1
|
Shepherd DC, Kaplan M, Vankadari N, Kim KW, Larson CL, Dutka P, Beare PA, Krzymowski E, Heinzen RA, Jensen GJ, Ghosal D. Morphological remodeling of Coxiella burnetii during its biphasic developmental cycle revealed by cryo-electron tomography. iScience 2023; 26:107210. [PMID: 37485371 PMCID: PMC10362272 DOI: 10.1016/j.isci.2023.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Coxiella burnetii is an obligate zoonotic bacterium that targets macrophages causing a disease called Q fever. It has a biphasic developmental life cycle where the extracellular and metabolically inactive small cell variant (SCV) transforms inside the host into the vegetative large cell variant (LCV). However, details about the morphological and structural changes of this transition are still lacking. Here, we used cryo-electron tomography to image both SCV and LCV variants grown either under axenic conditions or purified directly from host cells. We show that SCVs are characterized by equidistant stacks of inner membrane that presumably facilitate the transition to LCV, a transition coupled with the expression of the Dot/Icm type IVB secretion system (T4BSS). A class of T4BSS particles were associated with extracellular densities possibly involved in host infection. Also, SCVs contained spherical multilayered membrane structures of different sizes and locations suggesting no connection to sporulation as once assumed.
Collapse
Affiliation(s)
- Doulin C. Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Ki Woo Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- School of Ecology and Environmental System, Kyungpook National University, Sangju, Korea
| | - Charles L. Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division od Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Edward Krzymowski
- Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604, USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Nock AM, Aistleitner K, Clark TR, Sturdevant D, Ricklefs S, Virtaneva K, Zhang Y, Gulzar N, Redekar N, Roy A, Hackstadt T. Identification of an autotransporter peptidase of Rickettsia rickettsii responsible for maturation of surface exposed autotransporters. PLoS Pathog 2023; 19:e1011527. [PMID: 37523399 PMCID: PMC10414592 DOI: 10.1371/journal.ppat.1011527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/10/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
Members of the spotted fever group rickettsia express four large, surface-exposed autotransporters, at least one of which is a known virulence determinant. Autotransporter translocation to the bacterial outer surface, also known as type V secretion, involves formation of a β-barrel autotransporter domain in the periplasm that inserts into the outer membrane to form a pore through which the N-terminal passenger domain is passed and exposed on the outer surface. Two major surface antigens of Rickettsia rickettsii, are known to be surface exposed and the passenger domain cleaved from the autotransporter domain. A highly passaged strain of R. rickettsii, Iowa, fails to cleave these autotransporters and is avirulent. We have identified a putative peptidase, truncated in the Iowa strain, that when reconstituted into Iowa restores appropriate processing of the autotransporters as well as restoring a modest degree of virulence.
Collapse
Affiliation(s)
- Adam M. Nock
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Karin Aistleitner
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Tina R. Clark
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Dan Sturdevant
- Genomics Research Section, Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Stacy Ricklefs
- Genomics Research Section, Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Genomics Research Section, Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Yixiang Zhang
- Protein Chemistry Unit, Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Naila Gulzar
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Neelam Redekar
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Amitiva Roy
- Bioinformatics and Computational Biology Branch, Office of Cyber Infrastructure and Computational Biology, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH; Hamilton, Montana, United States of America
| |
Collapse
|
3
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
4
|
Regulator of Actin-Based Motility (RoaM) Downregulates Actin Tail Formation by Rickettsia rickettsii and Is Negatively Selected in Mammalian Cell Culture. mBio 2022; 13:e0035322. [PMID: 35285700 PMCID: PMC9040884 DOI: 10.1128/mbio.00353-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The etiological agent of Rocky Mountain spotted fever, Rickettsia rickettsii, is an obligately intracellular pathogen that induces the polymerization of actin filaments to propel the bacterium through the cytoplasm and spread to new host cells. Cell-to-cell spread via actin-based motility is considered a key virulence determinant for spotted fever group rickettsiae, as interruption of sca2, the gene directly responsible for actin polymerization, has been shown to reduce fever in guinea pigs. However, little is known about how, or if, motility is regulated by the bacterium itself. We isolated a hyperspreading variant of R. rickettsii Sheila Smith that produces actin tails at an increased rate. A1G_06520 (roaM [regulator of actin-based motility]) was identified as a negative regulator of actin tail formation. Disruption of RoaM significantly increased the number of actin tails compared to the wild-type strain but did not increase virulence in guinea pigs; however, overexpression of RoaM dramatically decreased the presence of actin tails and moderated fever response. Localization experiments suggest that RoaM is not secreted, while reverse transcription-quantitative PCR (RT-qPCR) data show that various levels of RoaM do not significantly affect the expression of the known rickettsial actin-regulating proteins sca2, sca4, and rickA. Taken together, the data suggest a previously unrecognized level of regulation of actin-based motility in spotted fever group rickettsiae. Although this gene is intact in many isolates of spotted fever, transitional, and ancestral group Rickettsia spp., it is often ablated in highly passaged laboratory strains. Serial passage experiments revealed strong negative selection of roaM in Vero 76 cells.
Collapse
|
5
|
Jorgenson LM, Olson-Wood MG, Rucks EA. Shifting proteomes: limitations in using the BioID proximity labeling system to study SNARE protein trafficking during infection with intracellular pathogens. Pathog Dis 2021; 79:ftab039. [PMID: 34323972 PMCID: PMC8379010 DOI: 10.1093/femspd/ftab039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/25/2021] [Indexed: 11/12/2022] Open
Abstract
We hypothesize that intracellular trafficking pathways are altered in chlamydial infected cells to maximize the ability of Chlamydia to scavenge nutrients while not overtly stressing the host cell. Previous data demonstrated the importance of two eukaryotic SNARE proteins, VAMP4 and syntaxin 10 (Stx10), in chlamydial growth and development. Although, the mechanism for these effects is still unknown. To interrogate whether chlamydial infection altered these proteins' networks, we created BirA*-VAMP4 and BirA*-Stx10 fusion constructs to use the BioID proximity labeling system. While we identified a novel eukaryotic protein-protein interaction between Stx10 and VAPB, we also identified caveats in using the BioID system to study the impact of infection by an obligate intracellular pathogen on SNARE protein networks. The addition of the BirA* altered the localization of VAMP4 and Stx10 during infection with Chlamydia trachomatis serovars L2 and D and Coxiella burnetii Nine Mile Phase II. We also discovered that BirA* traffics to and biotinylates Coxiella-containing vacuoles and, in general, has a propensity for labeling membrane or membrane-associated proteins. While the BioID system identified a novel association for Stx10, it is not a reliable methodology to examine intracellular trafficking pathway dynamics during infection with intracellular pathogens.
Collapse
Affiliation(s)
- Lisa M Jorgenson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Macy G Olson-Wood
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Elizabeth A Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| |
Collapse
|
6
|
Comparative Analysis of Infection by Rickettsia rickettsii Sheila Smith and Taiaçu Strains in a Murine Model. Pathogens 2020; 9:pathogens9090744. [PMID: 32927666 PMCID: PMC7557639 DOI: 10.3390/pathogens9090744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022] Open
Abstract
Rocky Mountain spotted fever (RMSF) is a life-threatening tick-borne disease caused by Rickettsia rickettsii, which is widely distributed throughout the Americas. Over 4000 cases of RMSF are recorded annually in the United States, while only around 100 cases are reported in Brazil. Conversely, while case fatality rates in the United States oscillate around 5%, in Brazil they can surpass 70%, suggesting that differences in tick vectoring capacity, population sensitivity, and/or variability in virulence of the rickettsial strains may exist. In this study, we compared the susceptibility of C3H/HeN mice to two highly virulent strains of R. rickettsii, one from the United States (Sheila Smith) and the other from Brazil (Taiaçu). Animals inoculated with the Taiaçu strain succumbed to infection earlier and exhibited severe histological lesions in both liver and spleen sooner than mice infected with the Sheila Smith strain. These differences in survival and signs of the disease are not related to a greater proliferation of the Taiaçu strain, as there were no significant differences in the rickettsial load in mice tissues inoculated with either strain. The present study is the first step to experimentally assess differences in fatality rates of RMSF in two different regions of the American continent.
Collapse
|
7
|
Narra HP, Sahni A, Walker DH, Sahni SK. Recent research milestones in the pathogenesis of human rickettsioses and opportunities ahead. Future Microbiol 2020; 15:753-765. [PMID: 32691620 PMCID: PMC7787141 DOI: 10.2217/fmb-2019-0266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Infections caused by pathogenic Rickettsia species continue to scourge human health across the globe. From the point of entry at the site of transmission by arthropod vectors, hematogenous dissemination of rickettsiae occurs to diverse host tissues leading to 'rickettsial vasculitis' as the salient feature of pathogenesis. This perspective article accentuates recent breakthrough developments in the context of host-pathogen-vector interactions during rickettsial infections. The subtopics include potential exploitation of circulating macrophages for spread, identification of new entry mechanisms and regulators of actin-based motility, appreciation of metabolites acquired from and effectors delivered into the host, importance of the toxin-antitoxin module in host-cell interactions, effects of the vector microbiome on rickettsial transmission, and niche-specific riboregulation and adaptation. Further research on these aspects will advance our understanding of the biology of rickettsiae as intracellular pathogens and should enable design and development of new approaches to counter rickettsioses in humans and other hosts.
