1
|
Hu LI, Stohl EA, Seifert HS. The Neisseria gonorrhoeae type IV pilus promotes resistance to hydrogen peroxide- and LL-37-mediated killing by modulating the availability of intracellular, labile iron. PLoS Pathog 2022; 18:e1010561. [PMID: 35714158 PMCID: PMC9246397 DOI: 10.1371/journal.ppat.1010561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/30/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The Neisseria gonorrhoeae Type IV pilus is a multifunctional, dynamic fiber involved in host cell attachment, DNA transformation, and twitching motility. We previously reported that the N. gonorrhoeae pilus is also required for resistance against hydrogen peroxide-, antimicrobial peptide LL-37-, and non-oxidative, neutrophil-mediated killing. We tested whether the hydrogen peroxide, LL-37, and neutrophil hypersensitivity phenotypes in non-piliated N. gonorrhoeae could be due to elevated iron levels. Iron chelation in the growth medium rescued a nonpiliated pilE mutant from both hydrogen peroxide- and antimicrobial peptide LL-37-mediated killing, suggesting these phenotypes are related to iron availability. We used the antibiotic streptonigrin, which depends on free cytoplasmic iron and oxidation to kill bacteria, to determine whether piliation affected intracellular iron levels. Several non-piliated, loss-of-function mutants were more sensitive to streptonigrin killing than the piliated parental strain. Consistent with the idea that higher available iron levels in the under- and non-piliated strains were responsible for the higher streptonigrin sensitivity, iron limitation by desferal chelation restored resistance to streptonigrin in these strains and the addition of iron restored the sensitivity to streptonigrin killing. The antioxidants tiron and dimethylthiourea rescued the pilE mutant from streptonigrin-mediated killing, suggesting that the elevated labile iron pool in non-piliated bacteria leads to streptonigrin-dependent reactive oxygen species production. These antioxidants did not affect LL-37-mediated killing. We confirmed that the pilE mutant is not more sensitive to other antibiotics showing that the streptonigrin phenotypes are not due to general bacterial envelope disruption. The total iron content of the cell was unaltered by piliation when measured using ICP-MS suggesting that only the labile iron pool is affected by piliation. These results support the hypothesis that piliation state affects N. gonorrhoeae iron homeostasis and influences sensitivity to various host-derived antimicrobial agents. Neisseria gonorrhoeae is a bacterium that causes the sexually transmitted infection, gonorrhea. The bacteria express a fiber on their surface called a pilus that mediates many interactions of the bacterial cell with host cells and tissues. The ability to resist killing by white cells is one important ability that N. gonorrhoeae uses to allow infection of otherwise healthy people. We show here that the pilus help resist white cell killing by modulating the levels of iron within the bacterial cell.
Collapse
Affiliation(s)
- Linda I. Hu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Elizabeth A. Stohl
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
2
|
Alcott AM, Werner LM, Baiocco CM, Belcher Dufrisne M, Columbus L, Criss AK. Variable Expression of Opa Proteins by Neisseria gonorrhoeae Influences Bacterial Association and Phagocytic Killing by Human Neutrophils. J Bacteriol 2022; 204:e0003522. [PMID: 35343795 PMCID: PMC9017356 DOI: 10.1128/jb.00035-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Neisseria gonorrhoeae infection is characterized by local and abundant recruitment of neutrophils. Despite neutrophils' antimicrobial activities, viable N. gonorrhoeae is recovered from infected individuals, leading to the question of how N. gonorrhoeae survives neutrophil attack. One feature impacting N. gonorrhoeae-neutrophil interactions is the phase-variable opacity-associated (Opa) proteins. Most Opa proteins engage human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to facilitate bacterial binding and invasion. Neutrophils express two transmembrane CEACAMs, CEACAM1 and the granulocyte-specific CEACAM3. While N. gonorrhoeae isolated from infected individuals is frequently Opa+, expression of OpaD from strain FA1090, which interacts with CEACAMs 1 and 3, is associated with reduced N. gonorrhoeae survival after exposure to human neutrophils. In this study, we hypothesized that the receptor-binding capability of individual Opa proteins impacts bacterial survival in the presence of neutrophils. To test this hypothesis, we introduced opa genes that are constitutively expressed into a derivative of strain FA1090 with all 11 opa genes deleted. The engineered genes encode Opa proteins that bind CEACAM1 