1
|
The Lst Sialyltransferase of Neisseria gonorrhoeae Can Transfer Keto-Deoxyoctanoate as the Terminal Sugar of Lipooligosaccharide: a Glyco-Achilles Heel That Provides a New Strategy for Vaccines to Prevent Gonorrhea. mBio 2021; 12:mBio.03666-20. [PMID: 33758087 PMCID: PMC8092323 DOI: 10.1128/mbio.03666-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The lipooligosaccharide (LOS) of Neisseria gonorrhoeae plays key roles in pathogenesis and is composed of multiple possible glycoforms. These glycoforms are generated by the process of phase variation and by differences in the glycosyltransferase gene content of particular strains. LOS glycoforms of N. gonorrhoeae can be terminated with an N-acetylneuraminic acid (Neu5Ac), which imparts resistance to the bactericidal activity of serum. However, N. gonorrhoeae cannot synthesize the CMP-Neu5Ac required for LOS biosynthesis and must acquire it from the host. In contrast, Neisseria meningitidis can synthesize endogenous CMP-Neu5Ac, the donor molecule for Neu5Ac, which is a component of some meningococcal capsule structures. Both species have an almost identical LOS sialyltransferase, Lst, that transfers Neu5Ac from CMP-Neu5Ac to the terminus of LOS. Lst is homologous to the LsgB sialyltransferase of nontypeable Haemophilus influenzae (NTHi). Studies in NTHi have demonstrated that LsgB can transfer keto-deoxyoctanoate (KDO) from CMP-KDO to the terminus of LOS in place of Neu5Ac. Here, we show that Lst can also transfer KDO to LOS in place of Neu5Ac in both N. gonorrhoeae and N. meningitidis Consistent with access to the pool of CMP-KDO in the cytoplasm, we present data indicating that Lst is localized in the cytoplasm. Lst has previously been reported to be localized on the outer membrane. We also demonstrate that KDO is expressed as a terminal LOS structure in vivo in samples from infected women and further show that the anti-KDO monoclonal antibody 6E4 can mediate opsonophagocytic killing of N. gonorrhoeae Taken together, these studies indicate that KDO expressed on gonococcal LOS represents a new antigen for the development of vaccines against gonorrhea.IMPORTANCE The emergence of multidrug-resistant N. gonorrhoeae strains that are resistant to available antimicrobials is a current health emergency, and no vaccine is available to prevent gonococcal infection. Lipooligosaccharide (LOS) is one of the major virulence factors of N. gonorrhoeae The sialic acid N-acetylneuraminic acid (Neu5Ac) is present as the terminal glycan on LOS in N. gonorrhoeae In this study, we made an unexpected discovery that KDO can be incorporated as the terminal glycan on LOS of N. gonorrhoeae by the alpha-2,3-sialyltransferase Lst. We showed that N. gonorrhoeae express KDO on LOS in vivo and that the KDO-specific monoclonal antibody 6E4 can direct opsonophagocytic killing of N. gonorrhoeae These data support further development of KDO-LOS structures as vaccine antigens for the prevention of infection by N. gonorrhoeae.
Collapse
|
2
|
Nontypeable Haemophilus influenzae Lipooligosaccharide Expresses a Terminal Ketodeoxyoctanoate In Vivo, Which Can Be Used as a Target for Bactericidal Antibody. mBio 2018; 9:mBio.01401-18. [PMID: 30065093 PMCID: PMC6069110 DOI: 10.1128/mbio.01401-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an important pathogen in individuals of all ages. The lipooligosaccharide (LOS) of NTHi has evolved a complex structure that can be attributed to a multiplicity of glycosyltransferases, the random switching of glycosyltransferase gene expression via phase variation, and the complex structure of its core region with multiple glycoform branch points. This article adds to that complexity by describing a multifunctional enzyme (LsgB) which optimally functions when the species is grown on a solid surface and which can add either a ketodeoxyoctanoate (KDO) or an N-acetylneuramic acid (Neu5Ac) moiety to a terminal N-acetyllactosamine structure of LOS. Our studies show that expression of lsgB is reduced four- to sixfold when NTHi is grown in broth. The substrate that the enzyme utilizes is dependent upon the concentration of free Neu5Ac (between 1 and 10 µg/ml) in the environment. In environments in which Neu5Ac is below that level, the enzyme utilizes endogenous CMP-KDO as the substrate. Our studies show that during in vivo growth in an NTHi biofilm, the KDO moiety is expressed by the organism. Monoclonal antibody 6E4, which binds KDO, is bactericidal for NTHi strains that express the KDO epitope at high levels. In a survey of 33 NTHi strains isolated from healthy and diseased individuals, the antibody was bactericidal (>90% kill) for 12 strains (36%). These studies open up the possibility of using a KDO-based glycoconjugate vaccine as part of a multicomponent vaccine against NTHi.IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in middle ear infections in children, sinusitis in adults, and acute bronchitis in individuals with chronic obstructive lung disease. The organism is very well adapted to the human host environment, and this has hindered successful development of an effective vaccine. In this article, we describe a mechanism by which the bacteria decorates its surface lipooligosaccharide with a sugar unique to Gram-negative bacteria, ketodeoxyoctanoate (KDO). This sugar decoration is present during active infection and we have shown that an antibody directed against this sugar can result in killing of the organism. These data demonstrate that the lipooligosaccharide ketodeoxyoctanoate epitope may be a novel NTHi-specific candidate vaccine antigen.
Collapse
|
3
|
McLaughlin R, Lee NG, Abu Kwaik Y, Spinola S, Apicella M. Characterization and sequence analysis of the lsg (LOS synthesis genes) locus from Haemophilus influenzae type b. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199400100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Analysis of the lsg (LOS synthesis genes) cluster in Escherichia coli strain K12 and mutations in the lsg locus in Haemophilus influenzae type b indicated the presence of 3 regions responsible for sequential modifications of E. coli lipopolysaccharide (LPS). Sequencing of the lsg region yielded 7,435 bp that encompassed 7 complete and 1 partial open reading frames (ORFs 1-8). The predicted product of ORF1 had homology to the consensus sequence of cytochrome b proteins (21% identity, 51% similarity) and to other transmembrane proteins. The products of ORF5 and ORF6 share overall 23% identity and 49% similarity with each other. The ORF6 protein had high homology with the product of ORF275 of the E. coli rfb gene cluster (40% identity, 58% similarity), whose function is not known. Multiple sequence alignment of the ORF5 and ORF6 proteins with the RfbB, RfbJ and RfbX proteins revealed conserved motifs over the N-terminal half region of all these proteins. The products of ORF7 and ORF8 are homologous with Azotobacter vinelandii MolA protein (30% identity, 51% similarity) and MolB protein (26% identity, 48% similarity), respectively. The promoter regions of ORF1, 7 and 8 were determined by primer extension analysis and found to be similar to bacterial σ70-dependent promoters. ORF7 and ORF8 are transcribed into diverse orientation. At least 5 of the encoded proteins have been identified using coupled E. coli transcription/translation system and labeling with [35S]-methionine. We conclude that the genetic organization of the lsg biosynthesis pathway involves multiple operons that lead to the assembly of an H. influenzae LOS structure.
