduced the recruitment of professional phagocytes, especially neutrophils, in the Peyer's patches. These findings support a role for the adhesins in modulating host-pathogen interactions that are important for immune defense.
Collapse
|
13
|
Strong PCR, Hinchliffe SJ, Patrick H, Atkinson S, Champion OL, Wren BW. Identification and characterisation of a novel adhesin Ifp in Yersinia pseudotuberculosis. BMC Microbiol 2011; 11:85. [PMID: 21527009 PMCID: PMC3102037 DOI: 10.1186/1471-2180-11-85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/28/2011] [Indexed: 11/23/2022] Open
Abstract
Background In order to identify new virulence determinants in Y. pseudotuberculosis a comparison between its genome and that of Yersinia pestis was undertaken. This reveals dozens of pseudogenes in Y. pestis, which are still putatively functional in Y. pseudotuberculosis and may be important in the enteric lifestyle. One such gene, YPTB1572 in the Y. pseudotuberculosis IP32953 genome sequence, encodes a protein with similarity to invasin, a classic adhesion/invasion protein, and to intimin, the attaching and effacing protein from enteropathogenic (EPEC) and enterohaemorraghic (EHEC) Escherichia coli. Results We termed YPTB1572 Ifp (Intimin family protein) and show that it is able to bind directly to human HEp-2 epithelial cells. Cysteine and tryptophan residues in the C-terminal region of intimin that are essential for function in EPEC and EHEC are conserved in Ifp. Protein binding occurred at distinct foci on the HEp-2 cell surface and can be disrupted by mutation of a single cysteine residue at the C-terminus of the protein. Temporal expression analysis using lux reporter constructs revealed that ifp is expressed at late log phase at 37°C in contrast to invasin, suggesting that Ifp is a late stage adhesin. An ifp defined mutant showed a reduction in adhesion to HEp-2 cells and was attenuated in the Galleria mellonella infection model. Conclusion A new Y. pseudotuberculosis adhesin has been identified and characterised. This Ifp is a new member in the family of invasin/intimin outer membrane adhesins.
Collapse
Affiliation(s)
- Philippa C R Strong
- Pathogen Molecular Biology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | | | | | | | | | |
Collapse
|
14
|
Trček J, Oellerich MF, Niedung K, Ebel F, Freund S, Trülzsch K. Gut proteases target Yersinia invasin in vivo. BMC Res Notes 2011; 4:129. [PMID: 21501502 PMCID: PMC3094372 DOI: 10.1186/1756-0500-4-129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/18/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Yersinia enterocolitica is a common cause of food borne gastrointestinal disease. After oral uptake, yersiniae invade Peyer's patches of the distal ileum. This is accomplished by the binding of the Yersinia invasin to β1 integrins on the apical surface of M cells which overlie follicle associated lymphoid tissue. The gut represents a barrier that severely limits yersiniae from reaching deeper tissues such as Peyer's patches. We wondered if gut protease attack on invasion factors could contribute to the low number of yersiniae invading Peyer's patches. FINDINGS Here we show that invasin is rapidly degraded in vivo by gut proteases in the mouse infection model. In vivo proteolytic degradation is due to proteolysis by several gut proteases such as trypsin, α-chymotrypsin, pancreatic elastase, and pepsin. Protease treated yersiniae are shown to be less invasive in a cell culture model. YadA, another surface adhesin is cleaved by similar concentrations of gut proteases but Myf was not cleaved, showing that not all surface proteins are equally susceptible to degradation by gut proteases. CONCLUSIONS We demonstrate that gut proteases target important Yersinia virulence factors such as invasin and YadA in vivo. Since invasin is completely degraded within 2-3 h after reaching the small intestine of mice, it is no longer available to mediate invasion of Peyer's patches.
Collapse
Affiliation(s)
- Janja Trček
- Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, Ludwig Maximilians Universität München, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Trček J, Fuchs TM, Trülzsch K. Analysis of Yersinia enterocolitica invasin expression in vitro and in vivo using a novel luxCDABE reporter system. Microbiology (Reading) 2010; 156:2734-2745. [DOI: 10.1099/mic.0.038240-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel luxCDABE plasmid for the analysis of promoter elements by site-specific integration into the genome of Yersinia enterocolitica was constructed. The versatility of this reporter system was demonstrated by comparing the activity of the inv promoter in the Y. enterocolitica high-pathogenic serotype O : 8 (strain WA-314) with that of the low pathogenic serotype O : 9 (strain Y127). The luciferase activity of a transcriptional fusion between the inv promoter of serotype O : 8 and luxCDABE was about fourfold lower than the activity of the respective O : 9 promoter. This correlated with lower invasin production by Y. enterocolitica serotype O : 8 compared with serotypes O : 9, O : 3 and O : 5,27. However, Y. enterocolitica of serotype O : 8 revealed higher invasiveness than serotype O : 9. When both invasins were expressed in trans at similar levels in the Y. enterocolitica O : 8 Δinv background strain, cell invasion assays showed a slightly higher invasiveness of the strain producing Inv(O : 8) than the strain producing Inv(O : 9). We provide experimental evidence that this might be due to a higher binding capacity of Inv(O : 8) for cells expressing β1 integrins compared with Inv(O:9). The Y. enterocolitica O : 8 strain harbouring the P
inv
(O : 8) : : luxCDABE fusion was then successfully used to follow inv expression in a mouse infection model. These experiments showed for the first time that the inv promoter is active in infected living mice, especially in Peyer's patches of the ileum, the caecal lymph follicle, and the lymph nodes, liver and spleen. The production of invasin in the spleen was demonstrated by Western blot analysis. In conclusion, the presented reporter system enables stable genomic integration of the luxCDABE operon into the chromosome of Yersinia, facilitates in vitro quantification of promoter activities under different bacterial growth conditions, and enables detection of promoter activities in a mouse model.