Collapse
Affiliation(s)
- Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence. Nat Microbiol 2019; 4:2538-2551. [PMID: 31611642 PMCID: PMC6988571 DOI: 10.1038/s41564-019-0583-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/10/2019] [Indexed: 01/05/2023]
Abstract
Rickettsia are obligate intracellular bacteria that evade antimicrobial autophagy in the host cell cytosol by unknown mechanisms. Other cytosolic pathogens block different steps of autophagy targeting, including the initial step of polyubiquitin-coat formation. One mechanism of evasion is to mobilize actin to the bacterial surface. Here, we show that actin mobilization is insufficient to block autophagy recognition of the pathogen Rickettsia parkeri. Instead, R. parkeri employs outer membrane protein B (OmpB) to block ubiquitylation of the bacterial surface proteins, including OmpA, and subsequent recognition by autophagy receptors. OmpB is also required for the formation of a capsule-like layer. Although OmpB is dispensable for bacterial growth in endothelial cells, it is essential for R. parkeri to block autophagy in macrophages and to colonize mice because of its ability to promote autophagy evasion in immune cells. Our results indicate that OmpB acts as a protective shield to obstruct autophagy recognition, thereby revealing a distinctive bacterial mechanism to evade antimicrobial autophagy.
Collapse
|
9
|
Sahni A, Fang R, Sahni SK, Walker DH. Pathogenesis of Rickettsial Diseases: Pathogenic and Immune Mechanisms of an Endotheliotropic Infection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:127-152. [PMID: 30148688 DOI: 10.1146/annurev-pathmechdis-012418-012800] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obligately intracytosolic rickettsiae that cycle between arthropod and vertebrate hosts cause human diseases with a spectrum of severity, primarily by targeting microvascular endothelial cells, resulting in endothelial dysfunction. Endothelial cells and mononuclear phagocytes have important roles in the intracellular killing of rickettsiae upon activation by the effector molecules of innate and adaptive immunity. In overwhelming infection, immunosuppressive effects contribute to the severity of illness. Rickettsia-host cell interactions involve host cell receptors for rickettsial ligands that mediate cell adhesion and, in some instances, trigger induced phagocytosis. Rickettsiae interact with host cell actin to effect both cellular entry and intracellular actin-based mobility. The interaction of rickettsiae with the host cell also involves rickettsial evasion of host defense mechanisms and exploitation of the intracellular environment. Signal transduction events exemplify these effects. An intriguing frontier is the array of rickettsial noncoding RNA molecules and their potential effects on the pathogenesis and transmission of rickettsial diseases.
Collapse
Affiliation(s)
- Abha Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Rong Fang
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Sanjeev K Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - David H Walker
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| |
Collapse
|
10
|
The Rickettsial Ankyrin Repeat Protein 2 Is a Type IV Secreted Effector That Associates with the Endoplasmic Reticulum. mBio 2018; 9:mBio.00975-18. [PMID: 29946049 PMCID: PMC6020290 DOI: 10.1128/mbio.00975-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Strains of Rickettsia rickettsii, the tick-borne agent of Rocky Mountain spotted fever, vary considerably in virulence. Genomic comparisons of R. rickettsii strains have identified a relatively small number of genes divergent in an avirulent strain. Among these is one annotated as Rickettsia ankyrin repeat protein 2 (RARP-2). Homologs of RARP-2 are present in all strains of R. rickettsii, but the protein in the avirulent strain Iowa contains a large internal deletion relative to the virulent Sheila Smith strain. RARP-2 is secreted in a type IV secretion system-dependent manner and exposed to the host cell cytosol. RARP-2 of Sheila Smith colocalizes with multilamellar membranous structures bearing markers of the endoplasmic reticulum (ER), whereas the Iowa protein shows no colocalization with host cell organelles and evidence of proteolytic degradation is detected. Overexpression of Sheila Smith RARP-2 in R. rickettsii Iowa converts this avirulent strain’s typically nonlytic or opaque plaque type to a lytic plaque phenotype similar to that of the virulent Sheila Smith strain. Mutation of a predicted proteolytic active site of Sheila Smith RARP-2 abolished the lytic plaque phenotype but did not eliminate association with host membrane. RARP-2 is thus a type IV secreted effector and released from the rickettsiae into the host cytosol to modulate host processes during infection. Overexpression of Sheila Smith RARP-2 did not, however, restore the virulence of the Iowa strain in a guinea pig model, likely due to the multifactorial nature of rickettsial virulence. Members of the genus Rickettsia are obligate intracellular bacteria that exhibit a range of virulence from harmless endosymbionts of arthropods to the etiologic agents of severe disease. Despite the growing number of available genomes, little is known regarding virulence determinants of rickettsiae. Here, we have characterized an ankyrin repeat-containing protein, RARP-2, which differs between a highly virulent and an avirulent strain of R. rickettsii, the agent of Rocky Mountain spotted fever. RARP-2 is secreted by a type IV secretion system into the cytosol of the host cell, where it interacts with and manipulates the structure of the endoplasmic reticulum. RARP-2 from the avirulent strain is truncated by the loss of seven of 10 ankyrin repeat units but, although secreted, fails to alter ER structure. Recognition of those rickettsial factors associated with virulence will facilitate understanding of regional and strain-specific variation in severity of disease.
Collapse
|
11
|
Speck S, Kern T, Aistleitner K, Dilcher M, Dobler G, Essbauer S. In vitro studies of Rickettsia-host cell interactions: Confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines. PLoS Negl Trop Dis 2018; 12:e0006151. [PMID: 29432420 PMCID: PMC5825168 DOI: 10.1371/journal.pntd.0006151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/23/2018] [Accepted: 12/04/2017] [Indexed: 11/19/2022] Open
Abstract
Rickettsia (R.) helvetica is the most prevalent rickettsia found in Ixodes ricinus ticks in Germany. Several studies reported antibodies against R. helvetica up to 12.5% in humans investigated, however, fulminant clinical cases are rare indicating a rather low pathogenicity compared to other rickettsiae. We investigated growth characteristics of R. helvetica isolate AS819 in two different eukaryotic cell lines with focus on ultra-structural changes of host cells during infection determined by confocal laser scanning microscopy. Further investigations included partially sequencing of rickA, sca4 and sca2 genes, which have been reported to encode proteins involved in cell-to-cell spread and virulence in some rickettsiae. R. helvetica grew constantly but slowly in both cell lines used. Confocal laser scanning microscopy revealed that the dissemination of R. helvetica AS819 in both cell lines was rather mediated by cell break-down and bacterial release than cell-to-cell spread. The cytoskeleton of both investigated eukaryotic cell lines was not altered. R. helvetica possesses rickA, but its expression is not sufficient to promote actin-based motility as demonstrated by confocal laser scanning microscopy. Hypothetical Sca2 and Sca4 proteins were deduced from nucleotide gene sequences but the predicted amino acid sequences were disrupted or truncated compared to other rickettsiae most likely resulting in non-functional proteins. Taken together, these results might give a first hint to the underlying causes of the reduced virulence and pathogenicity of R. helvetica.
Collapse
Affiliation(s)
- Stephanie Speck
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
| | - Tanja Kern
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
| | - Karin Aistleitner
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
| | - Meik Dilcher
- University Medical Center Göttingen, Department of Virology, Göttingen, Lower Saxony, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
- * E-mail:
| |
Collapse
|
12
|
Akter A, Ooka T, Gotoh Y, Yamamoto S, Fujita H, Terasoma F, Kida K, Taira M, Nakadouzono F, Gokuden M, Hirano M, Miyashiro M, Inari K, Shimazu Y, Tabara K, Toyoda A, Yoshimura D, Itoh T, Kitano T, Sato MP, Katsura K, Mondal SI, Ogura Y, Ando S, Hayashi T. Extremely Low Genomic Diversity of Rickettsia japonica Distributed in Japan. Genome Biol Evol 2017; 9:124-133. [PMID: 28057731 PMCID: PMC5381555 DOI: 10.1093/gbe/evw304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 12/25/2022] Open
Abstract
Rickettsiae are obligate intracellular bacteria that have small genomes as a result of reductive evolution. Many Rickettsia species of the spotted fever group (SFG) cause tick-borne diseases known as “spotted fevers”. The life cycle of SFG rickettsiae is closely associated with that of the tick, which is generally thought to act as a bacterial vector and reservoir that maintains the bacterium through transstadial and transovarial transmission. Each SFG member is thought to have adapted to a specific tick species, thus restricting the bacterial distribution to a relatively limited geographic region. These unique features of SFG rickettsiae allow investigation of how the genomes of such biologically and ecologically specialized bacteria evolve after genome reduction and the types of population structures that are generated. Here, we performed a nationwide, high-resolution phylogenetic analysis of Rickettsia japonica, an etiological agent of Japanese spotted fever that is distributed in Japan and Korea. The comparison of complete or nearly complete sequences obtained from 31 R. japonica strains isolated from various sources in Japan over the past 30 years demonstrated an extremely low level of genomic diversity. In particular, only 34 single nucleotide polymorphisms were identified among the 27 strains of the major lineage containing all clinical isolates and tick isolates from the three tick species. Our data provide novel insights into the biology and genome evolution of R. japonica, including the possibilities of recent clonal expansion and a long generation time in nature due to the long dormant phase associated with tick life cycles.