Collapse
Affiliation(s)
- R. McLaughlin
- Department of Microbiology, The University of Oklahoma Health Sciences Center, OK, USA, Department of Microbiology, University of Iowa, Iowa City, IA, USA, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA, Department of Medicine, Division of Infectious Diseases, University of Indiana, Indianapolis, IN, USA
| | - N.-G. Lee
- Department of Microbiology, The University of Oklahoma Health Sciences Center, OK, USA, Department of Microbiology, University of Iowa, Iowa City, IA, USA, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA, Department of Medicine, Division of Infectious Diseases, University of Indiana, Indianapolis, IN, USA
| | - Y. Abu Kwaik
- Department of Microbiology, The University of Oklahoma Health Sciences Center, OK, USA, Department of Microbiology, University of Iowa, Iowa City, IA, USA, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA, Department of Medicine, Division of Infectious Diseases, University of Indiana, Indianapolis, IN, USA
| | - S.M. Spinola
- Department of Microbiology, The University of Oklahoma Health Sciences Center, OK, USA, Department of Microbiology, University of Iowa, Iowa City, IA, USA, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA, Department of Medicine, Division of Infectious Diseases, University of Indiana, Indianapolis, IN, USA
| | - M.A. Apicella
- Department of Microbiology, The University of Oklahoma Health Sciences Center, OK, USA, Department of Microbiology, University of Iowa, Iowa City, IA, USA, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA, Department of Medicine, Division of Infectious Diseases, University of Indiana, Indianapolis, IN, USA
| |
Collapse
|
4
|
Hartwig SM, Ketterer M, Apicella MA, Varga SM. Non-typeable Haemophilus influenzae protects human airway epithelial cells from a subsequent respiratory syncytial virus challenge. Virology 2016; 498:128-135. [PMID: 27573069 DOI: 10.1016/j.virol.2016.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/27/2016] [Accepted: 08/19/2016] [Indexed: 02/03/2023]
Abstract
Respiratory syncytial virus (RSV) and the common commensal and opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) both serve as a frequent cause of respiratory infection in children. Although it is well established that some respiratory viruses can increase host susceptibility to secondary bacterial infections, few studies have examined how commensal bacteria could influence a secondary viral response. Here, we examined the impact of NTHi exposure on a subsequent RSV infection of human bronchial epithelial cells (16HBE14o-). Co-culture of 16HBE14o- cells with NTHi resulted in inhibition of viral gene expression following RSV infection. 16HBE14o- cells co-cultured with heat-killed NTHi failed to protect against an RSV infection, indicating that protection requires live bacteria. However, NTHi did not inhibit influenza A virus replication, indicating that NTHi-mediated protection was RSV-specific. Our data demonstrates that prior exposure to a commensal bacterium such as NTHi can elicit protection against a subsequent RSV infection.
Collapse
Affiliation(s)
- Stacey M Hartwig
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Margaret Ketterer
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Michael A Apicella
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Steven M Varga
- Department of Microbiology, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Department of Pathology, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
5
|
Clark SE, Eichelberger KR, Weiser JN. Evasion of killing by human antibody and complement through multiple variations in the surface oligosaccharide of Haemophilus influenzae. Mol Microbiol 2013; 88:603-18. [PMID: 23577840 DOI: 10.1111/mmi.12214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 11/29/2022]
Abstract
The lipopolysaccharide (LPS) of H. influenzae is highly variable. Much of the structural diversity is derived from phase variation, or high frequency on-off switching, of molecules attached during LPS biosynthesis. In this study, we examined the dynamics of LPS phase variation following exposure to human serum as a source of antibody and complement in multiple H. influenzae isolates. We show that lic2A, lgtC and lex2A switch from phase-off to phase-on following serial passage in human serum. These genes, which control attachment of a galα1-4gal di-galactoside structure (lic2A and lgtC phase-on) or an alternative glucose extension (lex2A phase-on) from the same hexose moiety, reduce binding of bactericidal antibody to conserved inner core LPS structures. The effects of the di-galactoside and alternative glucose extension were also examined in the context of the additional LPS phase variable structures phosphorylcholine (ChoP) and sialic acid. We found that di-galactoside, the alternative glucose extension, ChoP, and sialic acid each contribute independently to bacterial survival in the presence of human complement, and have an additive effect in combination. We propose that LPS phase variable extensions serve to shield conserved inner core structures from recognition by host immune components encountered during infection.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
6
|
Phosphorylcholine allows for evasion of bactericidal antibody by Haemophilus influenzae. PLoS Pathog 2012; 8:e1002521. [PMID: 22396641 PMCID: PMC3291618 DOI: 10.1371/journal.ppat.1002521] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Haemophilus influenzae has the ability to quickly adapt to different host environments through phase variation of multiple structures on its lipooligosaccharide (LPS), including phosphorylcholine (ChoP). During colonization with H. influenzae, there is a selection for ChoP+ phase variants. In a murine model of nasopharyngeal colonization, this selection is lost in the absence of adaptive immunity. Based on previous data highlighting the importance of natural antibody in limiting H. influenzae colonization, the effect of ChoP expression on antibody binding and its bactericidal activity was investigated. Flow cytometric analysis revealed that ChoP+ phase variants had decreased binding of antibody to LPS epitopes compared to ChoP- phase variants. This difference in antibody binding correlated with increased survival of ChoP+ phase variants in the presence of antibody-dependent, complement-mediated killing. ChoP+ phase variants were also more resistant to trypsin digestion, suggesting a general effect on the physical properties of the outer membrane. Moreover, ChoP-mediated protection against antibody binding correlated with increased resilience of outer membrane integrity. Collectively, these data suggest that ChoP expression provides a selective advantage during colonization through ChoP-mediated effects on the accessibility of bactericidal antibody to the cell surface.
Collapse
|
7
|
Ilg K, Yavuz E, Maffioli C, Priem B, Aebi M. Glycomimicry: Display of the GM3 sugar epitope on Escherichia coli and Salmonella enterica sv Typhimurium. Glycobiology 2010; 20:1289-97. [DOI: 10.1093/glycob/cwq091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Johansen EB, Szoka FC, Zaleski A, Apicella MA, Gibson BW. Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach. Glycobiology 2010; 20:763-74. [PMID: 20208062 DOI: 10.1093/glycob/cwq033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In previous work, our laboratory generated novel chimeric lipopolysaccharides (LPS) in Escherichia coli transformed with a plasmid containing exogenous lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. Analysis of these novel oligosaccharide-LPS chimeras allowed characterization of the carbohydrate structures generated by several putative glycosyltransferase genes within the lsg locus. Here, we adapted this strategy to construct a modular approach to study the synthetic properties of individual glycosyltransferases expressed alone and in combinations. To this end, a set of expression vectors containing one to four putative glycosyltransferase genes from the lsg locus, lsgC-F, were transformed into E. coli K12 (XL-1) which is defective in LPS O-antigen biosynthesis. This strategy relied on the inclusion of the H. influenzae gene product lsgG in every plasmid construct, which partially rescues the E. coli LPS biosynthesis defect by priming uridine diphosphate-undecaprenyl in the WecA-dependent O-antigen synthetic pathway with N-acetyl-glucosamine (GlcNAc). This GlcNAc-undecaprenyl then served as an acceptor substrate for further carbohydrate extension by transformed glycosyltransferases. The resultant LPS-linked chimeric glycans were isolated from their E. coli constructs and characterized by mass spectrometry, methylation analysis and enzyme-linked immunosorbent assays. These structural data allowed the specificity of various glycosyltransferases to be unambiguously assigned to individual genes. LsgF was found to transfer a galactose (Gal) to terminal GlcNAc. LsgE was found to transfer GlcNAc to Gal-GlcNAc, and both LsgF and LsgD were found to transfer Gal to GlcNAc-Gal-GlcNAc but with differing linkage specificities. This method can be generalized and readily adapted to study the substrate specificity of other putative or uncharacterized glycosyltransferases.