Collapse
Affiliation(s)
- Janja Trček
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Thilo M. Fuchs
- Zentralinstitut für Ernährung- und Lebensmittelforschung, Abteilung Mikrobiologie, Technische Universität München, Germany
| | - Konrad Trülzsch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| |
Collapse
|
16
|
Ivy RA, Chan YC, Bowen BM, Boor KJ, Wiedmann M. Growth temperature-dependent contributions of response regulators, σB, PrfA, and motility factors to Listeria monocytogenes invasion of Caco-2 cells. Foodborne Pathog Dis 2010; 7:1337-49. [PMID: 20707735 DOI: 10.1089/fpd.2010.0563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Foodborne pathogens encounter rapidly changing environmental conditions during transmission, including exposure to temperatures below 37°C. The goal of this study was to develop a better understanding of the effects of growth temperatures and temperature shifts on regulation of invasion phenotypes and invasion-associated genes in Listeria monocytogenes. We specifically characterized the effects of L. monocytogenes growth at different temperatures (30°C vs. 37°C) on (i) the contributions to Caco-2 invasion of different regulators (including σ(B), PrfA, and 14 response regulators [RRs]) and invasion proteins (i.e., InlA and FlaA), and on (ii) gadA, plcA, inlA, and flaA transcript levels and their regulation. Overall, Caco-2 invasion efficiency was higher for L. monocytogenes grown at 30°C than for bacteria grown at 37°C (p = 0.0051 for the effect of temperature on invasion efficiency; analysis of variance); the increased invasion efficiency of the parent strain 10403S (serotype 1/2a) observed after growth at 30°C persisted for 2.5 h exposure to 37°C. For L. monocytogenes grown at 30°C, the motility RRs DegU and CheY and σ(B), but not PrfA, significantly contributed to Caco-2 invasion efficiency. For L. monocytogenes grown at 37°C, none of the 14 RRs tested significantly contributed to Caco-2 invasion, whereas σ(B) and PrfA contributed synergistically to invasion efficiency. At both growth temperatures there was significant synergism between the contributions to invasion of FlaA and InlA; this synergism was more pronounced after growth at 30°C than at 37°C. Our data show that growth temperature affects invasion efficiency and regulation of virulence-associated genes in L. monocytogenes. These data support increasing evidence that a number of environmental conditions can modulate virulence-associated phenotypes of foodborne bacterial pathogens, including L. monocytogenes.
Collapse
Affiliation(s)
- Reid A Ivy
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
17
|
Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity. BMC Genomics 2008; 9:40. [PMID: 18221513 PMCID: PMC2266911 DOI: 10.1186/1471-2164-9-40] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 01/25/2008] [Indexed: 11/24/2022] Open
Abstract
Background Photorhabdus luminescens and Yersinia enterocolitica are both enteric bacteria which are associated with insects. P. luminescens lives in symbiosis with soil nematodes and is highly pathogenic towards insects but not to humans. In contrast, Y. enterocolitica is widely found in the environment and mainly known to cause gastroenteritis in men, but has only recently been shown to be also toxic for insects. It is expected that both pathogens share an overlap of genetic determinants that play a role within the insect host. Results A selective genome comparison was applied. Proteins belonging to the class of two-component regulatory systems, quorum sensing, universal stress proteins, and c-di-GMP signalling have been analysed. The interorganismic synopsis of selected regulatory systems uncovered common and distinct signalling mechanisms of both pathogens used for perception of signals within the insect host. Particularly, a new class of LuxR-like regulators was identified, which might be involved in detecting insect-specific molecules. In addition, the genetic overlap unravelled a two-component system that is unique for the genera Photorhabdus and Yersinia and is therefore suggested to play a major role in the pathogen-insect relationship. Our analysis also highlights factors of both pathogens that are expressed at low temperatures as encountered in insects in contrast to higher (body) temperature, providing evidence that temperature is a yet under-investigated environmental signal for bacterial adaptation to various hosts. Common degradative metabolic pathways are described that might be used to explore nutrients within the insect gut or hemolymph, thus enabling the proliferation of P. luminescens and Y. enterocolitica in their invertebrate hosts. A strikingly higher number of genes encoding insecticidal toxins and other virulence factors in P. luminescens compared to Y. enterocolitica correlates with the higher virulence of P. luminescens towards insects, and suggests a putative broader insect host spectrum of this pathogen. Conclusion A set of factors shared by the two pathogens was identified including those that are involved in the host infection process, in persistence within the insect, or in host exploitation. Some of them might have been selected during the association with insects and then adapted to pathogenesis in mammalian hosts.
Collapse
|
18
|
Carlsson KE, Liu J, Edqvist PJ, Francis MS. Influence of the Cpx extracytoplasmic-stress-responsive pathway on Yersinia sp.-eukaryotic cell contact. Infect Immun 2007; 75:4386-99. [PMID: 17620356 PMCID: PMC1951158 DOI: 10.1128/iai.01450-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The extracytoplasmic-stress-responsive CpxRA two-component signal transduction pathway allows bacteria to adapt to growth in extreme environments. It controls the production of periplasmic protein folding and degradation factors, which aids in the biogenesis of multicomponent virulence determinants that span the bacterial envelope. This is true of the Yersinia pseudotuberculosis Ysc-Yop type III secretion system. However, despite using a second-site suppressor mutation to restore Yop effector secretion by yersiniae defective in the CpxA sensor kinase, these bacteria poorly translocated Yops into target eukaryotic cells. Investigation of this phenotype herein revealed that the expression of genes which encode several surface-located adhesins is also influenced by the Cpx pathway. In particular, the expression and surface localization of invasin, an adhesin that engages beta1-integrins on the eukaryotic cell surface, are severely restricted by the removal of CpxA. This reduces bacterial association with eukaryotic cells, which could be suppressed by the ectopic production of CpxA, invasin, or RovA, a positive activator of inv expression. In turn, these infected eukaryotic cells then became susceptible to intoxication by translocated Yop effectors. In contrast, bacteria harboring an in-frame deletion of cpxR, which encodes the cognate response regulator, displayed an enhanced ability to interact with cell monolayers, as well as elevated inv and rovA transcription. This phenotype could be drastically suppressed by providing a wild-type copy of cpxR in trans. We propose a mechanism of inv regulation influenced by the direct negative effects of phosphorylated CpxR on inv and rovA transcription. In this fashion, sensing of extracytoplasmic stress by CpxAR contributes to productive Yersinia sp.-eukaryotic cell interactions.
Collapse
Affiliation(s)
- Katrin E Carlsson
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
19
|
Pinheiro VB, Ellar DJ. Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins. Cell Microbiol 2007; 9:2372-80. [PMID: 17573906 DOI: 10.1111/j.1462-5822.2007.00966.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photorhabdus luminescens toxin complex (Tc) has been characterized as a potent three-component insecticidal protein complex. Homologues of genes encoding P. luminescens Tc components have been identified in several other enterobacteria and in Gram-positive bacteria, showing these genes are widespread in bacteria. In particular, tc gene homologues have been identified in Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis and may have a role in Y. pestis evolution. Y. enterocolitica tc genes have been shown to be active against Manduca sexta larvae. Here, we demonstrate that expression optimization is essential to obtain bioactive P. luminescens Tc proteins and demonstrate that TcaAB and TcdB + TccC are stand-alone toxins against a M. sexta insect model. Moreover, we report that Y. pseudotuberculosis IP32953 Tc proteins are also toxic to M. sexta larvae but do not cross-potentiate as P. luminescens Tc components.