and -3, CEACAM1 but not CEACAM3, or neither CEACAM1 nor -3. N. gonorrhoeae expressing CEACAM3-binding Opa proteins survived significantly less well than bacteria expressing other Opa proteins when exposed to primary human neutrophils. The CEACAM3-binding N. gonorrhoeae had significantly greater association with and internalization by neutrophils. However, once internalized, bacteria were similarly killed inside neutrophils, regardless of Opa expression. Furthermore, Opa expression did not significantly impact neutrophil granule mobilization. Our findings indicate that the extent to which Opa proteins mediate nonopsonic binding is the predominant determinant of bacterial survival from neutrophils. IMPORTANCE Neisseria gonorrhoeae, the cause of gonorrhea, is an urgent-threat pathogen due to increasing numbers of infections and increased antibiotic resistance. Many surface components of N. gonorrhoeae are phase variable, including the Opa protein family of adhesins and invasins. While Opa protein expression is selected for in vivo, bacteria expressing some Opa proteins are readily killed by neutrophils, which are recruited to sites of infection. The reason for this discrepancy has remained unresolved. Our work shows that Opa-dependent differences in bacterial survival after exposure to primary human neutrophils correlates with Opa-dependent bacterial binding and phagocytosis. These findings underscore how the ability of N. gonorrhoeae to change Opa expression through phase variation contributes to bacterial resistance to neutrophil clearance.
Collapse
Affiliation(s)
- Allison M. Alcott
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lacie M. Werner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Baiocco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Palmer A, Criss AK. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol 2018; 26:1022-1034. [PMID: 30115561 DOI: 10.1016/j.tim.2018.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Neisseria gonorrhoeae initiates a strong local immune response that is characterized by copious recruitment of neutrophils to the site of infection. Neutrophils neutralize microbes by mechanisms that include phagocytosis, extracellular trap formation, production of reactive oxygen species, and the delivery of antimicrobial granular contents. However, neutrophils do not clear infection with N. gonorrhoeae. N. gonorrhoeae not only expresses factors that defend against neutrophil bactericidal components, but it also manipulates neutrophil production and release of these components. In this review, we highlight the numerous approaches used by N. gonorrhoeae to survive exposure to neutrophils both intracellularly and extracellularly. These approaches reflect the exquisite adaptation of N. gonorrhoeae to its obligate human host.
Collapse
Affiliation(s)
- Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
4
|
Assembly of NADPH oxidase in human neutrophils is modulated by the opacity-associated protein expression State of Neisseria gonorrhoeae. Infect Immun 2013; 82:1036-44. [PMID: 24343654 DOI: 10.1128/iai.00881-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae (the gonococcus, Gc) triggers a potent inflammatory response and recruitment of neutrophils to the site of infection. Gc survives exposure to neutrophils despite these cells' antimicrobial products, such as reactive oxygen species (ROS). ROS production in neutrophils is initiated by NADPH oxidase, which converts oxygen into superoxide. The subunits of NADPH oxidase are spatially separated between granules (gp91(phox)/p22(phox)) and the cytoplasm (p47(phox), p67(phox), and p40(phox)). Activation of neutrophils promotes the coassembly of NADPH oxidase subunits at phagosome and/or plasma membranes. While Gc-expressing opacity-associated (Opa) proteins can induce neutrophils to produce ROS, Opa-negative (Opa-) Gc does not stimulate neutrophil ROS production. Using constitutively Opa- and OpaD-positive (OpaD+) Gc bacteria in strain FA1090, we now show that the difference in ROS production levels in primary human neutrophils between these backgrounds can be attributed to differential assembly of NADPH oxidase. Neutrophils infected with Opa- Gc showed limited translocation of NADPH oxidase cytoplasmic subunits to cellular membranes, including the bacterial phagosome. In contrast, these subunits rapidly translocated to neutrophil membranes following infection with OpaD+ Gc. gp91(phox) and p22(phox) were recruited to Gc phagosomes regardless of bacterial Opa expression. These results suggest that Opa- Gc interferes with the recruitment of neutrophil NADPH oxidase cytoplasmic subunits to membranes, in particular, the p47(phox) "organizing" subunit, to prevent assembly of the holoenzyme, resulting in an absence of the oxidative burst.