Collapse
Affiliation(s)
- Arzuba Akter
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seigo Yamamoto
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Hiromi Fujita
- Mahara Institute of Medical Acarology, Tokushima, Japan
| | - Fumio Terasoma
- Wakayama Prefectural Research Center of Environment and Public Health, Wakayama, Japan
| | - Kouji Kida
- Okayama Prefectural Institute for Environmental Science and Public Health, Okayama, Japan
| | | | - Fumiko Nakadouzono
- Kagoshima Prefectural Institute for Environmental Research and Public Health, Kagoshima, Japan
| | - Mutsuyo Gokuden
- Kagoshima Prefectural Institute for Environmental Research and Public Health, Kagoshima, Japan
| | - Manabu Hirano
- Seihi Public Health Center of Nagasaki Prefecture, Nagasaki, Japan
| | - Mamoru Miyashiro
- Fukuoka City Institute for Health and Environment, Fukuoka, Japan
| | - Kouichi Inari
- Mahara Institute of Medical Acarology, Tokushima, Japan
| | - Yukie Shimazu
- Hiroshima Prefectural Technology Research Institute, Public Health and Environment Center, Hiroshima, Japan
| | - Kenji Tabara
- Department of Health and Welfare, Shimane Prefectural Government, Shimane, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Dai Yoshimura
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tomokazu Kitano
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mitsuhiko P Sato
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Katsura
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Shakhinur Islam Mondal
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuji Ando
- Department of Virology-1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Wang P, Xiong X, Jiao J, Yang X, Jiang Y, Wen B, Gong W. Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine 2017; 35:7204-7212. [PMID: 29032899 DOI: 10.1016/j.vaccine.2017.09.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/01/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
Rickettsia rickettsii is the causative pathogen of Rocky Mountain spotted fever (RMSF). Adr2, YbgF and OmpB are protective antigens of R. rickettsii. In this study, 90 candidate peptides were selected from these antigens based on their high-affinity binding capacity for the MHC class II molecule H2 I-A or H2 I-E using bioinformatic methods. Six peptides were determined using ELISPOT assay to be immunodominant based on the IFN-γ recall responses of CD4+ T cells from mice immunized with R. rickettsii. Six nucleotide sequences encoding the immunodominant peptides were linked in series and inserted into a plasmid for expression in Escherichia coli cells, resulting in a new, recombinant polypeptide termed GWP. After immunization and challenge, the rickettsial load or histopathological lesions in the organs of mice immunized with GWP or pooled peptides was significantly lower than that in organs of mice immunized with PBS or the individual peptide OmpB399. An in vitro neutralization test revealed that sera from mice immunized with GWP, OmpB399, or pooled peptides reduced R. rickettsii adherence to, and invasion of, vascular endothelial cells. Furthermore, significantly higher levels of IgG, IgG1, or IgG2a were detected in sera from mice immunized with GWP or pooled peptides, and significantly higher levels of IFN-γ or TNF-α secreted by CD4+ T cells from R. rickettsii-infected mice were detected after immunization with GWP. Altogether, our results indicated that polypeptides, especially GWP, could induce a Th1-type immune response against R. rickettsii infection, which might contribute to the rational design of peptide-based vaccines for RMSF.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Xiaomei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China; Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, 17# Hei-Shan-Hu Road, Haidian, Beijing 100091, China.
| |
Collapse
|
14
|
Proteolytic Cleavage of the Immunodominant Outer Membrane Protein rOmpA in Rickettsia rickettsii. J Bacteriol 2017; 199:JB.00826-16. [PMID: 28031280 DOI: 10.1128/jb.00826-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 01/03/2023] Open
Abstract
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, contains two immunodominant proteins, rOmpA and rOmpB, in the outer membrane. Both rOmpA and rOmpB are conserved throughout spotted fever group rickettsiae as members of a family of autotransporter proteins. Previously, it was demonstrated that rOmpB is proteolytically processed, with the cleavage site residing near the autotransporter domain at the carboxy-terminal end of the protein, cleaving the 168-kDa precursor into apparent 120-kDa and 32-kDa fragments. The 120- and 32-kDa fragments remain noncovalently associated on the surface of the bacterium, with implications that the 32-kDa fragment functions as the membrane anchor domain. Here we present evidence for a similar posttranslational processing of rOmpA. rOmpA is expressed as a predicted 224-kDa precursor yet is observed on SDS-PAGE as a 190-kDa protein. A small rOmpA fragment of ∼32 kDa was discovered during surface proteome analysis and identified as the carboxy-terminal end of the protein. A rabbit polyclonal antibody was generated to the autotransporter region of rOmpA and confirmed a 32-kDa fragment corresponding to the calculated mass of a proteolytically cleaved rOmpA autotransporter region. N-terminal amino acid sequencing revealed a cleavage site on the carboxy-terminal side of Ser-1958 in rOmpA. An avirulent strain of R. rickettsii Iowa deficient in rOmpB processing was also defective in the processing of rOmpA. The similarities of the cleavage sites and the failure of R. rickettsii Iowa to process either rOmpA or rOmpB suggest that a single enzyme may be responsible for both processing events.IMPORTANCE Members of the spotted fever group of rickettsiae, including R. rickettsii, the etiologic agent of Rocky Mountain spotted fever, express at least four autotransporter proteins that are protective antigens or putative virulence determinants. One member of this class of proteins, rOmpB, is proteolytically processed to a passenger domain and an autotransporter domain that remain associated on the rickettsial outer membrane. The protease responsible for this posttranslation processing remains unknown. Here we show that another autotransporter, rOmpA, is similarly processed by R. rickettsii Similarities in sequence at the cleavage site and predicted secondary protein structure suggest that all four R. rickettsii autotransporters may be processed by the same outer membrane protease.
Collapse
|
15
|
Immunoproteomic profiling of Rickettsia parkeri and Rickettsia amblyommii. Ticks Tick Borne Dis 2015; 6:829-35. [PMID: 26234571 DOI: 10.1016/j.ttbdis.2015.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/22/2022]
Abstract
Rickettsia parkeri is an Amblyomma-associated, spotted fever group Rickettsia species that causes an eschar-associated, febrile illness in multiple countries throughout the Western Hemisphere. Many other rickettsial species of known or uncertain pathogenicity have been detected in Amblyomma spp. ticks in the Americas, including Rickettsia amblyommii, "Candidatus Rickettsia andeanae" and Rickettsia rickettsii. In this study, we utilized an immunoproteomic approach to compare antigenic profiles of low-passage isolates of R. parkeri and R. amblyommii with serum specimens from patients with PCR- and culture-confirmed infections with R. parkeri. Five immunoreactive proteins of R. amblyommii and nine immunoreactive proteins of R. parkeri were identified by matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry. Four of these, including the outer membrane protein (Omp) A, OmpB, translation initiation factor IF-2, and cell division protein FtsZ, were antigens common to both rickettsiae. Serum specimens from patients with R. parkeri rickettsiosis reacted specifically with cysteinyl-tRNA synthetase, DNA-directed RNA polymerase subunit alpha, putative sigma (54) modulation protein, chaperonin GroEL, and elongation factor Tu of R. parkeri which have been reported as virulence factors in other bacterial species. Unique antigens identified in this study may be useful for further development of the better serological assays for diagnosing infection caused by R. parkeri.
Collapse
|
16
|
Clark TR, Noriea NF, Bublitz DC, Ellison DW, Martens C, Lutter EI, Hackstadt T. Comparative genome sequencing of Rickettsia rickettsii strains that differ in virulence. Infect Immun 2015; 83:1568-76. [PMID: 25644009 PMCID: PMC4363411 DOI: 10.1128/iai.03140-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/26/2015] [Indexed: 01/07/2023] Open
Abstract
Rickettsia rickettsii is an obligate intracellular pathogen that is the causative agent of Rocky Mountain spotted fever. Strains of R. rickettsii differ dramatically in virulence. In a guinea pig model of infection, the severity of disease as assessed by fever response varies from the most virulent, Sheila Smith, to Iowa, which causes no fever. To identify potential determinants of virulence in R. rickettsii, the genomes of two additional strains were sequenced for comparison to known sequences (comparative genome sequencing [CGS]). R. rickettsii Morgan and R strains were compared to the avirulent R. rickettsii Iowa and virulent R. rickettsii Sheila Smith strains. The Montana strains Sheila Smith and R were found to be highly similar while the eastern strains Iowa and Morgan were most similar to each other. A major surface antigen, rickettsial outer membrane protein A (rOmpA), is severely truncated in the Iowa strain. The region of ompA containing 13 tandem repeats was sequenced, revealing only seven shared SNPs (four nonsynonymous) for R and Morgan strains compared to Sheila Smith, with an additional 17 SNPs identified in Morgan. Another major surface antigen and autotransporter, rOmpB, exhibits a defect in processing in the Iowa strain such that the beta fragment is not cleaved. Sequence analysis of ompB reveals identical sequences between Iowa and Morgan strains and between the R and Sheila Smith strains. The number of SNPs and insertions/deletions between sequences of the two Montana strains and the two eastern strains is low, thus narrowing the field of possible virulence factors.