Collapse
Affiliation(s)
- Vitor B Pinheiro
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | |
Collapse
|
20
|
Lawrenz MB, Miller VL. Comparative analysis of the regulation of rovA from the pathogenic yersiniae. J Bacteriol 2007; 189:5963-75. [PMID: 17573476 PMCID: PMC1952055 DOI: 10.1128/jb.00528-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RovA is a MarR/SlyA-type regulator that mediates the transcription of inv in Yersinia enterocolitica and Y. pseudotuberculosis. In Y. pseudotuberculosis, rovA transcription is controlled primarily by H-NS and RovA, which bind to similar regions within the rovA promoter. At 37 degrees C, rovA transcription is repressed by H-NS. Transcription of rovA results when RovA relieves H-NS-mediated repression. The region of the rovA promoter that H-NS and RovA bind is not conserved in the Y. enterocolitica promoter. Using green fluorescent protein reporters, we determined that the Y. enterocolitica rovA (rovA(Yent)) promoter is weaker than the Y. pseudotuberculosis promoter. However, despite the missing H-NS/RovA binding site in the rovA(Yent) promoter, H-NS and RovA are still involved in the regulation of rovA(Yent). DNA binding studies suggest that H-NS and RovA bind with a higher affinity to the Y. pseudotuberculosis/Y. pestis rovA (rovA(Ypstb/Ypestis)) promoter than to the rovA(Yent) promoter. Furthermore, H-NS appears to bind to two regions in a cooperative fashion within the rovA(Yent) promoter that is not observed with the rovA(Ypstb/Ypestis) promoter. Finally, using a transposon mutagenesis approach, we identified a new positive regulator of rovA in Y. enterocolitica, LeuO. In Escherichia coli, LeuO regulates gene expression via changes in levels of RpoS and H-NS, but LeuO-mediated regulation of rovA(Yent) appears to be independent of either of these two proteins. Together, these data demonstrate that while the rovA regulatory factors are conserved in Yersinia, divergence of Y. enterocolitica and Y. pseudotuberculosis/Y. pestis during evolution has resulted in modifications in the mechanisms that are responsible for controlling rovA transcription.
Collapse
Affiliation(s)
- Matthew B Lawrenz
- Washington University School of Medicine, Department of Molecular Microbiology, 660 S. Euclid Avenue, Campus Box 8230, St. Louis, MO 63110, USA.
| | | |
Collapse
|
21
|
Fisher ML, Castillo C, Mecsas J. Intranasal inoculation of mice with Yersinia pseudotuberculosis causes a lethal lung infection that is dependent on Yersinia outer proteins and PhoP. Infect Immun 2006; 75:429-42. [PMID: 17074849 PMCID: PMC1828392 DOI: 10.1128/iai.01287-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Yersinia pseudotuberculosis infects many mammals and birds including humans, livestock, and wild rodents and can be recovered from the lungs of infected animals. To determine the Y. pseudotuberculosis factors important for growth during lung infection, we developed an intranasal model of infection in mice. Following intranasal inoculation, we monitored both bacterial growth in lungs and dissemination to systemic tissues. Intranasal inoculation with as few as 18 CFU of Y. pseudotuberculosis caused a lethal lung infection in some mice. Over the course of 7 days, wild-type Y. pseudotuberculosis replicated to nearly 1 x 10(8) CFU/g of lung in BALB/c mice, induced histopathology in lungs consistent with pneumonia, but disseminated sporadically to other tissues. In contrast, a Delta yopB deletion strain was attenuated in this model, indicating that translocation of Yersinia outer proteins (Yops) is essential for virulence. Additionally, a Delta yopH null mutant failed to grow to wild-type levels by 4 days postintranasal inoculation, but deletions of any other single effector YOP did not attenuate lung colonization 4 days postinfection. Strains with deletions in yopH and any one of the other known effector yop genes were more attenuated that the Delta yopH strain, indicating a unique role for yopH in lungs. In summary, we have characterized the progression of a lung infection with an enteric Yersinia pathogen and shown that YopB and YopH are important in lung colonization and dissemination. Furthermore, this lung infection model with Y. pseudotuberculosis can be used to test potential therapeutics against Yersinia and other gram-negative infections in lungs.
Collapse
Affiliation(s)
- Michael L Fisher
- Department of Microbiology, 136 Harrison Ave., Tufts University, Boston, MA 02111, USA
| | | | | |
Collapse
|
22
|
Venecia K, Young GM. Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica biovar 1B. Infect Immun 2005; 73:5961-77. [PMID: 16113317 PMCID: PMC1231061 DOI: 10.1128/iai.73.9.5961-5977.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic biovars of Yersinia enterocolitica maintain the well-studied plasmid-encoded Ysc type III secretion (TTS) system, which has a definitive role in virulence. Y. enterocolitica biovar 1B additionally has a distinct chromosomal locus, the Yersinia secretion apparatus pathogenicity island (YSA PI) that encodes the Ysa TTS system. The signals to which the Ysa TTS system responds and its role in virulence remain obscure. This exploratory study was conducted to define environmental cues that promote the expression of Ysa TTS genes and to define how the Ysa TTS system influences bacterium-host interactions. Using a genetic approach, a collection of Y. enterocolitica Ysa TTS mutants was generated by mutagenesis with a transposon carrying promoterless lacZYA. This approach identified genes both within and outside of the YSA PI that contribute to Ysa TTS. Expression of these genes was regulated in response to growth phase, temperature, NaCl, and pH. Additional genetic analysis demonstrated that two regulatory genes encoding components of the YsrR-YsrS (ysrS) and RcsC-YojN-RcsB (rcsB) phosphorelay systems affect the expression of YSA PI genes and each other. The collection of Ysa TTS-defective transposon mutants, along with other strains carrying defined mutations that block Ysa and Ysc TTS, was examined for changes in virulence properties by using the BALB/c mouse model of infection. This analysis revealed that the Ysa TTS system impacts the ability of Y. enterocolitica to colonize gastrointestinal tissues. These results reveal facets of how Y. enterocolitica controls the function of the Ysa TTS system and uncovers a role for the Ysa TTS during the gastrointestinal phase of infection.
Collapse
Affiliation(s)
- Krista Venecia
- Microbiology Graduate Group, University of California, Davis, California 95616, USA
| | | |
Collapse
|
23
|
Fällman M, Gustavsson A. Cellular mechanisms of bacterial internalization counteracted by Yersinia. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:135-88. [PMID: 16164968 DOI: 10.1016/s0074-7696(05)46004-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Upon host-cell contact, human pathogenic Yersinia species inject Yop virulence effectors into the host through a Type III secretion-and-translocation system. These virulence effectors cause a block in phagocytosis (YopE, YopT, YpkA, and YopH) and suppression of inflammatory mediators (YopJ). The Yops that block phagocytosis either interfere with the host cell actin regulation of Rho GTPases (YopE, YopT, and YpkA) or specifically and rapidly inactivate host proteins involved in signaling from the receptor to actin (YopH). The block in uptake has been shown to be activated following binding to Fc, Complement, and beta1-integrin receptors in virtually any kind of host cell. Thus, the use of Yersinia as a model system to study Yersinia-host cell interactions provides a good tool to explore signaling pathways involved in phagocytosis.