Collapse
|
5
|
Anderson MT, Seifert HS. Phase variation leads to the misidentification of a Neisseria gonorrhoeae virulence gene. PLoS One 2013; 8:e72183. [PMID: 23977246 PMCID: PMC3745409 DOI: 10.1371/journal.pone.0072183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/05/2013] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae is the causative agent of gonorrhea and an obligate pathogen of humans. The Opa proteins of these bacteria are known to mediate attachment and internalization by host cells, including neutrophils. The Opa protein repertoire of a typical N. gonorrhoeae isolate is encoded on ~11 genes distributed throughout the chromosome and is subject to stochastic changes in expression through phase variation. Together, these characteristics make Opa proteins a critical yet unpredictable aspect of any experimental investigation into the interaction of N. gonorrhoeae with host cells. The goal of this study was to identify novel virulence factors of N. gonorrhoeae by assessing the contribution of a set of uncharacterized hydrogen peroxide-induced genes to bacterial survival against neutrophil-mediated killing. To this end, a strain harboring an engineered mutation in the NGO0322 gene was identified that exhibited increased sensitivity to neutrophil-mediated killing, enhanced internalization by neutrophils, and the ability to induce high levels of neutrophil-generated reactive oxygen species. Each of these phenotypes reverted to near wild-type levels following genetic complementation of the NGO0322 mutation. However, after immunoblot analysis of Opa proteins expressed by the isogenic parent, mutant, and genetically complemented strains, it was determined that phase variation had resulted in a disparity between the Opa profiles of these strains. To determine whether Opa phase variation, rather than NGO0322 mutation, was the cause of the observed neutrophil-related phenotypes, NGO0322 function was investigated in N. gonorrhoeae strains lacking all Opa proteins or constitutively expressing the OpaD variant. In both cases, mutation of NGO0322 did not alter survival of gonococci in the presence of neutrophils. These results demonstrate the importance of controlling for the frequent and random variation in Opa protein production by N. gonorrhoeae when investigating host cell interactions.
Collapse
Affiliation(s)
- Mark T. Anderson
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Constitutively Opa-expressing and Opa-deficient neisseria gonorrhoeae strains differentially stimulate and survive exposure to human neutrophils. J Bacteriol 2013; 195:2982-90. [PMID: 23625842 DOI: 10.1128/jb.00171-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Neisseria gonorrhoeae (the gonococcus [Gc]) opacity-associated (Opa) proteins mediate bacterial binding and internalization by human epithelial cells and neutrophils (polymorphonuclear leukocytes [PMNs]). Investigating the contribution of Opa proteins to gonococcal pathogenesis is complicated by high-frequency phase variation of the opa genes. We therefore engineered a derivative of Gc strain FA1090 in which all opa genes were deleted in frame, termed Opaless. Opaless Gc remained uniformly Opa negative (Opa(-)), whereas cultures of predominantly Opa(-) parental Gc and an intermediate lacking the "translucent" subset of opa genes (ΔopaBEGK) stochastically gave rise to Opa-positive (Opa(+)) bacterial colonies. Loss of Opa expression did not affect Gc growth. Opaless Gc survived exposure to primary human PMNs and suppressed the PMN oxidative burst akin to parental, Opa(-) bacteria. Notably, unopsonized Opaless Gc was internalized by adherent, chemokine-primed, primary human PMNs, by an actin-dependent process. When a non-phase-variable, in-frame allele of FA1090 opaD was reintroduced into Opaless Gc, the bacteria induced the PMN oxidative burst, and OpaD(+) Gc survived less well after exposure to PMNs compared to Opa(-) bacteria. These derivatives provide a robust system for assessing the role of Opa proteins in Gc biology.