Collapse
Affiliation(s)
- Tina R Clark
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Nicholas F Noriea
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - DeAnna C Bublitz
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Damon W Ellison
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Craig Martens
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Erika I Lutter
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
17
|
Targeted knockout of the Rickettsia rickettsii OmpA surface antigen does not diminish virulence in a mammalian model system. mBio 2015; 6:mBio.00323-15. [PMID: 25827414 PMCID: PMC4453529 DOI: 10.1128/mbio.00323-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Strains of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), differ dramatically in virulence despite >99% genetic homology. Spotted fever group (SFG) rickettsiae produce two immunodominant outer membrane proteins, rickettsial OmpA (rOmpA) and rOmpB, which are conserved throughout the SFG and thought to be fundamental to pathogenesis. rOmpA is present in all virulent strains of R. rickettsii but is not produced in the only documented avirulent strain, Iowa, due to a premature stop codon. Here we report the creation of an isogenic ompA mutant in the highly virulent strain Sheila Smith by insertion of intronic RNA to create a premature stop codon 312 bp downstream of the 6,747-bp open reading frame initiation site (int312). Targeted insertion was accomplished using an LtrA group II intron retrohoming system. Growth and entry rates of Sheila Smith ompA::int312 in Vero cells remained comparable to those of the wild type. Virulence was assessed in a guinea pig model by challenge with 100 PFU of either ompA::int312 Sheila Smith or the wild type, but no significant difference in either fever peak (40.5°C) or duration (8 days) were shown between the wild type and the knockout. The ability to disrupt genes in a site-specific manner using an LtrA group II intron system provides an important new tool for evaluation of potential virulence determinants in rickettsial disease research. R. rickettsii rOmpA is an immunodominant outer membrane autotransporter conserved in the spotted fever group. Previous studies and genomic comparisons suggest that rOmpA is involved in adhesion and may be critical for virulence. Little information is available for rickettsial virulence factors in an isogenic background, as limited systems for targeted gene disruption are currently available. Here we describe the creation of an rOmpA knockout by insertion of a premature stop codon into the 5′ end of the open reading frame using a group II intron system. An isogenic rOmpA knockout mutation in the highly virulent Sheila Smith strain did not cause attenuation in a guinea pig model of infection, and no altered phenotype was observed in cell culture. We conclude that rOmpA is not critical for virulence in a guinea pig model but may play a role in survival or transmission from the tick vector.
Collapse
|
18
|
Pelc RS, McClure JC, Kaur SJ, Sears KT, Rahman MS, Ceraul SM. Disrupting protein expression with Peptide Nucleic Acids reduces infection by obligate intracellular Rickettsia. PLoS One 2015; 10:e0119283. [PMID: 25781160 PMCID: PMC4363562 DOI: 10.1371/journal.pone.0119283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/16/2015] [Indexed: 01/22/2023] Open
Abstract
Peptide Nucleic Acids (PNAs) are single-stranded synthetic nucleic acids with a pseudopeptide backbone in lieu of the phosphodiester linked sugar and phosphate found in traditional oligos. PNA designed complementary to the bacterial Shine-Dalgarno or start codon regions of mRNA disrupts translation resulting in the transient reduction in protein expression. This study examines the use of PNA technology to interrupt protein expression in obligate intracellular Rickettsia sp. Their historically intractable genetic system limits characterization of protein function. We designed PNA targeting mRNA for rOmpB from Rickettsia typhi and rickA from Rickettsia montanensis, ubiquitous factors important for infection. Using an in vitro translation system and competitive binding assays, we determined that our PNAs bind target regions. Electroporation of R. typhi and R. montanensis with PNA specific to rOmpB and rickA, respectively, reduced the bacteria’s ability to infect host cells. These studies open the possibility of using PNA to suppress protein synthesis in obligate intracellular bacteria.
Collapse
Affiliation(s)
- Rebecca S Pelc
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer C McClure
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shane M Ceraul
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Cruz R, Huesgen P, Riley SP, Wlodawer A, Faro C, Overall CM, Martinez JJ, Simões I. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes. PLoS Pathog 2014; 10:e1004324. [PMID: 25144529 PMCID: PMC4140852 DOI: 10.1371/journal.ppat.1004324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii) is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a novel bona fide member of the retropepsin family of aspartic proteases, APRc emerges as an intriguing target for therapeutic intervention against fatal rickettsioses. Several rickettsiae are pathogenic to humans by causing severe infections, including epidemic typhus (Rickettsia prowazekii), Rocky Mountain spotted fever (Rickettsia rickettsii), and Mediterranean spotted fever (Rickettsia conorii). Progress in correlating rickettsial genes and gene functions has been greatly hampered by the intrinsic difficulty in working with these obligate intracellular bacteria, despite the increasing insights into the mechanisms of pathogenesis of and the immune response to rickettsioses. Therefore, comparison of the multiple available genomes of Rickettsia is proving to be the most practical method to identify new factors that may play a role in pathogenicity. Here, we identified and characterized a novel retropepsin-like enzyme, APRc, that is expressed by at least two pathogenic rickettsial species, R. conorii and R. rickettsii. We have also established that APRc acts to process two major surface antigen/virulence determinants (OmpB/Sca5, OmpA/Sca0) in vitro and we suggest that this processing event is important for protein function. We demonstrate that APRc is specifically inhibited by drugs clinically used to treat HIV infections, providing the exciting possibility of targeting this enzyme for therapeutic intervention. With this work, we demonstrate that retropepsin-type aspartic proteases are indeed present in prokaryotes, suggesting that these enzymes may represent an ancestral form of these proteases.
Collapse
Affiliation(s)
- Rui Cruz
- The Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
- Biocant, Biotechnology Innovation Center, Cantanhede, Portugal
| | - Pitter Huesgen
- Centre for Blood Research and Department of Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean P. Riley
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Carlos Faro
- The Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
- Biocant, Biotechnology Innovation Center, Cantanhede, Portugal
| | - Christopher M. Overall
- Centre for Blood Research and Department of Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juan J. Martinez
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail: (JJM); (IS)
| | - Isaura Simões
- The Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
- Biocant, Biotechnology Innovation Center, Cantanhede, Portugal
- * E-mail: (JJM); (IS)
| |
Collapse
|
21
|
Surface protein Adr2 of Rickettsia rickettsii induced protective immunity against Rocky Mountain spotted fever in C3H/HeN mice. Vaccine 2014; 32:2027-33. [PMID: 24582636 DOI: 10.1016/j.vaccine.2014.02.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rickettsia rickettsii is the pathogen of Rocky Mountain spotted fever (RMSF), a life-threatening tick-transmitted infection. Adr2 was a surface-exposed adhesion protein of R. rickettsii and its immunoprotection against RMSF was investigated in mice. METHODS Recombinant Adr2 (rAdr2) was used to immunize C3H/HeN mice, and the rickettsial loads in organs of the mice were detected after challenge with R. rickettsii. The levels of specific antibodies of sera from the immunized mice were determined and the sera from immunized mice were applied to neutralize R. rickettsii. Proliferation and cytokine secretion of CD4(+) and CD8(+) T cells isolated from R. rickettsii-infected mice were also assayed after rAdr2 stimulation. RESULTS After R. rickettsii challenge, the rickettsial loads in spleens, livers, and lungs were significantly lower and the impairment degrees of these organs in rAdr2-immunized mice were markedly slighter, compared with those in negative control mice. The ratio of specific IgG2a/IgG1 of rAdr2-immunized mice kept increasing during the immunization. After treatment with rAdr2-immunized sera, the total number of R. rickettsii organisms adhering and invading host cells was significantly lower than that treated with PBS-immunized sera. Interferon-γ secretion by CD4(+) or CD8(+) T cells and tumor necrosis factor-α secretion by CD4(+) T cells from R. rickettsii-infected mice were respectively significantly greater than those from uninfected mice after rAdr2 stimulation. CONCLUSION Adr2 is a protective antigen of R. rickettsii. Protection offered by Adr2 is mainly dependent on antigen-specific cell-mediated immune responses, including efficient activity of CD4(+) and CD8(+) T cells to produce great amount of TNF-α and/or IFN-γ as well as rapid increase of specific IgG2a, which synergistically activate and opsonize host cells to killing intracellular rickettsiae.
Collapse
|
22
|
The rickettsial OmpB β-peptide of Rickettsia conorii is sufficient to facilitate factor H-mediated serum resistance. Infect Immun 2012; 80:2735-43. [PMID: 22615250 DOI: 10.1128/iai.00349-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pathogenic species of the spotted fever group Rickettsia are subjected to repeated exposures to the host complement system through cyclic infections of mammalian and tick hosts. The serum complement machinery is a formidable obstacle for bacteria to overcome if they endeavor to endure this endozoonotic cycle. We have previously demonstrated that that the etiologic agent of Mediterranean spotted fever, Rickettsia conorii, is susceptible to complement-mediated killing only in the presence of specific monoclonal antibodies. We have also shown that in the absence of particular neutralizing antibody, R. conorii is resistant to the effects of serum complement. We therefore hypothesized that the interactions between fluid-phase complement regulators and conserved rickettsial outer membrane-associated proteins are critical to mediate serum resistance. We demonstrate here that R. conorii specifically interacts with the soluble host complement inhibitor, factor H. Depletion of factor H from normal human serum renders R. conorii more susceptible to C3 and membrane attack complex deposition and to complement-mediated killing. We identified the autotransporter protein rickettsial OmpB (rOmpB) as a factor H ligand and further demonstrate that the rOmpB β-peptide is sufficient to mediate resistance to the bactericidal properties of human serum. Taken together, these data reveal an additional function for the highly conserved rickettsial surface cell antigen, rOmpB, and suggest that the ability to evade complement-mediated clearance from the hematogenous circulation is a novel virulence attribute for this class of pathogens.