Collapse
Affiliation(s)
- Maria Fällman
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | | |
Collapse
|
24
|
Narayanan K, Warburton PE. DNA modification and functional delivery into human cells using Escherichia coli DH10B. Nucleic Acids Res 2003; 31:e51. [PMID: 12711696 PMCID: PMC154239 DOI: 10.1093/nar/gng051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a approximately 200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd(-) rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies.
Collapse
Affiliation(s)
- Kumaran Narayanan
- Department of Human Genetics, Box 1498, Mount Sinai School of Medicine, 1425 Madison Avenue, East Building 14-52A, New York, NY 10029, USA
| | | |
Collapse
|
25
|
Iwobi A, Heesemann J, Garcia E, Igwe E, Noelting C, Rakin A. Novel virulence-associated type II secretion system unique to high-pathogenicity Yersinia enterocolitica. Infect Immun 2003; 71:1872-9. [PMID: 12654803 PMCID: PMC152056 DOI: 10.1128/iai.71.4.1872-1879.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Yersinia enterocolitica strains comprise an important group of bacterial enteropathogens that cause a broad range of gastrointestinal syndromes. Three groups are distinguishable within this bacterial species, namely, the nonpathogenic group (biotype 1A strains), the low-pathogenicity, non-mouse-lethal group (biotypes 2 to 5), and the high-pathogenicity, mouse-lethal group (biotype 1B). To date, the presence of the high-pathogenicity island (HPI), a chromosomal locus that encodes the yersiniabactin system (involved in iron uptake), defines essentially the difference between low-pathogenicity and high-pathogenicity Y. enterocolitica strains, with the low-pathogenicity strains lacking the HPI. Using the powerful tool of representational difference analysis between the nonpathogenic 1A strain, NF-O, and its high-pathogenicity 1B counterpart, WA-314, we have identified a novel type II secretion gene cluster (yts1C-S) occurring exclusively in the high-pathogenicity group. The encoded secreton, designated Yts1 (for Yersinia type II secretion 1) was shown to be important for virulence in mice. A close examination of the almost completed genome sequence of another high-pathogenicity representative, Y. enterocolitica 8081, revealed a second putative type II secretion cluster uniformly distributed among all Y. enterocolitica isolates. This putative species-specific cluster (designated yts2) differed significantly from yts1, while resembling more closely the putative type II cluster present on the genome of Y. pestis. The Yts1 secreton thus appears to have been additionally acquired by the high-pathogenicity assemblage for a virulence-associated function.
Collapse
Affiliation(s)
- A Iwobi
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Li YJ, Petrofsky M, Bermudez LE. Mycobacterium tuberculosis uptake by recipient host macrophages is influenced by environmental conditions in the granuloma of the infectious individual and is associated with impaired production of interleukin-12 and tumor necrosis factor alpha. Infect Immun 2002; 70:6223-30. [PMID: 12379701 PMCID: PMC130307 DOI: 10.1128/iai.70.11.6223-6230.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Revised: 05/14/2002] [Accepted: 08/05/2002] [Indexed: 11/20/2022] Open
Abstract
Transmission of Mycobacterium tuberculosis from one individual to another usually is associated with episodes of coughing. The bacteria leave the environment of the lung cavity of the infected person and travel in droplets to reach the recipient's respiratory tract. Therefore, at the time that the bacteria encounter alveolar cells (macrophages and epithelial cells) in the new host, they express virulence determinants that are regulated by the environmental conditions in the infected person. To determine if those environmental conditions encountered in the lung cavity (hyperosmolarity, acidic pH, and low oxygen tension, among others) would influence the uptake of M. tuberculosis by the recipient's alveolar macrophages, M. tuberculosis H37Rv was incubated under several conditions for different periods of time, washed at 4 degrees C, and used to infect human monocyte-derived macrophages. While increased osmolarity had no effect on M. tuberculosis uptake compared to the uptake of bacteria grown on 7H10 Middlebrook medium, both acidic pH and anaerobiosis increased the uptake of the H37Rv strain four- to sixfold. Using anti-CD11b receptor blocking antibodies or mannoside to inhibit the uptake of M. tuberculosis by macrophages, we determined that while uptake of M. tuberculosis cultured on 7H10 medium was inhibited 77% +/- 6% in the presence of anti-CD11b antibody, the antibody had no effect on the uptake of M. tuberculosis incubated at pH 6.0 and was associated with 27% inhibition of M. tuberculosis previously exposed to anaerobic conditions. The mannose receptor was also not involved with invasion after exposure to acidic conditions, and mannoside resulted in only 32% inhibition of uptake by macrophages of M. tuberculosis exposed to anaerobiosis. Uptake by macrophages also resulted in the secretion of significantly lower amounts of interleukin-12 and tumor necrosis factor alpha than that by macrophages infected with a strain cultured under laboratory conditions. M. tuberculosis cultured under the pH and oxygen concentration found in the granuloma expresses a large number of proteins that are different from the proteins expressed by bacteria grown under laboratory conditions. The results suggest that M. tuberculosis in vivo may be adapted to gain access to the intracellular environment in a very efficient fashion and may do so by using different receptors from the complement and mannose receptors.
Collapse
Affiliation(s)
- Yong-Jun Li
- Kuzell Institute for Arthritis and Infectious Diseases, California Pacific Medical Center Research Institute, San Francisco, California 94115, USA
| | | | | |
Collapse
|
27
|
Young BM, Young GM. YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enterocolitica. J Bacteriol 2002; 184:1324-34. [PMID: 11844761 PMCID: PMC134849 DOI: 10.1128/jb.184.5.1324-1334.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2001] [Accepted: 11/20/2001] [Indexed: 01/09/2023] Open
Abstract
Yersinia enterocolitica maintains three different pathways for type III protein secretion. Each pathway requires the activity of a specific multicomponent apparatus or type III secretion system (TTSS). Two of the TTSSs are categorized as contact-dependent systems which have been shown in a number of different symbiotic and pathogenic bacteria to influence interactions with host organisms by targeting effector proteins into the cytosol of eukaryotic cells. The third TTSS is required for the assembly of flagella and the secretion of the phospholipase YplA, which has been implicated in Y. enterocolitica virulence. In this study, YplA was expressed from a constitutive promoter in strains that contained only a single TTSS. It was determined that each of the three TTSSs is individually sufficient for YplA secretion. Environmental factors such as temperature, calcium availability, and sodium chloride concentration affected the contribution of each system to extracellular protein secretion and, under some conditions, more than one TTSS appeared to operate simultaneously. This suggests that some proteins might normally be exported by more than one TTSS in Y. enterocolitca.