Collapse
Affiliation(s)
- Eric B Johansen
- Department of Pharmaceutical Chemistry and Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
9
|
Erwin AL, Allen S, Ho DK, Bonthuis PJ, Bonthius PJ, Jarisch J, Nelson KL, Tsao DL, Unrath WCT, Watson ME, Gibson BW, Apicella MA, Smith AL. Role of lgtC in resistance of nontypeable Haemophilus influenzae strain R2866 to human serum. Infect Immun 2006; 74:6226-35. [PMID: 16966407 PMCID: PMC1695526 DOI: 10.1128/iai.00722-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are investigating a nontypeable Haemophilus influenzae (NTHI) strain, R2866, isolated from a child with meningitis. R2866 is unusually resistant to killing by normal human serum. The serum 50% inhibitory concentration (IC50) for this strain is 18%, approaching that of encapsulated H. influenzae. R3392 is a derivative of R2866 that was found to have increased sensitivity to human serum (IC50, 1.5%). Analysis of tetrameric repeat regions within lipooligosaccharide (LOS) biosynthetic genes in both strains indicated that the glycosyltransferase gene lgtC was out of frame ("off") in most colonies of R3392 but in frame with its start codon ("on") in most colonies of the parent. We sought antigenic and biochemical evidence for modification of the LOS structure. In a whole-cell enzyme-linked immunosorbent assay, strain R3392 displayed reduced binding of the Galalpha1,4Gal-specific monoclonal antibody 4C4. Mass spectrometry analysis of LOS from strain R2866 indicated that the primary oligosaccharide glycoform contained four heptose and four hexose residues, while that of R3392 contained four heptose and three hexose residues. We conclude that the R2866 lgtC gene encodes a galactosyltransferase involved in synthesis of the 4C4 epitope, as in other strains, and that expression of lgtC is associated with the high-level serum resistance that has been observed for this strain. This is the first description of the genetic basis of high-level serum resistance in NTHI, as well as the first description of LOS composition in an NTHI strain for which the complete genome sequence has been determined.
Collapse
Affiliation(s)
- Alice L Erwin
- Microbial Pathogens Program, Seattle Biomedical Research Institute, 307 Westlake Ave. North, Suite 500, Seattle, WA 98109-5219, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jones PA, Samuels NM, Phillips NJ, Munson RS, Bozue JA, Arseneau JA, Nichols WA, Zaleski A, Gibson BW, Apicella MA. Haemophilus influenzae type b strain A2 has multiple sialyltransferases involved in lipooligosaccharide sialylation. J Biol Chem 2002; 277:14598-611. [PMID: 11842084 DOI: 10.1074/jbc.m110986200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipooligosaccharide (LOS) of Haemophilus influenzae contains sialylated glycoforms, and a sialyltransferase, Lic3A, has been previously identified. We report evidence for two additional sialyltransferases, SiaA, and LsgB, that affect N-acetyllactosamine containing glycoforms. Mutations in genes we have designated siaA and lsgB affected only the sialylated glycoforms containing N-acetylhexosamine. A mutation in siaA resulted in the loss of glycoforms terminating in sialyl-N-acetylhexosamine and the appearance of higher molecular weight glycoforms, containing the addition of phosphoethanolamine, N-acetylgalactosamine, and N-acetylneuraminic acid. Chromosomal complementation of the siaA mutant resulted in the expression of the original sialylated LOS phenotype. A mutation in lic3A resulted in the loss of sialylation only in glycoforms lacking N-acetylhexosamine and had no effect on sialylation of the terminal N-acetyllactosamine epitope. A double mutant in siaA and lic3A resulted in the complete loss of sialylation of the terminal N-acetyllactosamine epitope and expression of the higher molecular weight sialylated glycoforms seen in the siaA mutant. Mutation of lsgB resulted in persistence of sialylated glycoforms but a reduction in N-acetyllactosamine containing glycoforms. A triple mutant of siaA, lic3A, and lsgB contained no sialylated glycoforms. These results demonstrate that the sialylation of the LOS of H. influenzae is a complex process involving multiple sialyltransferases.
Collapse
Affiliation(s)
- Paul A Jones
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Spinola SM, Bauer ME, Munson RS. Immunopathogenesis of Haemophilus ducreyi infection (chancroid). Infect Immun 2002; 70:1667-76. [PMID: 11895928 PMCID: PMC127820 DOI: 10.1128/iai.70.4.1667-1676.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Stanley M Spinola
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
12
|
Phillips NJ, Miller TJ, Engstrom JJ, Melaugh W, McLaughlin R, Apicella MA, Gibson BW. Characterization of chimeric lipopolysaccharides from Escherichia coli strain JM109 transformed with lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. J Biol Chem 2000; 275:4747-58. [PMID: 10671507 DOI: 10.1074/jbc.275.7.4747] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported the expression of chimeric lipopolysaccharides (LPS) in Escherichia coli strain JM109 (a K-12 strain) transformed with plasmids containing Haemophilus influenzae lipooligosaccharide synthesis genes (lsg) (Abu Kwaik, Y., McLaughlin, R. E., Apicella, M. A., and Spinola, S. M. (1991) Mol. Microbiol. 5, 2475-2480). In this current study, we have analyzed the O-deacylated LPS and free oligosaccharides from three transformants (designated pGEMLOS-4, pGEMLOS-5, and pGEMLOS-7) by matrix-assisted laser desorption ionization, electrospray ionization, and tandem mass spectrometry techniques, along with composition and linkage analyses. These data show that the chimeric LPS consist of the complete E. coli LPS core structure glycosylated on the 7-position of the non-reducing terminal branch heptose with oligosaccharides from H. influenzae. In pGEMLOS-7, the disaccharide Gal1--> 3GlcNAc1--> is added, and in pGEMLOS-5, the structure is extended to Gal1-->4GlcNAc1-->3Gal1-->3GlcNAc1-->. PGEMLOS-5 LPS reacts positively with monoclonal antibody 3F11, an antibody that recognizes the terminal disaccharide of lacto-N-neotetraose. In pGEMLOS-4 LPS, the 3F11 epitope is apparently blocked by glycosylation on the 6-position of the terminal Gal with either Gal or GlcNAc. The biosynthesis of these chimeric LPS was found to be dependent on a functional wecA (formerly rfe) gene in E. coli. By using this carbohydrate expression system, we have been able to examine the functions of the lsg genes independent of the effects of other endogenous Haemophilus genes and expressed proteins.