Collapse
|
23
|
Welch MD, Reed SCO, Lamason RL, Serio AW. Expression of an epitope-tagged virulence protein in Rickettsia parkeri using transposon insertion. PLoS One 2012; 7:e37310. [PMID: 22624012 PMCID: PMC3356282 DOI: 10.1371/journal.pone.0037310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/18/2012] [Indexed: 01/01/2023] Open
Abstract
Despite recent advances in our ability to genetically manipulate Rickettsia, little has been done to employ genetic tools to study the expression and localization of Rickettsia virulence proteins. Using a mariner-based Himar1 transposition system, we expressed an epitope-tagged variant of the actin polymerizing protein RickA under the control of its native promoter in Rickettsia parkeri, allowing the detection of RickA using commercially-available antibodies. Native RickA and epitope-tagged RickA exhibited similar levels of expression and were specifically localized to bacteria. To further facilitate protein expression in Rickettsia, we also developed a plasmid for Rickettsia insertion and expression (pRIE), containing a variant Himar1 transposon with enhanced flexibility for gene insertion, and used it to generate R. parkeri strains expressing diverse fluorescent proteins. Expression of epitope-tagged proteins in Rickettsia will expand our ability to assess the regulation and function of important virulence factors.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, California, United States of America.
| | | | | | | |
Collapse
|
24
|
Reed SCO, Serio AW, Welch MD. Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway. Cell Microbiol 2012; 14:529-45. [PMID: 22188208 DOI: 10.1111/j.1462-5822.2011.01739.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Although rickettsiae require the host cell actin cytoskeleton for invasion, the cytoskeletal proteins that mediate this process have not been completely described. To identify the host factors important during cell invasion by Rickettsia parkeri, a member of the spotted fever group (SFG), we performed an RNAi screen targeting 105 proteins in Drosophila melanogaster S2R+ cells. The screen identified 21 core proteins important for invasion, including the GTPases Rac1 and Rac2, the WAVE nucleation-promoting factor complex and the Arp2/3 complex. In mammalian cells, including endothelial cells, the natural targets of R. parkeri, the Arp2/3 complex was also crucial for invasion, while requirements for WAVE2 as well as Rho GTPases depended on the particular cell type. We propose that R. parkeri invades S2R+ arthropod cells through a primary pathway leading to actin nucleation, whereas invasion of mammalian endothelial cells occurs via redundant pathways that converge on the host Arp2/3 complex. Our results reveal a key role for the WAVE and Arp2/3 complexes, as well as a higher degree of variation than previously appreciated in actin nucleation pathways activated during Rickettsia invasion.
Collapse
Affiliation(s)
- Shawna C O Reed
- Microbiology Graduate Group, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
25
|
Molecular basis of immunity to rickettsial infection conferred through outer membrane protein B. Infect Immun 2011; 79:2303-13. [PMID: 21444665 DOI: 10.1128/iai.01324-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic rickettsiae are the causative agents of Rocky Mountain spotted fever, typhus, and other human diseases with high mortality and an important impact on society. Although survivors of rickettsial infections are considered immune to disease, the molecular basis of this immunity or the identification of protective antigens that enable vaccine development was hitherto not known. By exploring the molecular pathogenesis of Rickettsia conorii, the agent of Mediterranean spotted fever, we report here that the autotransporter protein, rickettsial outer membrane protein B (rOmpB), constitutes a protective antigen for this group of pathogens. A recombinant, purified rOmpB passenger domain fragment comprised of amino acids 36 to 1334 is sufficient to elicit humoral immune responses that protect animals against lethal disease. Protective immunity requires folded antigen and production of antibodies that recognize conformational epitopes on the rickettsial surface. Monoclonal antibodies (MAbs) 5C7.27 and 5C7.31, which specifically recognize a conformation present in the folded, intact rOmpB passenger domain, are sufficient to confer immunity in vivo. Analyses in vitro indicate this protection involves a mechanism of complement-mediated killing in mammalian blood, a means of rickettsial clearance that has not been previously described. Considering the evolutionary conservation of rOmpB and its crucial contribution to bacterial invasion of host cells, we propose that rOmpB antibody-mediated killing confers immunity to rickettsial infection.
Collapse
|
26
|
Wei Y, Wang X, Xiong X, Wen B. Coxiella burnetii antigen-stimulated dendritic cells mediated protection against Coxiella burnetii in BALB/c mice. J Infect Dis 2011; 203:283-91. [PMID: 21288829 DOI: 10.1093/infdis/jiq037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coxiella burnetii is the etiological agent of human Q fever. In this study, adaptive transfer of mouse bone marrow-derived dendritic cells (BMDCs) stimulated with C. burnetii antigen, phase I whole-cell antigen (PIAg), lipopolysaccharide (LPS)-removed PIAg (PIIAg), protein antigen Com1, or SecB significantly reduced coxiella burden in recipient mice compared with control mice. Mice that received PIIAg-pulsed BMDCs displayed substantially lower coxiella burden than recipient mice of PIAg-pulsed BMDCs after C burnetii challenge. The protection offered by the antigen-activated BMDCs was correlated with the increased proliferation of helper T (T(H)) T(H)1 CD4(+) cells, preferential development of T(H)17 cells, and impaired expansion of regulatory T lymphocytes. Our results suggest that PIIAg is far superior to PIAg in activating BMDCs to confer protection against C. burnetii in vivo, whereas Com1 and SecB are protective antigens because Com1- or SecB-pulsed BMDCs confer partial protection.
Collapse
Affiliation(s)
- Yan Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | |
Collapse
|
27
|
Complementation of Rickettsia rickettsii RelA/SpoT restores a nonlytic plaque phenotype. Infect Immun 2011; 79:1631-7. [PMID: 21300770 DOI: 10.1128/iai.00048-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spotted fever group rickettsiae are known to produce distinct plaque phenotypes. Strains that cause lytic infections in cell culture form clear plaques, while nonlytic strains form opaque plaques in which the cells remain intact. Clear plaques have historically been associated with more-virulent species or strains of spotted fever group rickettsiae. We have selected spontaneous mutant pairs from two independent strains of Rickettsia rickettsii, the virulent R strain and the avirulent Iowa strain. A nonlytic variant of R. rickettsii R, which typically produces clear plaques, was isolated and stably maintained. A lytic variant of the Iowa strain, which characteristically produces opaque plaques, was also selected and maintained. Genomic resequencing of the variants identified only a single gene disrupted in each strain. In both cases, the mutation was in a gene annotated as relA/spoT-like. In the Iowa strain, a single mutation introduced a premature stop codon upstream from region encoding the predicted active site of RelA/SpoT and caused the transition to a lytic plaque phenotype. In R. rickettsii R, the nonlytic plaque phenotype resulted from a single-nucleotide substitution that shifted a tyrosine residue to histidine near the active site of the enzyme. The intact relA/spoT gene thus occurred in variants with the nonlytic plaque phenotype. Complementation of the truncated relA/spoT gene in the Iowa lytic plaque variant restored the nonlytic phenotype. The relA/spoT mutations did not affect the virulence of either strain in a Guinea pig model of infection; R strain lytic and nonlytic variants both induced fever equally, and the mutation in Iowa to a lytic phenotype did not cause them to become virulent.
Collapse
|
28
|
Chan YGY, Riley SP, Martinez JJ. Adherence to and invasion of host cells by spotted Fever group rickettsia species. Front Microbiol 2010; 1:139. [PMID: 21687751 PMCID: PMC3109342 DOI: 10.3389/fmicb.2010.00139] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/09/2010] [Indexed: 11/18/2022] Open
Abstract
The pathogenic lifecycle of obligate intracellular bacteria presents a superb opportunity to develop understanding of the interaction between the bacteria and host under the pretext that disruption of these processes will likely lead to death of the pathogen and prevention of associated disease. Species of the genus Rickettsia contain some of the most hazardous of the obligate intracellular bacteria, including Rickettsia rickettsii and R. conorii the causative agents of Rocky Mountain and Mediterranean spotted fevers, respectively. Spotted fever group Rickettsia species commonly invade and thrive within cells of the host circulatory system whereby the endothelial cells are severely perturbed. The subsequent disruption of circulatory continuity results in much of the severe morbidity and mortality associated with these diseases, including macropapular dermal rash, interstitial pneumonia, acute renal failure, pulmonary edema, and other multisystem manifestations. This review describes current knowledge of the essential pathogenic processes of adherence to and invasion of host cells, efforts to disrupt these processes, and potential for disease prevention through vaccination with recently identified bacterial adherence and invasion proteins. A more complete understanding of these bacterial proteins will provide an opportunity for prevention and treatment of spotted fever group Rickettsia infections.
Collapse
|
29
|
Moore ER, Mead DJ, Dooley CA, Sager J, Hackstadt T. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane. MICROBIOLOGY-SGM 2010; 157:830-838. [PMID: 21109560 PMCID: PMC3081085 DOI: 10.1099/mic.0.045856-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that replicates within a parasitophorous vacuole termed an inclusion. The chlamydial inclusion is isolated from the endocytic pathway but fusogenic with Golgi-derived exocytic vesicles containing sphingomyelin and cholesterol. Sphingolipids are incorporated into the chlamydial cell wall and are considered essential for chlamydial development and viability. The mechanisms by which chlamydiae obtain eukaryotic lipids are poorly understood but require chlamydial protein synthesis and presumably modification of the inclusion membrane to initiate this interaction. A polarized cell model of chlamydial infection has demonstrated that chlamydiae preferentially intercept basolaterally directed, sphingomyelin-containing exocytic vesicles. Here we examine the localization and potential function of trans-Golgi and/or basolaterally associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in chlamydia-infected cells. The trans-Golgi SNARE protein syntaxin 6 is recruited to the chlamydial inclusion in a manner that requires chlamydial protein synthesis and is conserved among all chlamydial species examined. The localization of syntaxin 6 to the chlamydial inclusion requires a tyrosine motif or plasma membrane retrieval signal (YGRL). Thus in addition to expression of at least two inclusion membrane proteins that contain SNARE-like motifs, chlamydiae also actively recruit eukaryotic SNARE-family proteins.