Collapse
Affiliation(s)
- Briana M Young
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
28
|
Nagel G, Lahrz A, Dersch P. Environmental control of invasin expression in Yersinia pseudotuberculosis is mediated by regulation of RovA, a transcriptional activator of the SlyA/Hor family. Mol Microbiol 2001; 41:1249-69. [PMID: 11580832 DOI: 10.1046/j.1365-2958.2001.02522.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invasin is the primary invasive factor of Yersinia pseudotuberculosis that allows efficient internalization into eukaryotic cells. We investigated invasin expression and found that the inv gene is regulated in response to a variety of environmental signals, such as temperature, growth phase, nutrients, osmolarity and pH, and requires the product of rovA, a member of the SlyA/Hor transcriptional activator family. The rovA gene was found by a genetic complementation strategy that restores temperature regulation of an unexpressed inv-phoA fusion in Escherichia coli K-12. RovA plays a role in the invasion of Y. pseudotuberculosis into mammalian cells and mediates the regulation of invasin in response to all environmental signals analysed. Deletion analysis of the inv promoter region revealed a DNA segment extending 207 bp upstream of the transcriptional start site, which is required for maximal RovA-induced inv transcription. Gel retardation assays showed that RovA interacts preferentially with this promoter fragment and suggested two potential RovA binding sites. Studies with chromosomal gene fusions also demonstrated that rovA follows the same pattern of regulation as invasin, indicating that environmental control of inv expression is mainly mediated by the control of RovA synthesis. Furthermore, we showed that a rovA-lacZ fusion is only slightly expressed in a rovA mutant strain, indicating that a positive autoregulatory mechanism is also involved in rovA expression.
Collapse
Affiliation(s)
- G Nagel
- Department of Microbiology, Institute of Microbiology and Plant Physiology, Freie Universität Berlin, Königin-Luise Str. 12-16, 14195 Berlin, Germany
| | | | | |
Collapse
|
29
|
Affiliation(s)
- A Boland
- Microbial Pathogenesis Unit, Christian de Duve Institute of Cellular Pathology, Université Catholique de Louvain, Facutté de Medecíne, Brussels, Belgium
| | | |
Collapse
|
30
|
Dersch P, Isberg RR. An immunoglobulin superfamily-like domain unique to the Yersinia pseudotuberculosis invasin protein is required for stimulation of bacterial uptake via integrin receptors. Infect Immun 2000; 68:2930-8. [PMID: 10768991 PMCID: PMC97506 DOI: 10.1128/iai.68.5.2930-2938.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of the Yersinia pseudotuberculosis and Yersinia enterocolitica invasin proteins to beta(1) integrin receptors allows internalization of these organisms by cultured cells. The C-terminal 192-residue superdomain of the Y. pseudotuberculosis invasin is necessary and sufficient for integrin recognition, while a region located outside, and N-terminal to, this superdomain strongly enhances the efficiency of bacterial uptake. Within the enhancer region is a domain called D2 that allows invasin-invasin interaction. To investigate the role of the enhancer region, bacterial cell binding and entry mediated by the Y. pseudotuberculosis invasin protein (invasin(pstb)) was compared to that of Y. enterocolitica invasin (invasin(ent)), which lacks the D2 self-association domain. Invasin(ent) was shown to be unable to promote self-interaction, using the DNA binding domain of lambda repressor as a reporter. Furthermore, two genetically engineered in-frame deletion mutations that removed D2 from invasin(pstb) were significantly less proficient than wild-type invasin(pstb) at promoting uptake, although the amount of surface-exposed invasin as well as the cell binding capacity of the recombinant Escherichia coli strains remained similar. Competitive uptake assays showed that E. coli cells expressing invasin(pstb) had a significant advantage in the internalization process versus either E. coli cells expressing invasin(ent) or the invasin(pstb) derivatives deleted for D2, further demonstrating the importance of invasin self-interaction for the efficiency of invasin-mediated uptake.
Collapse
Affiliation(s)
- P Dersch
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
31
|
Alspaugh JA, Perfect JR, Heitman J. Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans. Fungal Genet Biol 1998; 25:1-14. [PMID: 9806801 DOI: 10.1006/fgbi.1998.1079] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basidiomycetous yeast Cryptococcus neoformans is a human pathogen. Several phenotypes of this organism are defined as virulence traits including the polysaccharide capsule, melanin, and the ability to grow at 37 degreesC. The signaling pathways regulating the expression of these phenotypes and other important cellular processes are being defined on a molecular level. For example, the highly conserved signaling molecule calcineurin regulates high temperature growth in C. neoformans. A cryptococcal homolog of Saccharomyces cerevisiae STE12, the gene for a transcriptional regulator activated by the MAP kinase cascade, has also been identified. Additionally, the C. neoformans Galpha protein GPA1 and cAMP regulate mating, melanin production, encapsulation, and pathogenicity. This fungus is an excellent model to further dissect virulence-associated signaling pathways. The conserved role of Galpha proteins and cAMP-associated signaling pathways in fungal differentiation and pathogenicity is also reviewed.
Collapse
Affiliation(s)
- J A Alspaugh
- Department of Genetics, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | |
Collapse
|
32
|
Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P. Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 1998; 16:862-6. [PMID: 9743121 DOI: 10.1038/nbt0998-862] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We provide evidence of direct transfer of functional DNA from bacteria to mammalian cells. An Escherichia coli K12 diaminopimelate auxotroph made invasive by cloning the invasin gene from Yersinia pseudotuberculosis transfers DNA after simple co-incubation, into a variety of mammalian cell lines. Transfer efficiency was enhanced in some cells by coexpression of the gene for listeriolysin from Listeria monocytogenes. Expression of the acquired genes occurs in both dividing and quiescent cells. The only requirement for bacteria to transfer genetic material into nonprofessional phagocytic cells and macrophages is the ability to invade the host cell.