Collapse
|
7
|
Stohl EA, Chan YA, Hackett KT, Kohler PL, Dillard JP, Seifert HS. Neisseria gonorrhoeae virulence factor NG1686 is a bifunctional M23B family metallopeptidase that influences resistance to hydrogen peroxide and colony morphology. J Biol Chem 2012; 287:11222-33. [PMID: 22334697 DOI: 10.1074/jbc.m111.338830] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Symptomatic gonococcal infection, caused exclusively by the human-specific pathogen Neisseria gonorrhoeae (the gonococcus), is characterized by the influx of polymorphonuclear leukocytes (PMNs) to the site of infection. Although PMNs possess a potent antimicrobial arsenal comprising both oxidative and non-oxidative killing mechanisms, gonococci survive this interaction, suggesting that the gonococcus has evolved many defenses against PMN killing. We previously identified the NG1686 protein as a gonococcal virulence factor that protects against both non-oxidative PMN-mediated killing and oxidative killing by hydrogen peroxide. In this work, we show that deletion of ng1686 affects gonococcal colony morphology but not cell morphology and that overexpression of ng1686 does not confer enhanced survival to hydrogen peroxide on gonococci. NG1686 contains M23B endopeptidase active sites found in proteins that cleave bacterial cell wall peptidoglycan. Strains of N. gonorrhoeae expressing mutant NG1686 proteins with substitutions in many, but not all, conserved metallopeptidase active sites recapitulated the hydrogen peroxide sensitivity and altered colony morphology of the Δng1686 mutant strain. We showed that purified NG1686 protein degrades peptidoglycan in vitro and that mutations in many conserved active site residues abolished its degradative activity. Finally, we demonstrated that NG1686 possesses both dd-carboxypeptidase and endopeptidase activities. We conclude that the NG1686 protein is a M23B peptidase with dual activities that targets the cell wall to affect colony morphology and resistance to hydrogen peroxide and PMN-mediated killing.
Collapse
Affiliation(s)
- Elizabeth A Stohl
- Department of Microbiology-Immunology, Northwestern Medical School Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | |
Collapse
|
8
|
A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol 2012; 10:178-90. [PMID: 22290508 DOI: 10.1038/nrmicro2713] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are Gram-negative bacterial pathogens that are exquisitely adapted for growth at human mucosal surfaces and for efficient transmission between hosts. One factor that is essential to neisserial pathogenesis is the interaction between the bacteria and neutrophils, which are recruited in high numbers during infection. Although this vigorous host response could simply reflect effective immune recognition of the bacteria, there is mounting evidence that in fact these obligate human pathogens manipulate the innate immune response to promote infectious processes. This Review summarizes the mechanisms used by pathogenic neisseriae to resist and modulate the antimicrobial activities of neutrophils. It also details some of the major outstanding questions about the Neisseria-neutrophil relationship and proposes potential benefits of this relationship for the pathogen.
Collapse
|
9
|
Jerse AE, Wu H, Packiam M, Vonck RA, Begum AA, Garvin LE. Estradiol-Treated Female Mice as Surrogate Hosts for Neisseria gonorrhoeae Genital Tract Infections. Front Microbiol 2011; 2:107. [PMID: 21747807 PMCID: PMC3129519 DOI: 10.3389/fmicb.2011.00107] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/28/2011] [Indexed: 12/16/2022] Open
Abstract
Historically, animal modeling of gonorrhea has been hampered by the exclusive adaptation of Neisseria gonorrhoeae to humans. Genital tract infection can be established in female mice that are treated with 17β-estradiol, however, and many features of experimental murine infection mimic human infection. Here we review the colonization kinetics and host response to experimental murine gonococcal infection, including mouse strain differences and evidence that IL-17 responses, toll-like receptor 4, and T regulatory cells play a role in infection. We also discuss the strengths and limitations of the mouse system and the potential of transgenic mice to circumvent host restrictions. Additionally, we review studies with genetically defined mutants that demonstrated a role for sialyltransferase and the MtrC-MtrD-MtrE active efflux pump in evading innate defenses in vivo, but not for factors hypothesized to protect against the phagocytic respiratory burst and H(2)O(2)-producing lactobacilli. Studies using estradiol-treated mice have also revealed the existence of non-host-restricted iron sources in the female genital tract and the influence of hormonal factors on colonization kinetics and selection for opacity (Opa) protein expression. Recent work by others with estradiol-treated mice that are transgenic for human carcinoembryonic adhesion molecules (CEACAMs) supports a role for Opa proteins in enhancing cellular attachment and thus reduced shedding of N. gonorrhoeae. Finally we discuss the use of the mouse model in product testing and a recently developed gonorrhea chlamydia coinfection model.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