Collapse
Affiliation(s)
- N J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Spinola SM, Hiltke TJ, Fortney K, Shanks KL. The conserved 18,000-molecular-weight outer membrane protein of Haemophilus ducreyi has homology to PAL. Infect Immun 1996; 64:1950-5. [PMID: 8675292 PMCID: PMC174021 DOI: 10.1128/iai.64.6.1950-1955.1996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Haemophilus ducreyi expresses an 18,000-molecular-weight outer membrane protein that contains a conserved surface-exposed epitope recognized by monoclonal antibody 3B9. Monoclonal antibody 3B9 cross-reacts with proteins of similar molecular weight found in many Haemophilus sp. strains, including P6, a candidate vaccine for Haemophilus influenzae. The gene encoding the 18,000-molecular-weight outer membrane protein was identified by screening a lambdagt11 genomic library with 3B9. The coding sequence of the gene was localized to a 471-bp open reading frame, designated pal (peptidoglycan-associated lipoprotein). Translation of pal predicted a mature polypeptide with a molecular weight of 15,000 that had extensive homology with P6 and Escherichia coli PAL. The predicted signal peptide had features characteristic of a prokaryotic lipoprotein, and processing of PAL was sensitive to globomycin in H. ducreyi. The sequences encoding mature H. ducreyi PAL were subcloned into the vector pRSET B and expressed as a polyhistidine-containing fusion protein that bound 3B9. In Western blot (immunoblot) analysis, serum samples obtained from healthy subjects and patients with chancroid or other genital ulcer diseases contained antibodies to purified PAL. Antibodies that bound to PAL were removed by absorption with a lysate of Haemophilus sp. antigens, suggesting that patients with chancroid do not develop an H. ducreyi-specific antibody response to PAL.
Collapse
Affiliation(s)
- S M Spinola
- Department of Medicine, School of Medicine, Indiana University, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
14
|
Brentjens RJ, Ketterer M, Apicella MA, Spinola SM. Fine tangled pili expressed by Haemophilus ducreyi are a novel class of pili. J Bacteriol 1996; 178:808-16. [PMID: 8550517 PMCID: PMC177729 DOI: 10.1128/jb.178.3.808-816.1996] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Haemophilus ducreyi synthesizes fine, tangled pili composed predominantly of a protein whose apparent molecular weight is 24,000 (24K). A hybridoma, 2D8, produced a monoclonal antibody (MAb) that bound to a 24K protein in H. ducreyi strains isolated from diverse geographic locations. A lambda gt11 H. ducreyi library was screened with MAb 2D8. A 3.5-kb chromosomal insert from one reactive plaque was amplified and ligated into the pCRII vector. The recombinant plasmid, designated pHD24, expressed a 24K protein in Escherichia coli INV alpha F that bound MAb 2D8. The coding sequence of the 24K gene was localized by exonuclease III digestion. The insert contained a 570-bp open reading frame, designated ftpA (fine, tangled pili). Translation of ftpA predicted a polypeptide with a molecular weight of 21.1K. The predicted N-terminal amino acid sequence of the polypeptide encoded by ftpA was identical to the N-terminal amino acid sequence of purified pilin and lacked a cleavable signal sequence. Primer extension analysis of ftpA confirmed the lack of a leader peptide. The predicted amino acid sequence lacked homology to known pilin sequences but shared homology with the sequences of E. coli Dps and Treponema pallidum antigen TpF1 or 4D, proteins which associate to form ordered rings. An isogenic pilin mutant, H. ducreyi 35000ftpA::mTn3(Cm), was constructed by shuttle mutagenesis and did not contain pili when examined by electron microscopy. We conclude that H. ducreyi synthesizes fine, tangled pili that are composed of a unique major subunit, which may be exported by a signal sequence independent mechanism.
Collapse
Affiliation(s)
- R J Brentjens
- Department of Microbiology, State University of New York at Buffalo, School of Medicine 14214, USA
| | | | | | | |
Collapse
|
15
|
Borrelli S, Hegedus O, Shaw DH, Jansson PE, Lindberg AA. The tetrasaccharide L-alpha-D-heptose1-->2-L-alpha-D-heptose1--> 3-L-alpha-D-heptose1-->(3-deoxy-D-manno-octulosonic acid) and phosphate in lipid A define the conserved epitope in Haemophilus lipopolysaccharides recognized by a monoclonal antibody. Infect Immun 1995; 63:3683-92. [PMID: 7543887 PMCID: PMC173510 DOI: 10.1128/iai.63.9.3683-3692.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A murine monoclonal antibody, MAHI 3 (immunoglobulin G2b), that is broadly reactive with Haemophilus influenzae lipopolysaccharides (LPSs) but nonreactive with all enterobacterial LPSs tested was generated by fusing mouse myeloma cells with spleen cells of BALB/c mice immunized with azide-killed H. influenzae RM.7004. MAHI 3 bound to all H. influenzae, all other human Haemophilus spp., all Bordetella pertussis and Bordetella parapertussis, and all Aeromonas spp. tested but not to any Neisseria or Moraxella catarrhalis strains, as determined by enzyme immunoassay, colony dot immunoblotting, and immunoblotting. In an inhibition enzyme immunoassay, MAHI 3 reacted with all 45 H. influenzae LPSs tested but not with the LPS from the rough mutant I69 Rd-/b+, which has only 3-deoxy-D-manno-octulosonic acid (P) [Kdo(P)] and lipid A. The antibody was not inhibited by H. influenzae lipid A or lipid-free polysaccharide isolated after mild acid hydrolysis. Only native LPSs show positive inhibitory activity, indicating that part of lipid A is involved in the binding of MAHI 3. From the results, it is indicated that the structural element recognized by MAHI 3 is Hep alpha 1-->2Hep alpha 1-->3Hep alpha 1-->Kdo together with part of lipid A, including the phosphate.
Collapse
Affiliation(s)
- S Borrelli
- Department of Immunology, Microbiology, Pathology and Infectious Diseases, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
16
|
Lee NG, Sunshine MG, Apicella MA. Molecular cloning and characterization of the nontypeable Haemophilus influenzae 2019 rfaE gene required for lipopolysaccharide biosynthesis. Infect Immun 1995; 63:818-24. [PMID: 7868252 PMCID: PMC173076 DOI: 10.1128/iai.63.3.818-824.1995] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lipooligosaccharide (LOS) of nontypeable Haemophilus influenzae (NTHi) is an important factor in pathogenesis and virulence. In an attempt to elucidate the genes involved in LOS biosynthesis, we have cloned the rfaE gene from NTHi 2019 by complementing a Salmonella typhimurium rfaE mutant strain with an NTHi 2019 plasmid library. The rfaE mutant synthesizes lipopolysaccharide (LPS) lacking heptose, and the rfaE gene is postulated to be involved in ADP-heptose synthesis. Retransformation with the plasmid containing 4 kb of NTHi DNA isolated from a reconstituted mutant into rfaE mutants gave wild-type LPS phenotypes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis confirmed the conversion of the rfaE mutant LPS to a wild-type LPS phenotype. Sequence analysis of a 2.4-kb BglII fragment revealed two open reading frames. One open reading frame encodes the RfaE protein with a molecular weight of 37.6 kDa, which was confirmed by in vitro transcription and translation, and the other encodes a polypeptide highly homologous to the Escherichia coli HtrB protein. These two genes are transcribed from the same promoter region into opposite directions. Primer extension analysis of the rfaE gene revealed a single transcription start site at 37 bp upstream of the predicted translation start site. The upstream promoter region contained a sequence (TA AAAT) homologous to the -10 region of the bacterial sigma 70-dependent promoters at an appropriate distance (7 bp), but not sequence resembling the consensus sequence of the -35 region was found. These studies demonstrate the ability to use complementation of defined LPS defects in members of the family Enterobacteriaceae to identify LOS synthesis genes in NTHi.