Collapse
|
33
|
Francis MS, Wolf-Watz H. YopD of Yersinia pseudotuberculosis is translocated into the cytosol of HeLa epithelial cells: evidence of a structural domain necessary for translocation. Mol Microbiol 1998; 29:799-813. [PMID: 9723919 DOI: 10.1046/j.1365-2958.1998.00973.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Yersinia pseudotuberculosis YopB and YopD proteins are essential for translocation of Yop effector proteins into the target cell cytosol. YopB is suggested to mediate pore formation in the target cell plasma membrane, allowing translocation of Yop effector proteins, although the function of YopD is unclear. To investigate the role in translocation for YopD, a mutant strain in Y. pseudotuberculosis was constructed containing an in frame deletion of essentially the entire yopD gene. As shown recently for the Y. pestis YopD protein, we found that the in vitro low calcium response controlling virulence gene expression was negatively regulated by YopD. This yopD null mutant (YPIII/pIB621) was also non-cytotoxic towards HeLa cell monolayers, supporting the role for YopD in the translocation process. Although other constituents of the Yersinia translocase apparatus (YopB, YopK and YopN) are not translocated into the host cell cytosol, fractionation of infected HeLa cells allowed us to identify the cytosolic localization of YopD by the wild-type strain (YPIII/pIB102), but not by strains defective in either YopD or YopB. YopD was also identified by immunofluorescence in the cytoplasm of HeLa cell monolayers infected with a multiple yop mutant strain (YPIII/pIB29MEKA). These results demonstrate a dual function for YopD in negative regulation of Yop production and Yop effector translocation, including the YopD protein itself. To investigate whether an amphipathic domain near the C-terminus of YopD is involved in the translocation process, a mutant strain (YPIII/pIB155deltaD278-292) was constructed that is devoid of this region. Phenotypically, this small in frame deltayopD278-292 deletion mutant was indistinguishable from the yopD null mutant. The truncated YopD protein and Yop effectors were not translocated into the cytosol of HeLa cell monolayers infected with this mutant. The comparable regulatory and translocation phenotypes displayed by the small in frame deltayopD278-292 deletion and deltayopD null mutants suggest that regulation of Yop synthesis and Yop translocation are intimately coupled. We present an intriguing scenario to the Yersinia infection process that highlights the need for polarized translocation of YopD to specifically establish translocation of Yop effectors. These observations are contrary to previous suggestions that members of the translocase apparatus were not translocated into the host cell cytosol.
Collapse
Affiliation(s)
- M S Francis
- Department of Cell and Molecular Biology, Umeå University, Sweden
| | | |
Collapse
|
34
|
Qoronfleh MW, Bortner CA, Schwartzberg P, Wilkinson BJ. Enhanced levels of Staphylococcus aureus stress protein GroEL and DnaK homologs early in infection of human epithelial cells. Infect Immun 1998; 66:3024-7. [PMID: 9596786 PMCID: PMC108308 DOI: 10.1128/iai.66.6.3024-3027.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibodies to Staphylococcus aureus heat shock proteins (Hsps) are present in the sera of patients with S. aureus endocarditis (M. W. Qoronfleh, W. Weraarchakul, and B. J. Wilkinson, Infect. Immun. 61:1567-1570, 1993). Although these proteins are immunogenic, their role in infection has not been established. We developed a cell culture system as a model to examine the potential involvement of staphylococcal Hsps in the initial events of infection. This study supports a model in which a clinical endocarditis isolate responds to host cell signals by selectively regulating the synthesis of numerous proteins, including the stress proteins Hsp60 (GroEL homolog) and Hsp70 (DnaK homolog) and a unique 58-kDa protein.
Collapse
Affiliation(s)
- M W Qoronfleh
- Structural Biochemistry Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA.
| | | | | | | |
Collapse
|
35
|
Schulte R, Autenrieth IB. Yersinia enterocolitica-induced interleukin-8 secretion by human intestinal epithelial cells depends on cell differentiation. Infect Immun 1998; 66:1216-24. [PMID: 9488416 PMCID: PMC108036 DOI: 10.1128/iai.66.3.1216-1224.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting beta1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer's patch tissue remains to be shown.
Collapse
Affiliation(s)
- R Schulte
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | |
Collapse
|
36
|
Clark MA, Hirst BH, Jepson MA. M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infect Immun 1998; 66:1237-43. [PMID: 9488419 PMCID: PMC108039 DOI: 10.1128/iai.66.3.1237-1243.1998] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1997] [Accepted: 12/01/1997] [Indexed: 02/06/2023] Open
Abstract
Quantitative analysis of Yersinia pseudotuberculosis infection of murine gut loops revealed that significantly more wild-type bacteria associated with Peyer's patch M cells than with dome enterocytes or goblet cells. An invasin-deficient mutant was significantly attenuated for M-cell invasion, while beta1 integrin expression was demonstrated in the apical membranes of M cells but not enterocytes. M-cell targeting by Yersinia pseudotuberculosis in vivo may, therefore, be mediated primarily by the interaction of invasin with cell surface beta1 integrins.
Collapse
Affiliation(s)
- M A Clark
- Department of Physiological Sciences, Medical School, University of Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
37
|
Bermudez LE, Petrofsky M, Goodman J. Exposure to low oxygen tension and increased osmolarity enhance the ability of Mycobacterium avium to enter intestinal epithelial (HT-29) cells. Infect Immun 1997; 65:3768-73. [PMID: 9284150 PMCID: PMC175537 DOI: 10.1128/iai.65.9.3768-3773.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Current evidence indicates that Mycobacterium avium infection in patients with AIDS is acquired mostly through the gastrointestinal (GI) tract and that M. avium binds to and invades GI mucosal cells in vitro. Since M. avium is exposed to specific environmental conditions in the GI tract such as changes in pH, low oxygen (O2) tension, increased osmolarity, and low concentration of iron, we investigated the effects of these conditions on the bacterium's ability to enter HT-29 intestinal cells. M. avium 101 (serovar 1) was cultured in 7H9 broth and then exposed to pH 4.5 to 8.0, low O2 tension, 0.1 to 0.3 M dextrose, and absence of iron for 2 h. After washing, bacteria (10(7)/ml) were used in the invasion assay. Confluent HT-29 cells were exposed to 10(6) bacteria for 1 h and then treated with amikacin (200 microg/ml) for 2 h to selectively kill extracellular but not intracellular M. avium. The supernatant was then removed, the monolayer was lysed, and the lysate was plated onto 7H10 agar plates. While exposure to acidic and basic pHs, as well as iron-free medium, had no significant effect on M. avium invasion of intestinal epithelial cells, low O2 tension and increased osmolarity enhanced invasion 11- and 9-fold, respectively, compared with the control. Exposure of M. avium to the combination of low O2 concentration and hyperosmolarity resulted in an approximate 10- to 15-fold increase in penetration of HT-29 cells. Hyperosmolarity and low O2 tension induced the invasive M. avium phenotype and can be useful for the identification of genes associated with M. avium invasion of intestinal mucosa.