10
|
Johnson MB, Criss AK. Resistance of Neisseria gonorrhoeae to neutrophils. Front Microbiol 2011; 2:77. [PMID: 21747795 PMCID: PMC3128980 DOI: 10.3389/fmicb.2011.00077] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/31/2011] [Indexed: 01/04/2023] Open
Abstract
Infection with the human-specific bacterial pathogen Neisseria gonorrhoeae triggers a potent, local inflammatory response driven by polymorphonuclear leukocytes (neutrophils or PMNs). PMNs are terminally differentiated phagocytic cells that are a vital component of the host innate immune response and are the first responders to bacterial and fungal infections. PMNs possess a diverse arsenal of components to combat microorganisms, including the production of reactive oxygen species and release of degradative enzymes and antimicrobial peptides. Despite numerous PMNs at the site of gonococcal infection, N. gonorrhoeae can be cultured from the PMN-rich exudates of individuals with acute gonorrhea, indicating that some bacteria resist killing by neutrophils. The contribution of PMNs to gonorrheal pathogenesis has been modeled in vivo by human male urethral challenge and murine female genital inoculation and in vitro using isolated primary PMNs or PMN-derived cell lines. These systems reveal that some gonococci survive and replicate within PMNs and suggest that gonococci defend themselves against PMNs in two ways: they express virulence factors that defend against PMNs' oxidative and non-oxidative antimicrobial components, and they modulate the ability of PMNs to phagocytose gonococci and to release antimicrobial components. In this review, we will highlight the varied and complementary approaches used by N. gonorrhoeae to resist clearance by human PMNs, with an emphasis on gonococcal gene products that modulate bacterial-PMN interactions. Understanding how some gonococci survive exposure to PMNs will help guide future initiatives for combating gonorrheal disease.
Collapse
Affiliation(s)
| | - Alison K. Criss
- Department of Microbiology, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
11
|
Wade JJ, Graver MA. A liquid medium permitting anaerobic growth of Neisseria gonorrhoeae. J Microbiol Methods 2009; 79:364-6. [PMID: 19796658 DOI: 10.1016/j.mimet.2009.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 09/11/2009] [Accepted: 09/18/2009] [Indexed: 01/04/2023]
Abstract
Neisseria gonorrhoeae will grow in an anaerobic atmosphere if provided with nitrite as a terminal electron acceptor, and it is increasingly apparent that this important pathogen may grow anaerobically in vivo. By modifying a previously described chemically-defined medium we have produced a liquid medium capable of supporting growth of N. gonorrhoeae under strictly anaerobic conditions.
Collapse
Affiliation(s)
- Jeremy James Wade
- Health Protection Agency London Region Laboratory, Medical Microbiology, King's College Hospital, Denmark Hill, London, SE5 9RS, United Kingdom.
| | | |
Collapse
|
12
|
Criss AK, Katz BZ, Seifert HS. Resistance of Neisseria gonorrhoeae to non-oxidative killing by adherent human polymorphonuclear leucocytes. Cell Microbiol 2009; 11:1074-87. [PMID: 19290914 DOI: 10.1111/j.1462-5822.2009.01308.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symptomatic infection with Neisseria gonorrhoeae (Gc) is characterized by abundant neutrophil (PMN, polymorphonuclear leucocyte) influx, but PMNs cannot clear initial infection, indicating that Gc possess defences against PMN challenge. In this study, survival of liquid-grown Gc was monitored after synchronous infection of adherent, interleukin 8-treated human PMNs. 40-70% of FA1090 Gc survived 1 h of PMN exposure, after which bacterial numbers increased. Assays with bacterial viability dyes along with soybean lectin to detect extracellular Gc revealed that a subset of both intracellular and extracellular PMN-associated Gc were viable. Gc survival was unaffected in PMNs chemically or genetically deficient for producing reactive oxygen species (ROS). This result held true even for OpaB+ Gc, which stimulate neutrophil ROS production. Catalase- and RecA-deficient Gc, which are more sensitive to ROS in vitro, had no PMN survival defect. recN and ngo1686 mutant Gc also exhibit increased sensitivity to ROS and PMNs, but survival of these mutants was not rescued in ROS-deficient cells. The ngo1686 mutant showed increased sensitivity to extracellular but not intracellular PMN killing. We conclude that Gc are remarkably resistant to PMN killing, killing occurs independently of neutrophil ROS production and Ngo1686 and RecN defend Gc from non-oxidative PMN antimicrobial factors.