Collapse
Affiliation(s)
- N G Lee
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
17
|
Zhou D, Lee NG, Apicella MA. Lipooligosaccharide biosynthesis in Neisseria gonorrhoeae: cloning, identification and characterization of the alpha 1,5 heptosyltransferase I gene (rfaC). Mol Microbiol 1994; 14:609-18. [PMID: 7891550 DOI: 10.1111/j.1365-2958.1994.tb01300.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The identical partial deep-core structure of Hep alpha 1-3Hep alpha 1-5KDO in Salmonella typhimurium LT2 LPS and Neisseria gonorrhoeae LOS enabled us to isolate a DNA fragment from N. gonorrhoeae that was able to complement the alpha 1,5 LOS heptosyltransferase defect in the S. typhimurium rfaC630 (SA1377) mutant. SDS-PAGE analysis confirmed the production of wild-type LPS in the transformant. Subcloning revealed that complementation was due to a 1.2 kb fragment. Sequence analysis revealed a complete open reading frame capable of encoding a 36-37 kDa peptide. In vitro transcription-translation analysis of the 1.2 kb clone confirmed that a 37 kDa protein was encoded by this DNA fragment. The DNA sequence-deduced protein had 36% identity and 58% similarity to S. typhimurium heptosyltransferase I (RfaC). Primer extension analysis indicated that transcription of the cloned gene in N. gonorrhoeae strain 1291 begins 144 bp upstream of the start codon at a G nucleotide. An isogenic mutant of N. gonorrhoeae strain 1291 with an m-Tn3 insertion inside the coding sequence expressed a single truncated LOS with a similar molecular mass to S. typhimurium rfaC LPS. We conclude that the 1.2 kb fragment encodes the alpha 1,5 LOS heptosyltransferase I (RfaC) in N. gonorrhoeae. Our studies also provide further evidence that the third KDO residue in S. typhimurium LPS is added after the core synthesis is completed.
Collapse
Affiliation(s)
- D Zhou
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
18
|
Jarosik GP, Hansen EJ. Identification of a new locus involved in expression of Haemophilus influenzae type b lipooligosaccharide. Infect Immun 1994; 62:4861-7. [PMID: 7523298 PMCID: PMC303199 DOI: 10.1128/iai.62.11.4861-4867.1994] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous studies have shown that changes in the expression of the Haemophilus influenzae type b (Hib) lipooligosaccharide (LOS) epitope reactive with monoclonal antibody (MAb) 5G8 can be correlated with alterations in the virulence of some Hib strains. To identify the locus involved in expression of this particular LOS epitope, a genomic library was constructed in the plasmid shuttle vector pGJB103 from Hib strain DL42, which constitutively expressed LOS reactive with MAb 5G8. This library was used to transform a second Hib strain (DL180) that normally does not express this LOS epitope, and a recombinant clone was identified that bound MAb 5G8. Subcloning of different regions of the Hib DL42 DNA insert in this recombinant plasmid determined that a 1.9-kb EcoRI fragment, designated lex-2, was responsible for transforming Hib strain DL180 to reactivity with MAb 5G8. Nucleotide sequence analysis revealed the presence of two contiguous open reading frames (ORFs) in lex-2, the first of which contained 18 tandem repeats of the nucleotide tetramer GCAA near its 5' end. Sequence analysis of PCR-derived products from MAb 5G8-reactive and -nonreactive Hib DL180 colonies established that 18 GCAA repeats were associated with expression of the LOS epitope that bound MAb 5G8. Mutational analysis determined that a functional ORF 2 was essential for expression of the MAb 5G8-reactive LOS epitope. The nucleotide tetramer GCAA repeat present in ORF 1 was also detected in at least two different chromosomal regions in all Hib strains tested. The availability of the cloned lex-2 locus should facilitate future analysis of the complex regulatory mechanisms involved in expression of LOS epitopes by this pathogen.
Collapse
Affiliation(s)
- G P Jarosik
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048
| | | |
Collapse
|
19
|
Stephens DS, McAllister CF, Zhou D, Lee FK, Apicella MA. Tn916-generated, lipooligosaccharide mutants of Neisseria meningitidis and Neisseria gonorrhoeae. Infect Immun 1994; 62:2947-52. [PMID: 7516313 PMCID: PMC302902 DOI: 10.1128/iai.62.7.2947-2952.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A library of Tn916-generated, tetracycline-resistant (Tc) mutants of the group B Neisseri meningitidis strain NMB was screened by using monoclonal antibodies (MAbs) that recognize structural differences in neisserial lipooligosaccharide (LOS). The LOS of parental strain NMB had a relative molecular mass of 4.5 kDa, reacted with MAbs 3F11 and 6B4 but not with MAb 4C4 or 6E4, and contained a lacto-N-neotetrose unit. Two phenotypically stable mutants, SS3 and R6, altered in LOS, were identified by colony immunoblots, electrophoresis, and Western immunoblots. The LOS of mutant SS3 was 3.4 kDa and reacted with MAbs 4C4 and 6E4 but not MAb 3E11 or 6B4. The LOS of mutant R6 was 3.1 to 3.2 kDa and reacted with MAb 6E4 but not MAb 3F11, 6B4, or 4C4. Thus, the LOSs of the R6 and SS3 mutants were predicted to contain different truncations of the core oligosaccharide. The LOS phenotype of each mutant was linked to Tc(r), as determined by transformation of the parent strain with DNA from the mutant. Southern hybridizations and single-specific-primer PCR revealed in each mutant a single truncated tn916 insertion which had lost genes required for mobilization. Tn916 mutagenesis was used to identify two distinct genetic sites in the meningococcal chromosome involved in biosynthesis of the oligosaccharide chain of LOS and to create genetically defined LOS mutants of N. meningitidis and Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- D S Stephens
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | |
Collapse
|
20
|
Zhou D, Stephens D, Gibson B, Engstrom J, McAllister C, Lee F, Apicella M. Lipooligosaccharide biosynthesis in pathogenic Neisseria. Cloning, identification, and characterization of the phosphoglucomutase gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78105-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Spinola SM, Griffiths GE, Shanks KL, Blake MS. The major outer membrane protein of Haemophilus ducreyi is a member of the OmpA family of proteins. Infect Immun 1993; 61:1346-51. [PMID: 8454337 PMCID: PMC281369 DOI: 10.1128/iai.61.4.1346-1351.1993] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Haemophilus ducreyi contains a major outer membrane protein (MOMP) whose apparent molecular weight is 39,000 to 42,000 for all strains tested. Two monoclonal antibodies (MAbs), designated 9D12 and 2C7, bound to the MOMP for all strains of H. ducreyi tested. As reported previously, MAb 9D12 was H. ducreyi specific (E. J. Hansen and T. A. Loftus, Infect. Immun. 44:196-198, 1984). MAb 2C7 bound to all members of the family Pasteurellaceae tested, suggesting that the MAbs bound to distinct epitopes on the MOMP. The MOMP was purified by extraction of whole cells with Zwittergent and ion-exchange chromatography. A peak eluted from a cation-exchange column contained three bands. All three species bound both MAbs, and the fraction yielded a single N-terminal amino acid sequence, suggesting that the bands represented different conformations of the MOMP. The MOMP was heat modifiable, contained two cysteine residues, and was cationic at pH 8.0, features not usually associated with classical porin proteins. The N-terminal amino acid sequence and total amino acid content of the MOMP were homologous to the OmpA proteins of members of the family Enterobacteriaceae and the OmpA-like protein of Actinobacillus actinomycetemcomitans. An OmpA-specific polyclonal serum bound to the MOMP, and MAb 2C7 bound to Haemophilus influenzae protein 5, an OmpA-like protein, indicating that the MOMP was antigenically related to OmpA. These data indicated that the most abundant protein in the outer membrane of H. ducreyi was not a classical porin and belonged to the OmpA family of proteins.