Collapse
Affiliation(s)
- L E Bermudez
- Kuzell Institute for Arthritis and Infectious Diseases, California Pacific Medical Center Research Institute, San Francisco 94115, USA
| | | | | |
Collapse
|
38
|
Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 1997; 16:2576-89. [PMID: 9184205 PMCID: PMC1169869 DOI: 10.1093/emboj/16.10.2576] [Citation(s) in RCA: 380] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cyclosporin A (CsA) and FK506 are antimicrobial, immunosuppressive natural products that inhibit signal transduction. In T cells and Saccharomyces cerevisiae, CsA and FK506 bind to the immunophilins cyclophilin A and FKBP12 and the resulting complexes inhibit the Ca2+-regulated protein phosphatase calcineurin. We find that growth of the opportunistic fungal pathogen Cryptococcus neoformans is sensitive to CsA and FK506 at 37 degrees C but not at 24 degrees C, suggesting that CsA and FK506 inhibit a protein required for C. neoformans growth at elevated temperature. Genetic evidence supports a model in which immunophilin-drug complexes inhibit calcineurin to prevent growth at 37 degrees C. The gene encoding the C. neoformans calcineurin A catalytic subunit was cloned and disrupted by homologous recombination. Calcineurin mutant strains are viable but do not survive in vitro conditions that mimic the host environment (elevated temperature, 5% CO2 or alkaline pH) and are no longer pathogenic in an animal model of cryptococcal meningitis. Introduction of the wild-type calcineurin A gene complemented these growth defects and restored virulence. Our findings demonstrate that calcineurin is required for C. neoformans virulence and may define signal transduction elements required for fungal pathogenesis that could be targets for therapeutic intervention.
Collapse
Affiliation(s)
- A Odom
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
39
|
Högman CF, Engstrand L. Factors affecting growth of Yersinia enterocolitica in cellular blood products. Transfus Med Rev 1996; 10:259-75. [PMID: 8899955 DOI: 10.1016/s0887-7963(96)80002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C F Högman
- Department of Clinical Immunology and Transfusior, Medicine, University Hospital, Uppsala, Sweden
| | | |
Collapse
|
40
|
Koo JW, Park SN, Choi SM, Chang CH, Cho CR, Paik IK, Chung CY. Acute renal failure associated with Yersinia pseudotuberculosis infection in children. Pediatr Nephrol 1996; 10:582-6. [PMID: 8897560 DOI: 10.1007/s004670050165] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report 45 pediatric cases of Yersinia pseudotuberculosis infection confirmed by stool culture between May 1993 and June 1994. In 41 (91.1%) cases there had been contact with untreated well or mountain water. Y. pseudotuberculosis was also isolated from 4 samples of mountain spring water thought to be the sources of infection. During the course of the illness, acute renal failure (ARF) developed in 6 patients (13.6%). The age distribution of the ARF group (12.3 +/- 1.2 years) was significantly different from the non-ARF group (8.0 +/- 3.2 years). The serogroups of Y. pseudotuberculosis isolates from stool samples were 5 (n = 30) and 4 (n = 15). Isolates from the water samples were all serogroup 5. The main symptoms of both groups were fever, rash, abdominal pain, and vomiting. ARF developed between the 2nd and 14th days (mean 6 days) after the onset of fever, and oliguria (< 400 ml/m2 per day) developed in 3 patients (3/6, 50%) immediately after their fevers had subsided. ARF underwent a benign course, with complete recovery within a maximum of 4 weeks (mean 10.2 days), with 1 exceptional patient requiring hemodialysis. Renal biopsy showed evidence of tubulointerstitial nephritis. Y. pseudotuberculosis should be included as one of the causes of acute interstitial nephritis causing ARF in children, especially when the children have histories of drinking untreated water in endemic areas.
Collapse
Affiliation(s)
- J W Koo
- Department of Pediatrics, College of Medicine, Inje University, Sanggye Paik Hospital, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Roggenkamp A, Ruckdeschel K, Leitritz L, Schmitt R, Heesemann J. Deletion of amino acids 29 to 81 in adhesion protein YadA of Yersinia enterocolitica serotype O:8 results in selective abrogation of adherence to neutrophils. Infect Immun 1996; 64:2506-14. [PMID: 8698473 PMCID: PMC174104 DOI: 10.1128/iai.64.7.2506-2514.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In order to analyze the multiple functions of the yersinia adhesin YadA in more detail, we constructed an N-terminally truncated YadA protein (deletion of amino acids [aa] 29 to 81) of Yersinia enterocolitica serotype 0:8. The region aa 29 to 81 of YadA is located between the signal sequence and the amino-terminal hydrophobic domain (aa 80 to 101), which is involved in surface polymerization and collagen binding. The deletion of aa 29 to 81 (resulting in YadADelta29-81) had no effect on the well-known features of YadA such as autoagglutination, serum resistance, HEp-2 cell adherence, binding of collagen, and binding of the complement-inhibiting factor H. In contrast to this, mutant WA(pYVO8-A-Delta29-81), producing the truncated YadADelta29-81 had lost the ability to adhere to polymorphonuclear leukocytes and to induce an oxidative burst. This functional deficiency was comparable to that of a yadA-null mutant (K. Ruckdeschel, A. Roggenkamp, S. Schubert, and J. Heesemann, Infect. Immun. 64:724-733, 1996). Moreover, mutant WA(pYVO8-ADelta29-81) turned out to be attenuated in virulence comparably to the yadA-null mutant, as demonstrated with orogastrically and intravenously infected mice. In summary, this study shows that specific functions of YadA (i) can be impaired by designed mutations and (ii) are important in distinct stages of the infection process.
Collapse
Affiliation(s)
- A Roggenkamp
- Max von Pettenkofer-Institute for Hygiene and Microbiology, Ludwig, Maximillian University München, Munich, Germany
| | | | | | | | | |
Collapse
|
42
|
Yang Y, Merriam JJ, Mueller JP, Isberg RR. The psa locus is responsible for thermoinducible binding of Yersinia pseudotuberculosis to cultured cells. Infect Immun 1996; 64:2483-9. [PMID: 8698470 PMCID: PMC174101 DOI: 10.1128/iai.64.7.2483-2489.1996] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yersinia pseudotuberculosis inv mutant strains cured of the virulence plasmid exhibit thermoinducible adhesion to cultured mammalian cells. To identify the genes responsible for this phenotype, Y. pseudotuberculosis homologs of the Y. enterocolitica ail and the Y. pestis psa loci were identified. Mutations in the Y. pseudotuberculosis ail and psa loci were constructed and tested for thermoinducible binding. Results of cellular binding assays indicated that only mutations in psa, not in ail, resulted in defects for thermoinducible binding, with inv yadA psa strains showing no detectable cell adhesion. In addition, an inv psa strain was defective for hemagglutination of sheep erythrocytes, in contrast to an inv psa+ strain which was fully competent for hemagglutination. The introduction of a plasmid containing a 6.7-kb KpnI-ClaI fragment of Y. pseudotuberculosis encompassing the psa locus was sufficient to complement both the cell adhesion and hemagglutination defects of the psa mutant. Results from subcloning and transposon mutagenesis indicated that the complete 6.7-kb region was required for thermoinducible binding and hemagglutination.