Collapse
Affiliation(s)
- Elizabeth R Moore
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - David J Mead
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Cheryl A Dooley
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Janet Sager
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
30
|
Haglund CM, Choe JE, Skau CT, Kovar DR, Welch MD. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat Cell Biol 2010; 12:1057-63. [PMID: 20972427 DOI: 10.1038/ncb2109] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/14/2010] [Indexed: 12/15/2022]
Abstract
Diverse intracellular pathogens subvert the host actin-polymerization machinery to drive movement within and between cells during infection. Rickettsia in the spotted fever group (SFG) are Gram-negative, obligate intracellular bacterial pathogens that undergo actin-based motility and assemble distinctive 'comet tails' that consist of long, unbranched actin filaments. Despite this distinct organization, it was proposed that actin in Rickettsia comet tails is nucleated by the host Arp2/3 complex and the bacterial protein RickA, which assemble branched actin networks. However, a second bacterial gene, sca2, was recently implicated in actin-tail formation by R. rickettsii. Here, we demonstrate that Sca2 is a bacterial actin-assembly factor that functionally mimics eukaryotic formin proteins. Sca2 nucleates unbranched actin filaments, processively associates with growing barbed ends, requires profilin for efficient elongation, and inhibits the activity of capping protein, all properties shared with formins. Sca2 localizes to the Rickettsia surface and is sufficient to promote the assembly of actin filaments in cytoplasmic extract. These results suggest that Sca2 mimics formins to determine the unique organization of actin filaments in Rickettsia tails and drive bacterial motility, independently of host nucleators.
Collapse
Affiliation(s)
- Cat M Haglund
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
31
|
The early secretory pathway contributes to the growth of the Coxiella-replicative niche. Infect Immun 2010; 79:402-13. [PMID: 20937765 DOI: 10.1128/iai.00688-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii is a Gram-negative obligate intracellular bacterium. After internalization, this bacterium replicates in a large parasitophorous vacuole that has features of both phagolysosomes and autophagosomal compartments. We have previously demonstrated that early after internalization Coxiella phagosomes interact with both the endocytic and the autophagic pathways. In this report, we present evidence that the Coxiella-replicative vacuoles (CRVs) also interact with the secretory pathway. Rab1b is a small GTPase responsible for the anterograde transport between the endoplasmic reticulum and the Golgi apparatus. We present evidence that Rab1b is recruited to the CRV at later infection times (i.e., after 6 h of infection). Interestingly, knockdown of Rab1b altered vacuole growth, indicating that this protein was required for the proper biogenesis of the CRV. In addition, overexpression of the active GTPase-defective mutant (GFP-Rab1b Q67L) affected the development of the Coxiella-replicative compartment inhibiting bacterial growth. On the other hand, disruption of the secretory pathway by brefeldin A treatment or by overexpression of Sar1 T39N, a defective dominant-negative mutant of Sar1, affected the typical spaciousness of the CRVs. Taken together, our results show for the first time that the Coxiella-replicative niche also intercepts the early secretory pathway.
Collapse
|
32
|
Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia. Cell Host Microbe 2010; 7:388-98. [PMID: 20478540 DOI: 10.1016/j.chom.2010.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/09/2010] [Accepted: 03/25/2010] [Indexed: 01/15/2023]
Abstract
Many Rickettsia species are intracellular bacterial pathogens that use actin-based motility for spread during infection. However, while other bacteria assemble actin tails consisting of branched networks, Rickettsia assemble long parallel actin bundles, suggesting the use of a distinct mechanism for exploiting actin. To identify the underlying mechanisms and host factors involved in Rickettsia parkeri actin-based motility, we performed an RNAi screen targeting 115 actin cytoskeletal genes in Drosophila cells. The screen delineated a set of four core proteins-profilin, fimbrin/T-plastin, capping protein, and cofilin--as crucial for determining actin tail length, organizing filament architecture, and enabling motility. In mammalian cells, these proteins were localized throughout R. parkeri tails, consistent with a role in motility. Profilin and fimbrin/T-plastin were critical for the motility of R. parkeri but not Listeria monocytogenes. Our results highlight key distinctions between the evolutionary strategies and molecular mechanisms employed by bacterial pathogens to assemble and organize actin.
Collapse
|
33
|
The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect Immun 2009; 77:5272-80. [PMID: 19805531 DOI: 10.1128/iai.00201-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obligate intracellular bacteria of the genus Rickettsia must adhere to and invade the host endothelium in order to establish an infection. These processes require the interaction of rickettsial surface proteins with mammalian host cell receptors. A previous bioinformatic analysis of sequenced rickettsial species identified a family of at least 17 predicted "surface cell antigen" (sca) genes whose products resemble autotransporter proteins. Two members of this family, rOmpA and rOmpB of spotted fever group (SFG) rickettsiae have been identified as adhesion and invasion factors, respectively; however, little is known about the putative functions of the other sca gene products. An intact sca2 gene is found in the majority of pathogenic SFG rickettsiae and, due to its sequence conservation among these species, we predict that Sca2 may play an important function at the rickettsial surface. Here we have shown that sca2 is transcribed and expressed in Rickettsia conorii and have used a heterologous gain-of-function assay in E. coli to determine the putative role of Sca2. Using this system, we have demonstrated that expression of Sca2 at the outer membrane of nonadherent, noninvasive E. coli is sufficient to mediate adherence to and invasion of a panel of mammalian cells, including endothelial cells. Furthermore, soluble Sca2 protein is capable of diminishing R. conorii invasion of cultured mammalian cells. This is the first evidence that Sca2 participates in the interaction between SFG rickettsiae and host cells and suggests that in addition to other surface proteins, Sca2 may play a critical role in rickettsial pathogenesis.
Collapse
|
34
|
Abstract
Rickettsia parkeri, a recently recognized pathogen of human, is one of several Rickettsia spp. in the United States that causes a spotted fever rickettsiosis. To gain insights into its biology and pathogenesis, we applied the proteomics approach to establish a two-dimensional gel proteome reference map and combined this technique with cell surface biotinylation to identify surface-exposed proteins of a low-passage isolate of R. parkeri obtained from a patient. We identified 91 proteins by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. Of these, 28 were characterized as surface proteins, including virulence-related proteins (e.g., outer membrane protein A [OmpA], OmpB, beta-peptide, and RickA). Two-dimensional immunoblotting with serum from the R. parkeri-infected index patient was utilized to identify the immunoreactive proteins as potential targets for diagnosis and vaccine development. In addition to the known rickettsial antigens, OmpA and OmpB, we identified translation initiation factor 2, cell division protein FtsZ, and cysteinyl-tRNA synthetase as immunoreactive proteins. The proteome map with corresponding cell surface protein analysis and antigen detection will facilitate a better understanding of the mechanisms of rickettsial pathogenesis.
Collapse
|
35
|
Eremeeva ME, Dasch GA. Closing the gaps between genotype and phenotype in Rickettsia rickettsii. Ann N Y Acad Sci 2009; 1166:12-26. [PMID: 19538260 DOI: 10.1111/j.1749-6632.2009.04526.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rocky Mountain spotted fever (RMSF) caused by Rickettsia rickettsii is a severe rickettsiosis that occurs in nearly every state of the continental USA. RMSF is endemic in Central and Southern America, with recent well-documented cases in Mexico, Costa Rica, Panama, Colombia, Brazil, and Argentina. RMSF is the most malignant among known rickettsioses causing severe multiorgan dysfunction and high case fatality rates, which can reach 73% in untreated cases. Variations in pathogenic biotypes of R. rickettsii isolates have been described, and potential correlations of these differences to various clinical manifestations of RMSF have been suggested. We have recently reported on a method of genetic comparison employing sequence differences in intergenic regions (IGR typing) in isolates of R. rickettsii of human, tick, and animal origin. The grouping obtained correlated well with 2 other genotyping systems we have developed, which target the presence and distribution of variable numbers of tandem repeats (TR) and insertion/deletion (INDEL) events. Twenty-five total genotypes of R. rickettsii in 4 primary groups could be distinguished: isolates from Montana, isolates associated with Rhipicephalus sanguineus ticks and human infections in Arizona, other isolates from the USA where Dermacentor variabilis is thought to be the primary vector, and the isolates primarily associated with Amblyomma ticks from Central and South America. In addition, isolate Hlp#2, which is often considered to be a nonpathogenic isolate of R. rickettsii and closely related serotype 364D, exhibited the most diversity from the other isolates compared, and they differ significantly from each other. Because complex interactions underlie the pathogenesis of R. rickettsii in vivo, it is difficult to define the causality of individual events that occur in infected vertebrate hosts and humans. Many microbial factors are likely to contribute to the varied ability of R. rickettsii to cause cellular injury; some of them may also contribute importantly to its virulence for vertebrate hosts and may be linked to the variable genetic markers we have identified. Since circulation of R. rickettsii in nature includes vertical transstadial and transovarial transmission within tick vectors and horizontal passages through vertebrate hosts, it is plausible that isolates of different virulence arose when they became isolated during adaptation to novel vertebrate and tick hosts. Characterization of the physiologically important changes in rickettsial gene expression that occur immediately after tick-to-human or tick-to-animal transitions may require development of new experimental systems.
Collapse
Affiliation(s)
- Marina E Eremeeva
- Rickettsial Zoonoses Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | |
Collapse
|
36
|
Abstract
One century after the first description of rickettsiae as human pathogens, the rickettsiosis remained poorly understood diseases. These microorganisms are indeed characterized by a strictly intracellular location which has, for long, prohibited their detailed study. Within the last ten years, the completion of the genome sequences of several strains allowed gaining a better knowledge about the molecular mechanisms involved in rickettsia pathogenicity. Here, we summarized available data concerning the critical steps of rickettsia-host cell interactions that should contribute to tissue injury and diseases, that is, adhesion, phagosomal escape, motility, and intracellular survival of the bacteria.