Collapse
Affiliation(s)
- S M Spinola
- Department of Medicine, School of Medicine, State University of New York, Buffalo 14215
| | | | | | | |
Collapse
|
22
|
Phillips NJ, Apicella MA, Griffiss JM, Gibson BW. Structural studies of the lipooligosaccharides from Haemophilus influenzae type b strain A2. Biochemistry 1993; 32:2003-12. [PMID: 8448159 DOI: 10.1021/bi00059a017] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The outer membrane lipooligosaccharides (LOS) from Haemophilus influenzae type b strain A2 are a heterogeneous mixture of glycolipids containing a conserved Lipid A structure and a variable oligosaccharide moiety. After O-deacylation by treatment with anhydrous hydrazine, the O-deacylated LOS mixture was analyzed by electrospray mass spectrometry and shown to contain 11 components, ranging in M(r) from 2277.8 to 3416.4. The majority of these structures contained a variable number of hexoses, three L-glycero-D-manno-heptoses, and one 3-deoxy-D-manno-octulosonic acid (KDO) residue attached to a diphosphorylated O-deacylated Lipid A moiety. Additional phosphate and phosphoethanolamine (PEA) groups were also present on the oligosaccharide structures. Two minor high molecular weight components were also observed that contained N-acetylhexosamine and sialic acid. Neuraminidase treatment of the O-deacylated LOS mixture resulted in the loss of sialic acid from these latter two species. After mild acid hydrolysis and separation by size-exclusion chromatography, liquid secondary ion mass spectrometry identified six major and four minor oligosaccharides, ranging in M(r) from 1243.4 to 2215.8. These released oligosaccharides contained a common heptose trisaccharide core structure with anhydro-KDO at the reducing terminus, which arises as an artifact of the hydrolysis procedure by beta-elimination of a phosphate group from the 4-position of KDO. Selected oligosaccharide fractions were subjected to composition and methylation analyses and sequenced by tandem mass spectrometry. Taken together, these data defined the major O-deacylated LOS as follows: [formula: see text] Higher molecular weight structures in the mixture contained galactose, N-acetylglucosamine, and sialic acid as additional branch sugars, suggesting that H. influenzae A2 is capable of forming a sialylated lactosamine structure.
Collapse
Affiliation(s)
- N J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- J N Weiser
- Department of Pediatrics, University of Pennsylvania, Philadelphia 19104
| |
Collapse
|
24
|
McLaughlin R, Spinola SM, Apicella MA. Generation of lipooligosaccharide mutants of Haemophilus influenzae type b. J Bacteriol 1992; 174:6455-9. [PMID: 1400198 PMCID: PMC207602 DOI: 10.1128/jb.174.20.6455-6459.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously reported the analysis of recombinant plasmids from Haemophilus influenzae type b (Hib) that lead to modifications of Escherichia coli lipopolysaccharide (LPS) (Y. Abu Kwaik, R. E. McLaughlin, M. A. Apicella, and S. M. Spinola, Mol. Microbiol. 5:2475-2480, 1991). The modified LPS species are recognized by monoclonal antibodies (MAbs) 6E4 and 3F11. MAb 6E4 binds to a stable 2-keto-3-deoxyoctulosonic acid epitope, while MAb 3F11 binds to a Gal beta 1-4GlcNac epitope that phase varies in Hib at a frequency of 2 to 5%. The internal EcoRI fragment containing most of the DNA required for LPS modification in E. coli was used as the target for transposon mutagenesis. Plasmids containing minitransposon m-Tn3(Cm) randomly inserted into the target fragment were transformed into the isogenic Hib strain, and transposon integration into the Hib chromosome was verified by colony hybridization. The lipooligosaccharides of 36 transformants were phenotypically and antigenically characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reactivity with a variety of MAbs that recognize both stable and phase-varying lipooligosaccharide epitopes. The majority of the mutants had altered reactivity with MAb 6E4. With one exception, these mutants retained the ability to express phase-varying epitopes. Analysis of the transformants suggested that the 6E4 epitope was contained on an oligosaccharide chain separate from that of phase-varying epitopes and appeared to be assembled in at least three separate steps.
Collapse
Affiliation(s)
- R McLaughlin
- Department of Medicine and Microbiology, School of Medicine and Biomedical Sciences, State University of New York, Buffalo 14215
| | | | | |
Collapse
|
25
|
Inzana TJ, Gogolewski RP, Corbeil LB. Phenotypic phase variation in Haemophilus somnus lipooligosaccharide during bovine pneumonia and after in vitro passage. Infect Immun 1992; 60:2943-51. [PMID: 1612761 PMCID: PMC257258 DOI: 10.1128/iai.60.7.2943-2951.1992] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A high rate of phenotypic variation in the lipooligosaccharide (LOS) electrophoretic profile of Haemophilus somnus occurred in most isolates obtained at approximately weekly intervals from three calves intrabronchially challenged with a cloned isolate of H. somnus 2336. Daily subculturing for 2 weeks resulted in at least one major alteration in the LOS electrophoretic profiles for strain 2336 and both additional disease isolates examined, but no change occurred in the LOS electrophoretic profiles for any of three commensal isolates examined. None of the LOSs from any of the postchallenge intrabronchial isolates reacted with rabbit antiserum to the challenge strain LOS in immunoblotting, but LOSs from two nasopharyngeal isolates did. Antigenic variation in the extracted LOSs of most of the isolates was supported by the results of an enzyme-linked immunosorbent assay. Preimmune serum from each of the calves did not react with any of the isolates or the challenge strain, whereas sera obtained 35 days after challenge reacted with the challenge strain and zero to five additional isolates and sera obtained 74 days after challenge reacted with two to six additional isolates. Recognition of LOSs from isolates obtained near the end of the 70-day experiment by day-74 sera was related to clearance of the bacteria from the lungs. Isolates demonstrating major electrophoretic changes showed variations in the composition of the oligosaccharide, but not lipid A, moiety of their LOSs. The oligosaccharide of the LOS of each isolate was composed predominantly of glucose but varied substantially in the contents of galactose, arabinose, xylose, mannose, and 3-deoxy-D-manno-octulosonic acid. Therefore, the LOS of H. somnus is capable of undergoing compositional and antigenic variations, which may act as an important virulence mechanism for evading host immune defense mechanisms.