Collapse
Affiliation(s)
- Y Yang
- Department of Microbiology and Molecular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
43
|
Bermudez LE, Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun 1996; 64:1400-6. [PMID: 8606107 PMCID: PMC173932 DOI: 10.1128/iai.64.4.1400-1406.1996] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although Mycobacterium tuberculosis is assumed to infect primarily alveolar macrophages after being aspirated into the lung in aerosol form, it is plausible to hypothesize that M. tuberculosis can come in contact with alveolar epithelial cells upon arrival into the alveolar space. Therefore, as a first step toward investigation of the interaction between M. tuberculosis and alveolar epithelial cells, we examined the ability of M. tuberculosis to bind to and invade alveolar epithelial cells in vitro. The H37Rv and H37Ra strains of M. tuberculosis were cultured to mid-log phase and used in both adherence and invasion assays. The A549 human type II alveolar cell line was cultured to confluence in RPMI 1640 supplemented with 5% fetal bovine serum, L-glutamine, and nonessential amino acids. H37Rv was more efficient in entering A549 cells than H37Ra, Mycobacterium avium, and Escherichia coli Hb101, and nonpiliated strain (4.7% +/- 1.0% of the initial inoculum in 2 h compared with 3.1% +/- 0.8%, 2.1% +/- 0.9%, and 0.03% +/- 0.0%, respectively). The invasion was more efficient at 37 degrees C than 30 degrees C (4.7% +/- 1.0% compared with 2.3% +/- 0.8%). H37Rv and H37Ra were both capable of multiplying intracellularly at a similar ration over 4 days. Binding was inhibited up to 55.7% by anti-CD51 antibody (antivitronectin receptor), up to 55% with anti-CD29 antibody (beta(1) integrin), and 79% with both antibodies used together. Update of M. tuberculosis H37Rv was microtubule and microfilament dependent. It was inhibited by 6l.4% in the presence of 10 micron colchicine and by 72.3% in the presence of 3 micron cytochalasin D, suggesting two separate pathways for uptake. Our results show that M. tuberculosis is capable of invading type II alveolar epithelial cells and raise the possibility that invasion of alveolar epithelial cells is associated with the pathogenesis of lung infection.
Collapse
Affiliation(s)
- L E Bermudez
- Kuzell Institute for Arthritis & Infectious Diseases, California Pacific Medical Center Research Institute, San Francisco, USA
| | | |
Collapse
|
44
|
|
45
|
Ruckdeschel K, Roggenkamp A, Schubert S, Heesemann J. Differential contribution of Yersinia enterocolitica virulence factors to evasion of microbicidal action of neutrophils. Infect Immun 1996; 64:724-33. [PMID: 8641773 PMCID: PMC173829 DOI: 10.1128/iai.64.3.724-733.1996] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The differential contribution of the virulence factors invasin, protein tyrosine phosphatase (YopH), cytotoxin (YopE), and adhesin (YadA) of Yersinia enterocolitica to evasion of the antibacterial activities of polymorphonuclear leukocytes (PMNs) (oxidative burst, phagocytosis, killing) was analyzed. We constructed virulence gene knockout mutants and a novel two-plasmid system allowing production and secretion of individual virulence factors. Wild-type Y. enterocolitica WA-314 harboring the virulence plasmid pYV08 resisted phagocytosis and killing by PMNs. Moreover, strain WA-314 was able to inhibit the neutrophil oxidative burst upon stimulation with opsonized zymosan independently on preincubation with normal human serum or YadA-specific serum. These phenotypic properties of strain WA-314 were differentially affected when mutants impaired in YadA production or Yop secretion were used. A more detailed analysis revealed that YopH plays the dominant role in suppression of the antibacterial action of PMNs without damaging the cells. The YopH suppressing effect could be enhanced by coproduction of YopE and YadA. The contribution of YadA is attributed to the adhesin function promoting interaction with PMNs under both opsonizing and nonopsonizing conditions. In contrast, invasin seems to mediate only opsonin-independent interaction with PMNs. Taken together, our results demonstrate that YopH, YopE, and YadA act in concert towards neutrophil attack to enable extracellular survival of Y. enterocolitica in host tissue.
Collapse
Affiliation(s)
- K Ruckdeschel
- Institute for Hygiene and Microbiology, University of Würzburg, Germany
| | | | | | | |
Collapse
|
46
|
Lundgren E, Carballeira N, Vazquez R, Dubinina E, Bränden H, Persson H, Wolf-Watz H. Invasin of Yersinia pseudotuberculosis activates human peripheral B cells. Infect Immun 1996; 64:829-35. [PMID: 8641788 PMCID: PMC173844 DOI: 10.1128/iai.64.3.829-835.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Yersinia pseudotuberculosis cell surface-located protein invasin was found to promote binding between the pathogen and resting peripheral B cells via beta 1 integrin receptors (CD29). B cells responded by expressing several activation markers and by growing, In contrast, T cells did not react, although these cells express CD29. An isogenic invA mutant failed to activate B cells. The mutation could be complemented by providing the invA+ gene in trans. Purified invasin alone did not activate B cells, although it was able to block the binding of bacteria to the cells.
Collapse
Affiliation(s)
- E Lundgren
- Department of Cell and Molecular Biology, University of Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- R R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
48
|
Abstract
Although widely used, tissue-culture assays cannot be exact models of the conditions that are met in vivo by pathogenic bacteria. However, recent studies of specific mutants suggest that the model is good for highly invasive bacteria, but it remains to be seen if this is true for weakly invasive bacteria.
Collapse
Affiliation(s)
- V L Miller
- University of California, Los Angeles, Dept. of Microbiology and Molecular Genetics 90024-1489, USA
| |
Collapse
|
49
|
Bliska JB, Black DS. Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infect Immun 1995; 63:681-5. [PMID: 7822039 PMCID: PMC173049 DOI: 10.1128/iai.63.2.681-685.1995] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Suppression of host-cell-mediated immunity is a hallmark feature of Yersinia pseudotuberculosis infection. To better understand this process, the interaction of Y. pseudotuberculosis with macrophages and the effect of the virulence plasmid-encoded Yersinia tyrosine phosphatase (YopH) on the oxidative burst was analyzed in a chemiluminescence assay. An oxidative burst was generated upon infection of macrophages with a plasmid-cured strain of Y. pseudotuberculosis opsonized with immunoglobulin G antibody. Infection with plasmid-containing Y. pseudotuberculosis inhibited the oxidative burst triggered by secondary infection with opsonized bacteria. The tyrosine phosphatase activity of YopH was necessary for this inhibition. These results indicate that YopH inhibits Fc receptor-mediated signal transduction in macrophages in a global fashion. In addition, bacterial protein synthesis was not required for macrophage inhibition, suggesting that YopH export and translocation are controlled at the posttranslational level.
Collapse
Affiliation(s)
- J B Bliska
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794
| | | |
Collapse
|
50
|
Environmental Control of Virulence Functions and Signal Transduction in Yersinia Enterocolitica. SIGNAL TRANSDUCTION AND BACTERIAL VIRULENCE 1995. [DOI: 10.1007/978-3-662-22406-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|