Collapse
Affiliation(s)
- Alison K Criss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
13
|
Criss AK, Seifert HS. Neisseria gonorrhoeae suppresses the oxidative burst of human polymorphonuclear leukocytes. Cell Microbiol 2008; 10:2257-70. [PMID: 18684112 PMCID: PMC2692872 DOI: 10.1111/j.1462-5822.2008.01205.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symptomatic infection with Neisseria gonorrhoeae (Gc) results in a potent polymorphonuclear leukocyte (PMN)-driven inflammatory response, but the mechanisms by which Gc withstands PMN attack are poorly defined. Here we report that Gc can suppress the PMN oxidative burst, a central component of the PMN antimicrobial arsenal. Primary human PMNs remained viable after exposure to liquid-grown, exponential-phase, opacity-associated protein (Opa)-negative Gc of strains FA1090 and MS11 but did not generate reactive oxygen species (ROS), even after bacterial opsonization. Liquid-grown FA1090 Gc expressing OpaB, an Opa protein previously correlated with PMN ROS production, elicited a minor PMN oxidative burst. PMN ROS production in response to Opa(-) and OpaB+ Gc was markedly enhanced if bacteria were agar-grown or if liquid-grown bacteria were heat-killed. Liquid-grown Opa(-) Gc inhibited the PMN oxidative burst elicited by isogenic dead bacteria, formylated peptides or Staphylococcus aureus but did not inhibit PMN ROS production by OpaB+ Gc or phorbol esters. Suppression of the oxidative burst required Gc-PMN contact and bacterial protein synthesis but not phagocytosis. These results suggest that viable Gc directly inhibits PMN signalling pathways required for induction of the oxidative burst, which may contribute to gonococcal pathogenesis during inflammatory stages of gonorrhoeal disease.
Collapse
Affiliation(s)
- Alison K Criss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | |
Collapse
|
14
|
McGee DJ, Chen GC, Rest RF. Expression of sialyltransferase is not required for interaction of Neisseria gonorrhoeae with human epithelial cells and human neutrophils. Infect Immun 1996; 64:4129-36. [PMID: 8926079 PMCID: PMC174347 DOI: 10.1128/iai.64.10.4129-4136.1996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sialyltransferase (Stase) in Neisseria gonorrhoeae organisms (gonococci [GC]) transfers sialic acid (N-acetylneuraminic acid [NANA]) from cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) mainly to the terminal galactose (Gal) residue in the Gal beta-1,4 N-acetylglucosamine (Gal-GlcNAc)-R lipooligosaccharide (LOS) structure. Sialylated GC resist killing by normal human serum, sometimes show reduced invasion of epithelial cells, and have reduced adhesion to and stimulation of human neutrophils. We questioned whether Stase itself modulates the interactions of GC with human epithelial cells and neutrophils in the absence of exogenous CMP-NANA. To that end, we treated strain F62 with ethyl methanesulfonate and grew approximately 175,000 colonies on CMP-NANA plates, and screened them with monoclonal antibody 1B2-1B7 (MAb 1B2). MAb 1B2 is specific for Gal-GlcNAc and reacts only with asialylated GC. We isolated 13 MAb 1B2-reactive mutants, including five null mutants, that had Stase activities ranging from barely detectable to fivefold less than that of wild-type (WT) F62. The LOS phenotype of Stase null mutants was identical to that of WT F62, yet the mutants could not sialylate their LOS when grown with CMP-NANA. The Stase null phenotype was rescuable to Stase+ by transformation with chromosomal DNA from WT F62. Stase null mutants remained serum sensitive even when grown with CMP-NANA. One Stase null mutant, ST94A, adhered to and invaded the human cervical epithelial cell line ME-180 at levels indistinguishable from that of WT F62 in the absence of CMP-NANA. In human neutrophil studies, ST94A stimulated the oxidative burst in and adhered to human neutrophils at levels similar to those of WT F62. ST94A and WT F62 were also phagocytically killed by neutrophils at similar levels. These results indicate that expression of Stase activity is not required for interaction of GC with human cells.