Collapse
Affiliation(s)
- T J Inzana
- Department of Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg 24061
| | | | | |
Collapse
|
26
|
Mintz CS, Chang Hua Zou. Isolation and characterization of a lipopolysaccharide mutant of Legionella pneumophila. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05104.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Phillips NJ, Apicella MA, Griffiss JM, Gibson BW. Structural characterization of the cell surface lipooligosaccharides from a nontypable strain of Haemophilus influenzae. Biochemistry 1992; 31:4515-26. [PMID: 1581306 DOI: 10.1021/bi00133a019] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oligosaccharides released from the lipooligosaccharides (LOS) of Haemophilus influenzae nontypable strain 2019 by mild acid hydrolysis were fractionated by size exclusion chromatography and analyzed by liquid secondary ion mass spectrometry. The major component of the heterogeneous mixture was found to be a hexasaccharide of Mr 1366, which lost two phosphoethanolamine groups upon treatment with 48% aqueous HF. The dephosphorylated hexasaccharide was purified and shown by tandem mass spectrometry, composition analysis, methylation analysis, and two-dimensional nuclear magnetic resonance studies to be Gal beta 1----4Glc beta 1----(Hep alpha 1----2Hep alpha 1----3) 4Hep alpha 1----5anhydro-KDO, where Hep is L-glycero-D-manno-heptose and KDO is 3-deoxy-D-manno-octulosonic acid. An analogous structure containing authentic KDO was generated from LOS that had been HF-treated prior to acetic acid hydrolysis, suggesting that the reducing terminal anhydro-KDO moiety is produced as an artifact of the hydrolysis procedure by beta-elimination of a phosphate substituent from C-4 of KDO. Mass spectral analyses of O-deacylated LOS and free lipid A confirmed that, in addition to the two phosphoethanolamines on the oligosaccharide and two phosphates on the lipid A, another phosphate group exists on the KDO. This KDO does not appear to be further substituted with additional KDO residues in intact H. influenzae 2019 LOS. The terminal disaccharide epitope, Gal beta 1----4Glc beta 1----, of the hexasaccharide is also present on lactosylceramide, a precursor to human blood group antigens. It is postulated that the presence of this structure on H. influenzae LOS may represent a form of host mimicry by the pathogen.
Collapse
Affiliation(s)
- N J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
28
|
Mandrell RE, McLaughlin R, Aba Kwaik Y, Lesse A, Yamasaki R, Gibson B, Spinola SM, Apicella MA. Lipooligosaccharides (LOS) of some Haemophilus species mimic human glycosphingolipids, and some LOS are sialylated. Infect Immun 1992; 60:1322-8. [PMID: 1372291 PMCID: PMC256999 DOI: 10.1128/iai.60.4.1322-1328.1992] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipooligosaccharides (LOS) of strains of Haemophilus ducreyi, Neisseria gonorrhoeae, Neisseria meningitidis, and Neisseria lactamica contain epitopes that are antigenically and structurally similar to carbohydrates present in human glycosphingolipids. LOS from strains of Haemophilus influenzae and H. influenzae biogroup aegyptius were tested for the binding of monoclonal antibodies (MAbs) that bind to human glycosphingolipids possessing Gal beta 1-4GlcNAc (MAb 3F11) and Gal alpha 1-4Gal beta 1-4Glc (MAb anti-Pk). In solid-phase radioimmunoassays, the LOS of 18 of 19 H. influenzae type b (Hib), 8 of 19 nontypeable H. influenzae, and 10 of 20 H. influenzae biogroup aegyptius strains bound MAb anti-Pk. The LOS of 13 of 19 Hib, 10 of 16 nontypeable H. influenzae, and 2 of 18 H. influenzae biogroup aegyptius strains bound MAb 3F11. Neuraminidase treatment of the strains increased the binding of MAb 3F11 by more than twofold in 47% of the H. influenzae strains, suggesting that sialic acid occluded the LOS structure recognized by MAb 3F11. The material released from neuraminidase-treated Hib LOS was confirmed to be sialic acid by high-performance anion-exchange chromatography. A recombinant plasmid containing genes involved in Hib LOS biosynthesis directed the expression (assembly) of the 3F11 epitope in Escherichia coli. These studies demonstrate that H. influenzae and H. influenzae biogroup aegyptius express at least two LOS epitopes that are similar to those present in human glycosphingolipids. Sialic acid was present on the LOS of some H. influenzae strains and prevented the binding of MAb 3F11 to its epitope. The oligosaccharide portion of sialylated LOS may also resemble sialylated oligosaccharides present in human glycosphingolipids (gangliosides).
Collapse
Affiliation(s)
- R E Mandrell
- Centre for Immunochemistry, University of California, San Francisco 94143
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Spinola SM, Griffiths GE, Bogdan J, Menegus MA. Characterization of an 18,000-molecular-weight outer membrane protein of Haemophilus ducreyi that contains a conserved surface-exposed epitope. Infect Immun 1992; 60:385-91. [PMID: 1370430 PMCID: PMC257640 DOI: 10.1128/iai.60.2.385-391.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of antigenically conserved surface components of Haemophilus ducreyi may facilitate the development of reagents to diagnose and prevent chancroid. A hybridoma derived from a mouse immunized with nontypeable Haemophilus influenzae produced a monoclonal antibody (MAb), designated 3B9, that bound to 35 of 35 H. ducreyi strains isolated from diverse geographic regions. The MAb 3B9 bound to a non-heat-modifiable H. ducreyi outer membrane protein (OMP) whose apparent molecular weight was 18,000 (the 18K OMP), and the 3B9 epitope did not phase vary at a rate of greater than 10(-3) in H. ducreyi. In immunoelectron microscopy, the 3B9 epitope was surface exposed, and there was intrastrain and interstrain variability in the amount of 3B9 labelling of whole cells. The MAb 3B9 cross-reacted with many species of the family Pasteurellaceae and bound to the 16.6K peptidoglycan-associated lipoprotein (P6 or PAL) of H. influenzae. Unlike P6, the 18K OMP did not copurify with peptidoglycan. In Western blots (immunoblots), five of seven serum samples obtained from patients with chancroid and four of five serum samples obtained from patients with other genital ulcer diseases at the time of presentation contained antibodies that bound to the 18K OMP. In a competition enzyme-linked immunosorbent assay, four of these serum samples inhibited the binding of 3B9 to H. ducreyi by more than 50%. We conclude that members of Pasteurellaceae expressed a conserved epitope on OMPs that sometimes had different physical characteristics. Patients with chancroid usually have antibodies to the 18K OMP and the 3B9 epitope that may have resulted from infection with H. ducreyi or previous exposure to other Haemophilus or Actinobacillus sp. strains.
Collapse
Affiliation(s)
- S M Spinola
- Department of Medicine, School of Medicine, State University of New York, Buffalo 14215
| | | | | | | |
Collapse
|
30
|
Abu Kwaik Y, McLaughlin RE, Apicella MA, Spinola SM. Analysis of Haemophilus influenzae type b lipooligosaccharide-synthesis genes that assemble or expose a 2-keto-3-deoxyoctulosonic acid epitope. Mol Microbiol 1991; 5:2475-80. [PMID: 1724279 DOI: 10.1111/j.1365-2958.1991.tb02092.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We recently isolated a recombinant phage from a Haemophilus influenzae type b (Hib) library that assembles an oligosaccharide with an apparent molecular weight of 1400 (1.4 K) on a 4.1 K Escherichia coli lipopolysaccharide (LPS) structure, producing a 5.5 K LPS species that contains a KDO (2-keto-deoxyoctulosonic acid) epitope. Subcloning and deletional analysis of the 14 kb Haemophilus insert showed that three overlapping restriction fragments contained within a 7.2 kb Pstl-BamHl fragment sequentially modified an E. coli 4.1 K LPS structure, generating novel species of 4.5 K, 5.1 K and 5.5 K. Only the 5.5 K species contained the KDO epitope. We confirmed the relationship between the cloned genes and Hib lipooligosaccharide (LOS) biosynthesis by constructing a mutant that expressed an altered LOS. Thus, the Hib 7.2 kb Pstl-BamHl restriction fragment contained a cluster of at least three genetic loci whose products acted sequentially in LOS biosynthesis.