Collapse
Affiliation(s)
- Premanand Balraj
- Unité des Rickettsies, URMITE IRD-CNRS 6236, Faculté de Médecine, Marseille, France
| | | | | |
Collapse
|
37
|
Emelyanov VV. Mitochondrial Porin VDAC 1 Seems to Be Functional in Rickettsial Cells. Ann N Y Acad Sci 2009; 1166:38-48. [DOI: 10.1111/j.1749-6632.2009.04513.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Chan YGY, Cardwell MM, Hermanas TM, Uchiyama T, Martinez JJ. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell Microbiol 2009; 11:629-44. [PMID: 19134120 DOI: 10.1111/j.1462-5822.2008.01279.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rickettsia conorii, an obligate intracellular tick-borne pathogen and the causative agent of Mediterranean spotted fever, binds to and invades non-phagocytic mammalian cells. Previous work identified Ku70 as a mammalian receptor involved in the invasion process and identified the rickettsial autotransporter protein, rOmpB, as a ligand; however, little is known about the role of Ku70-rOmpB interactions in the bacterial invasion process. Using an Escherichia coli heterologous expression system, we show here that rOmpB mediates attachment to mammalian cells and entry in a Ku70-dependent process. A purified recombinant peptide corresponding to the rOmpB passenger domain interacts with Ku70 and serves as a competitive inhibitor of adherence. We observe that rOmpB-mediated infection culminates in actin recruitment at the bacterial foci, and that this entry process relies in part on actin polymerization likely imparted through protein tyrosine kinase and phosphoinositide 3-kinase-dependent activities and microtubule stability. Small-interfering RNA studies targeting components of the endocytic pathway reveal that entry by rOmpB is dependent on c-Cbl, clathrin and caveolin-2. Together, these results illustrate that rOmpB is sufficient to mediate Ku70-dependent invasion of mammalian cells and that clathrin- and caveolin-dependent endocytic events likely contribute to the internalization process.
Collapse
Affiliation(s)
- Yvonne G Y Chan
- Department of Microbiology, University of Chicago, 920 East 58th Street, Cummings Life Sciences Center 707A, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
39
|
Newman CL, Stathopoulos C. Autotransporter and Two-Partner Secretion: Delivery of Large-Size Virulence Factors by Gram-Negative Bacterial Pathogens. Crit Rev Microbiol 2008; 30:275-86. [PMID: 15646401 DOI: 10.1080/10408410490499872] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A number of protein secretion mechanisms have been identified in gram-negative pathogens. Many of these secretion systems are dependent upon the Sec translocase for protein export from the cytoplasm into the periplasm and then utilize other mechanisms for transport from the periplasm through the outer membrane. In this article, we review secretion similarities between autotransporter and two-partner secretion systems, and we report similarities between the autotransporter secretion mechanism with that of intimin/invasins. Considering that many secreted proteins are virulence factors, a better understanding of their secretion mechanisms will aid in the development of disease treatments and new bacterial vaccines.
Collapse
Affiliation(s)
- Cheryl L Newman
- Department of Biology & Biochemistry, University of Houston, Houston, Texas 77204, USA
| | | |
Collapse
|
40
|
Moore ER, Fischer ER, Mead DJ, Hackstadt T. The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic 2008; 9:2130-40. [PMID: 18778406 DOI: 10.1111/j.1600-0854.2008.00828.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chlamydiae replicate intracellularly within a unique vacuole termed the inclusion. The inclusion circumvents classical endosomal/lysosomal pathways but actively intercepts a subset of Golgi-derived exocytic vesicles containing sphingomyelin (SM) and cholesterol. To further examine this interaction, we developed a polarized epithelial cell model to study vectoral trafficking of lipids and proteins to the inclusion. We examined seven epithelial cell lines for their ability to form single monolayers of polarized cells and support chlamydial development. Of these cell lines, polarized colonic mucosal C2BBe1 cells were readily infected with Chlamydia trachomatis and remained polarized throughout infection. Trafficking of (6-((N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)hexanoyl)sphingosine) (NBD-C(6)-ceramide) and its metabolic derivatives, NBD-glucosylceramide (GlcCer) and NBD-SM, was analyzed. SM was retained within L2-infected cells relative to mock-infected cells, correlating with a disruption of basolateral SM trafficking. There was no net retention of GlcCer within L2-infected cells and purification of C. trachomatis elementary bodies from polarized C2BBe1 cells confirmed that bacteria retained only SM. The chlamydial inclusion thus appears to preferentially intercept basolaterally-directed SM-containing exocytic vesicles, suggesting a divergence in SM and GlcCer trafficking. The observed changes in lipid trafficking were a chlamydia-specific effect because Coxiella burnetii-infected cells revealed no changes in GlcCer or SM polarized trafficking.
Collapse
Affiliation(s)
- Elizabeth R Moore
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
41
|
Characterization of Sec-translocon-dependent extracytoplasmic proteins of Rickettsia typhi. J Bacteriol 2008; 190:6234-42. [PMID: 18641131 DOI: 10.1128/jb.00794-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As obligate intracellular, vector-borne bacteria, rickettsiae must adapt to both mammalian and arthropod host cell environments. Deciphering the molecular mechanisms of the interactions between rickettsiae and their host cells has largely been hindered by the genetic intractability of these organisms; however, research in other gram-negative pathogens has demonstrated that many bacterial determinants of attachment, entry, and pathogenesis are extracytoplasmic proteins. The annotations of several rickettsial genomes indicate the presence of homologs of the Sec translocon, the major route for bacterial protein secretion from the cytoplasm. For Rickettsia typhi, the etiologic agent of murine typhus, homologs of the Sec-translocon-associated proteins LepB, SecA, and LspA have been functionally characterized; therefore, the R. typhi Sec apparatus represents a mechanism for the secretion of rickettsial proteins, including virulence factors, into the extracytoplasmic environment. Our objective was to characterize such Sec-dependent R. typhi proteins in the context of a mammalian host cell infection. By using the web-based programs LipoP, SignalP, and Phobius, a total of 191 R. typhi proteins were predicted to contain signal peptides targeting them to the Sec translocon. Of these putative signal peptides, 102 were tested in an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system. Eighty-four of these candidates exhibited signal peptide activity in E. coli, and transcriptional analysis indicated that at least 54 of the R. typhi extracytoplasmic proteins undergo active gene expression during infections of HeLa cells. This work highlights a number of interesting proteins possibly involved in rickettsial growth and virulence in mammalian cells.
Collapse
|
42
|
Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol 2008; 6:375-86. [PMID: 18414502 DOI: 10.1038/nrmicro1866] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect Immun 2007; 76:542-50. [PMID: 18025092 DOI: 10.1128/iai.00952-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rickettsia rickettsii is an obligate intracellular pathogen that is the causative agent of Rocky Mountain spotted fever. To identify genes involved in the virulence of R. rickettsii, the genome of an avirulent strain, R. rickettsii Iowa, was sequenced and compared to the genome of the virulent strain R. rickettsii Sheila Smith. R. rickettsii Iowa is avirulent in a guinea pig model of infection and displays altered plaque morphology with decreased lysis of infected host cells. Comparison of the two genomes revealed that R. rickettsii Iowa and R. rickettsii Sheila Smith share a high degree of sequence identity. A whole-genome alignment comparing R. rickettsii Iowa to R. rickettsii Sheila Smith revealed a total of 143 deletions for the two strains. A subsequent single-nucleotide polymorphism (SNP) analysis comparing Iowa to Sheila Smith revealed 492 SNPs for the two genomes. One of the deletions in R. rickettsii Iowa truncates rompA, encoding a major surface antigen (rickettsial outer membrane protein A [rOmpA]) and member of the autotransporter family, 660 bp from the start of translation. Immunoblotting and immunofluorescence confirmed the absence of rOmpA from R. rickettsii Iowa. In addition, R. rickettsii Iowa is defective in the processing of rOmpB, an autotransporter and also a major surface antigen of spotted fever group rickettsiae. Disruption of rompA and the defect in rOmpB processing are most likely factors that contribute to the avirulence of R. rickettsii Iowa. Genomic differences between the two strains do not significantly alter gene expression as analysis of microarrays revealed only four differences in gene expression between R. rickettsii Iowa and R. rickettsii strain R. Although R. rickettsii Iowa does not cause apparent disease, infection of guinea pigs with this strain confers protection against subsequent challenge with the virulent strain R. rickettsii Sheila Smith.
Collapse
|
44
|
Beare PA, Howe D, Cockrell DC, Heinzen RA. Efficient method of cloning the obligate intracellular bacterium Coxiella burnetii. Appl Environ Microbiol 2007; 73:4048-54. [PMID: 17468273 PMCID: PMC1932732 DOI: 10.1128/aem.00411-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium that replicates in a large lysosome-like parasitophorous vacuole (PV). Current methods of cloning C. burnetii are laborious and technically demanding. We have developed an alternative cloning method that involves excision of individual C. burnetii-laden PVs from infected cell monolayers by micromanipulation. To demonstrate the cloning utility and efficiency of this procedure, we coinfected Vero cells with isogenic variants of the Nine Mile strain of C. burnetii. Coinhabited PVs harboring Nine Mile phase II (NMII) and Nine Mile phase I (NMI) or Nine Mile crazy (NMC) were demonstrated by immunofluorescence. PVs were then randomly excised from cells coinfected with NMI and NMC by micromanipulation, and PVs harboring both strains were identified by PCR. Fresh Vero cells were subsequently infected with organisms from coinhabited PVs, and the PV excision and PCR screening process was repeated. Without exception, PVs obtained from second-round excisions contained clonal populations of either NMII or NMC, demonstrating that micromanipulation is an efficient and reproducible procedure for obtaining C. burnetii clones.