Collapse
Affiliation(s)
- Y Abu Kwaik
- Department of Medicine, School of Medicine, State University of New York, Buffalo 14215
| | | | | | | |
Collapse
|
31
|
Maskell DJ, Szabo MJ, Butler PD, Williams AE, Moxon ER. Phase variation of lipopolysaccharide in Haemophilus influenzae. Res Microbiol 1991; 142:719-24. [PMID: 1961982 DOI: 10.1016/0923-2508(91)90086-p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipopolysaccharide (LPS) structures on Haemophilus influenzae, defined by monoclonal antibodies, can show phase variation from generation to generation. Several genetic loci are involved in LPS biosynthesis by H. influenzae. In this paper, we describe three loci which play a role in LPS phase variation: the lic loci; lic1 and lic3 have been sequenced and lic2 has been partially sequenced. Each locus consists of multiple open reading frames (ORF), and each contains a repetitive sequence within the 5' end of the first ORF which may be involved in the phase variability. Genes within lic1 and lic2 are directly involved in the expression of phase-variable epitopes, but the role of genes within lic3 is at a more complex level.
Collapse
Affiliation(s)
- D J Maskell
- Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
32
|
Cope LD, Yogev R, Mertsola J, Latimer JL, Hanson MS, McCracken GH, Hansen EJ. Molecular cloning of a gene involved in lipooligosaccharide biosynthesis and virulence expression by Haemophilus influenzae type B. Mol Microbiol 1991; 5:1113-24. [PMID: 1956289 DOI: 10.1111/j.1365-2958.1991.tb01884.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A wild-type Haemophilus influenzae type b (Hib) genomic DNA library was constructed in the plasmid shuttle vector pGJB103. A virulence-deficient lipooligosaccharide (LOS) mutant of Hib was used as a recipient for genetic transformation to screen this Hib genomic DNA library for genes involved in LOS expression. A recombinant plasmid containing a 7.8 kb PstI fragment of Hib DNA was shown to transform this LOS mutant to reactivity with a monoclonal antibody (mAb) specific for a wild-type LOS epitope. Transformation of two different virulence-deficient LOS mutants with a 4.4 kb BglII fragment of this recombinant plasmid yielded transformants which expressed LOS that bound the wild-type LOS-specific mAb and yielded profiles in sodium dodecyl sulphate/polyacrylamide gradient gel electrophoresis different from those of the original LOS mutants. These transformants with structurally altered LOS molecules also exhibited increased virulence in an animal model for invasive Hib disease. The virulence-transforming ability was further localized to a 1.8 kb BglII-AlwNI fragment of the Hib DNA insert. Nucleotide sequence analysis indicated the presence of a single large open reading frame within this fragment. This open reading frame contained 19 consecutive repeats of the tetramer CAAT near the 5' end. Linker insertion mutagenesis was used to demonstrate directly the involvement of this open reading frame in both LOS biosynthesis and virulence expression by Hib.
Collapse
Affiliation(s)
- L D Cope
- Department of Microbiology, University of Texas, Dallas 75235
| | | | | | | | | | | | | |
Collapse
|
33
|
Maskell DJ, Szabo MJ, Butler PD, Williams AE, Moxon ER. Molecular analysis of a complex locus from Haemophilus influenzae involved in phase-variable lipopolysaccharide biosynthesis. Mol Microbiol 1991; 5:1013-22. [PMID: 1956282 DOI: 10.1111/j.1365-2958.1991.tb01874.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A chromosomal locus, lic3, one of several involved in lipopolysaccharide (LPS) biosynthesis by Haemophilus influenzae, was cloned and its DNA sequence determined. lic3 comprises four closely apposed open reading frames (ORFs). ORF1 includes tandem repeats of the tetramer CAAT and two start codons out of frame with each other are found upstream of the repeats. ORF1 encodes a protein with no known homologues. ORF2 encodes the UDP-galactose-4-epimerase (galE) gene. ORF3 encodes a hydrophobic protein with no known homologues. ORF4 encodes the adenylate kinase (adk) gene. A deletion/insertion mutation lacking the 3' end of ORF1, all of galE, and the 5' end of ORF3 was constructed in the parent Hib strain (RM7004). These mutants had a galE phenotype, as evidenced by galactose sensitivity, altered LPS when grown in the absence of exogenous galactose, and reduced virulence in infant rats.
Collapse
Affiliation(s)
- D J Maskell
- Molecular Infectious Diseases Group, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
34
|
Campagnari AA, Spinola SM, Lesse AJ, Kwaik YA, Mandrell RE, Apicella MA. Lipooligosaccharide epitopes shared among gram-negative non-enteric mucosal pathogens. Microb Pathog 1990; 8:353-62. [PMID: 1699109 DOI: 10.1016/0882-4010(90)90094-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The non-enteric Gram-negative human pathogens, B. catarrhalis, H. ducreyi, H. influenzae, N. gonorrhoeae and N. meningitidis, do not have repeating O-antigens as part of their principle surface glycolipid, the lipooligosaccharide (LOS). Because they have similar LOS structures, we studied the conservation of LOS oligosaccharide epitopes among these organisms. Twenty-one monoclonal antibodies (mAbs) generated by immunizing mice with H. influenzae, N. gonorrhoeae and N. meningitidis were studied for cross reactivity. Five mAbs generated against non-typable H. influenzae were the only strain-specific antibodies. Ten mAbs reacted to LOS epitope(s) common to a genera or species, and six mAbs bound to epitope(s) on the LOS of strains from different genera. Some cross reactive mAbs bound to LOS bands of similar molecular weights, while others bound to bands of varying molecular weights. mAb 3F11, whose epitope mimics a human blood-group antigen, bound to a 4.8 kDa LOS band in N. gonorrhoeae and H. ducreyi, two pathogens that infect genital epithelium. mAb 3D9, whose epitope consists of 2-keto-3-deoxyoctulosonic acid (KDO), reacted with different LOS bands in N. gonorrhoeae, H. influenzae and some R mutants of S. minnesota. A 14 kb restriction fragment containing lipooligosaccharide synthesis genes responsible for the assembly of the 3D9 epitope in H. influenzae hybridized to all H. influenzae strains tested but did not hybridize to gonococcal and S. minnesota strains that expressed this epitope. These studies demonstrate that conserved LOS epitope(s) exist among different species and genera of non-enteric human pathogens and that different genetic mechanisms may have evolved in these pathogens to assemble some of these conserved epitopes.
Collapse
Affiliation(s)
- A A Campagnari
- Department of Medicine, State University of New York, Buffalo 14215
| | | | | | | | | | | |
Collapse
|