Collapse
Affiliation(s)
- Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
45
|
Howe D, Heinzen RA. Replication of Coxiella burnetii is inhibited in CHO K-1 cells treated with inhibitors of cholesterol metabolism. Ann N Y Acad Sci 2006; 1063:123-9. [PMID: 16481503 DOI: 10.1196/annals.1355.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Coxiella burnetii directs the synthesis of a large parasitophorous vacuole (PV) that is required for its replication. While some lysosomal characteristics of the PV have been described, the origin and composition of the PV membrane remain largely undefined. Cholesterol is an essential component of mammalian membranes where it lends mechanical stability and serves as a platform for signaling proteins. Using infected Chinese hamster ovary cells as a model, we examined whether cholesterol is trafficked to the C. burnetii PV membrane and the effects of inhibitors of cholesterol metabolism on C. burnetii replication. When infected cells were stained with filipin, a fluorescent polyene antifungal agent that binds cholesterol, obvious staining of PV was observed indicating the PV membrane is cholesterol-rich. Furthermore, replication of C. burnetii was significantly inhibited in cells treated with the cholesterol metabolism inhibitors lovastatin, ketoconazole, imipramine, progesterone, and U18666A. These data suggest that cholesterol is an important component of the C. burnetii PV membrane and that normal cellular cholesterol metabolism is required for optimal C. burnetii replication.
Collapse
Affiliation(s)
- Dale Howe
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | |
Collapse
|
46
|
Walker DH, Yu XJ. Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi. Ann N Y Acad Sci 2006; 1063:13-25. [PMID: 16481486 DOI: 10.1196/annals.1355.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three rickettsial genomes have been sequenced and annotated. Rickettsia prowazekii and R. typhi have similar gene order and content. The few differences between R. prowazekii and R. typhi include a 12-kb insertion in R. prowazekii, a large inversion close to the origin of replication in R. typhi, and loss of the complete cytochrome c oxidase system by R. typhi. R. prowazekii, R. typhi, and R. conorii have 13, 24, and 560 unique genes, respectively, and share 775 genes, most likely their essential genes. The small genomes contain many pseudogenes and much noncoding DNA, reflecting the process of genome decay. R. typhi contains the largest number of pseudogenes (41), and R. conorii the fewest, in accordance with its larger number of genes and smaller proportion of noncoding DNA. Conversely, typhus rickettsiae contain fewer repetitive sequences. These genomes portray the key themes of rickettsial intracellular survival: lack of enzymes for sugar metabolism, lipid biosynthesis, nucleotide synthesis, and amino acid metabolism, suggesting that rickettsiae depend on the host for nutrition and building blocks; enzymes for the complete TCA cycle and several copies of ATP/ADP translocase genes, suggesting independent synthesis of ATP and acquisition of host ATP; and type IV secretion system. All rickettsiae share two outer membrane proteins (OmpB and Sca 4) and LPS biosynthesis machinery. RickA, unique to spotted fever rickettsiae, plays a role in induction of actin polymerization in R. conorii, but not in R. prowazekii or R. typhi. The genome of R. typhi contains four potentially membranolytic genes (tlyA, tlyC, pldA, and pat-1) and five autotransporter genes, sca 1, sca 2, sca 3, ompA, and ompB. The presence of six 50-amino acid repeat units in Sca 2 suggests function as an adhesin. The high laboratory passage of the sequenced strains raises the issue of the occurrence of laboratory mutations in genes not required for growth in cell culture or eggs. Resequencing revealed that eight annotated pseudogenes of E strain are actually intact genes. Comparative genomics of virulent and avirulent strains of rickettsial species may reveal their virulence factors.
Collapse
Affiliation(s)
- David H Walker
- Department of Pathology, University of Texas Medical Branch-Galveston, TX 77555-0609, USA.
| | | |
Collapse
|
47
|
Grieshaber SS, Grieshaber NA, Miller N, Hackstadt T. Chlamydia trachomatis Causes Centrosomal Defects Resulting in Chromosomal Segregation Abnormalities. Traffic 2006; 7:940-9. [PMID: 16882039 DOI: 10.1111/j.1600-0854.2006.00439.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlamydiae traffic along microtubules to the microtubule organizing center (MTOC) to establish an intracellular niche within the host cell. Trafficking to the MTOC is dynein dependent although the activating and cargo-linking function of the dynactin complex is supplanted by unknown chlamydial protein(s). We demonstrate that once localized to the MTOC, the chlamydial inclusion maintains a tight association with cellular centrosomes. This association is sustained through mitosis and leads to a significant increase in supernumerary centrosomes, abnormal spindle poles, and chromosomal segregation defects. Chlamydial infection thus can lead to chromosome instability in cells that recover from infection.
Collapse
Affiliation(s)
- Scott S Grieshaber
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
48
|
Beare PA, Samuel JE, Howe D, Virtaneva K, Porcella SF, Heinzen RA. Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol 2006; 188:2309-24. [PMID: 16547017 PMCID: PMC1428397 DOI: 10.1128/jb.188.7.2309-2324.2006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Coxiella burnetii, a gram-negative obligate intracellular bacterium, causes human Q fever and is considered a potential agent of bioterrorism. Distinct genomic groups of C. burnetii are revealed by restriction fragment-length polymorphisms (RFLP). Here we comprehensively define the genetic diversity of C. burnetii by hybridizing the genomes of 20 RFLP-grouped and four ungrouped isolates from disparate sources to a high-density custom Affymetrix GeneChip containing all open reading frames (ORFs) of the Nine Mile phase I (NMI) reference isolate. We confirmed the relatedness of RFLP-grouped isolates and showed that two ungrouped isolates represent distinct genomic groups. Isolates contained up to 20 genomic polymorphisms consisting of 1 to 18 ORFs each. These were mostly complete ORF deletions, although partial deletions, point mutations, and insertions were also identified. A total of 139 chromosomal and plasmid ORFs were polymorphic among all C. burnetii isolates, representing ca. 7% of the NMI coding capacity. Approximately 67% of all deleted ORFs were hypothetical, while 9% were annotated in NMI as nonfunctional (e.g., frameshifted). The remaining deleted ORFs were associated with diverse cellular functions. The only deletions associated with isogenic NMI variants of attenuated virulence were previously described large deletions containing genes involved in lipopolysaccharide (LPS) biosynthesis, suggesting that these polymorphisms alone are responsible for the lower virulence of these variants. Interestingly, a variant of the Australia QD isolate producing truncated LPS had no detectable deletions, indicating LPS truncation can occur via small genetic changes. Our results provide new insight into the genetic diversity and virulence potential of Coxiella species.
Collapse
Affiliation(s)
- Paul A Beare
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | | | | | | | | | | |
Collapse
|
49
|
Howe D, Heinzen RA. Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol 2006; 8:496-507. [PMID: 16469060 DOI: 10.1111/j.1462-5822.2005.00641.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coxiella burnetii directs the synthesis of a large parasitophorous vacuole (PV) required for replication. While some lysosomal characteristics of the PV have been described, the origin and composition of the PV membrane is largely undefined. Cholesterol is an essential component of mammalian cell membranes where it plays important regulatory and structural roles. Here we investigated the role of host cholesterol in biogenesis and maintenance of the C. burnetii PV in Vero cells. The C. burnetii PV membrane stained with filipin and was positive for the lipid raft protein flotillin-1, suggesting PV membranes are enriched in cholesterol and contain lipid raft microdomains. C. burnetii infection increased host cell cholesterol content by 1.75-fold with a coincident upregulation of host genes involved in cholesterol metabolism. Treatment with U18666A, lovastatin, or 25-hydroxycholesterol, pharmacological agents that inhibit cholesterol uptake and/or biosynthesis, altered PV morphology and partially inhibited C. burnetii replication. Complete inhibition of C. burnetii PV development and replication was observed when infected cells were treated with imipramine or ketoconazole, inhibitors of cholesterol uptake and biosynthesis respectively. We conclude that C. burnetii infection perturbs host cell cholesterol metabolism and that free access to host cholesterol stores is required for optimal C. burnetii replication.
Collapse
Affiliation(s)
- Dale Howe
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | |
Collapse
|
50
|
Renesto P, Samson L, Ogata H, Azza S, Fourquet P, Gorvel JP, Heinzen RA, Raoult D. Identification of two putative rickettsial adhesins by proteomic analysis. Res Microbiol 2006; 157:605-12. [PMID: 16574381 DOI: 10.1016/j.resmic.2006.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 02/07/2006] [Accepted: 02/07/2006] [Indexed: 10/25/2022]
Abstract
The rickettsial membrane proteins that promote their uptake by eukaryotic host cells are unknown. To identify rickettsial ligand(s) that bind host cell surface proteins, biotinylated epithelial cells were used to probe a nitrocellulose membrane containing rickettsial extracts separated by SDS-PAGE. This overlay assay revealed that two close rickettsial ligands of approximately 32-30 kDa were recognized by host cells. Both proteins were identified using high resolution 2D-PAGE coupled with mass spectrometry analysis. One protein was identified as the C-terminal extremity of rOmpB called the beta-peptide. The second interacting protein was identified as a protein of unknown function encoded by RC1281 and RP828 in Rickettsia conorii and in Rickettsia prowazekii, respectively, that shares strong similarities with other bacterial adhesins. Both proteins are highly conserved within the Rickettsia genus and might play a critical role in their pathogenicity. These data may have important implications for the development of future vaccines against rickettsial infections.
Collapse
Affiliation(s)
- Patricia Renesto
- Unité des Rickettsies, CNRS UMR 6020, IFR-48, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|