Collapse
Affiliation(s)
- D J McGee
- Department of Microbiology and Immunology, MCP-Hahnemann School of Medicine, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102, USA
| | | | | |
Collapse
|
15
|
Rest RF, Liu J, Talukdar R, Frangipane JV, Simon D. Interaction of pathogenic Neisseria with host defenses. What happens in vivo? Ann N Y Acad Sci 1994; 730:182-96. [PMID: 8080170 DOI: 10.1111/j.1749-6632.1994.tb44248.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N. gonorrhoeae initiates infection by adhering to and invading columnar epithelial cells. Over time these activities often induce inflammation, with the influx of neutrophils and serum into the urethral lumen, cervical os, conjunctiva, and the like. At least some of these infected niches contain CMP-NANA (cytidine monophospho-N-acetyl neuraminic acid, also called CMP-sialic), contain sialylated gonococci, and are relatively or strictly anaerobic due to neutrophil and gonococcal metabolism and to the site of disease, that is, the peritoneal cavity. Gonococci thus encounter environmental conditions, reagents, and substrates in the human body that are not normally present in vitro. Knapp and Clark were the first to successfully grow gonococci anaerobically in an easily reproducible system, allowing researchers to begin to investigate in vitro the effects of anaerobiosis on gonococcal virulence traits. As a result of a series of elegant and in depth studies, Smith and Parsons and their colleagues showed that growth in CMP-NANA confers on the gonococcus a high degree of phenotypic (readily reversible) serum resistance and that CMP-NANA is available in vivo at sites of gonococcal infection and disease; gonococci become covalently coated with sialic acid and they become serum resistant (reviewed in refs. 8-10). Given that gonococci growing in the absence of oxygen or in the presence of CMP-NANA probably more closely resemble gonococci growing inside the human host, we studied several possible virulence traits of gonococci cultivated under these conditions. We first observed that anaerobic growth (in the absence of CMP-NANA) increases gonococcal resistance to killing by low (but not high) concentrations of normal human serum. We also asked whether anaerobic growth affected gonococcal association with host cells. Contrary to the effects on serum killing, anaerobic growth (in the absence of CMP-NANA) does not appear to affect the ability of gonococci (expressing certain adhesive outer membrane proteins called Opa proteins) to bind to and enter human epithelial cell lines or to bind to or resist killing by human neutrophils. The results from studies investigating the modulatory role of CMP-NANA were more striking. Growth in CMP-NANA dramatically inhibits the adherence of Opa+ gonococci to human neutrophils. It does not, however, appear to significantly decrease their sensitivity to phagocytic killing or to in vitro killing by lysosomal contents (aqueous extracts of human neutrophil granules).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R F Rest
- Department of Microbiology and Immunology, Hahnemann University School of Medicine, Philadelphia, Pennsylvania 19102-1192
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- T F Meyer
- Max-Planck-Institut für Biologie, Abt. Infektionsbiologie, Tübingen, Germany
| | | | | |
Collapse
|
17
|
Rest RF, Speert DP. Measurement of nonopsonic phagocytic killing by human and mouse phagocytes. Methods Enzymol 1994; 236:91-108. [PMID: 7968642 DOI: 10.1016/0076-6879(94)36010-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R F Rest
- Department of Microbiology and Immunology, Hahnemann University School of Medicine, Philadelphia, Pennsylvania 19102
| | | |
Collapse
|
18
|
Frangipane JV, Rest RF. Anaerobic growth and cytidine 5'-monophospho-N-acetylneuraminic acid act synergistically to induce high-level serum resistance in Neisseria gonorrhoeae. Infect Immun 1993; 61:1657-66. [PMID: 8478054 PMCID: PMC280748 DOI: 10.1128/iai.61.5.1657-1666.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In vivo, gonococci encounter a myriad of conditions not present in vitro. At some stages of infection and disease, gonococci may grow anaerobically, probably by using sodium nitrite as a terminal electron acceptor. Also, gonococci sialylate their lipooligosaccharide (LOS) in vivo, by using low concentrations of cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) present in host tissue. This sialylation is responsible for the acquired resistance of gonococci to both normal and immune human serum. Given that gonococci grown in the absence of oxygen or in the presence of CMP-NANA probably more closely resemble gonococci grown inside a human host, we studied the serum resistance of gonococci cultivated under these conditions. In the absence of CMP-NANA, anaerobically grown (anaerobic) gonococci were somewhat less sensitive to serum killing than were aerobically grown (aerobic) gonococci. However, anaerobic gonococci grown with 6 micrograms of CMP-NANA per ml exhibited almost complete serum resistance, while aerobic gonococci required 16-fold-higher CMP-NANA concentrations to achieve significant serum resistance. Anaerobic gonococci incubated in CMP-NANA converted to serum resistance two to three times faster than did similarly treated aerobic gonococci and incorporated up to six times as much sialic acid into their LOS. Gonococci can express several different LOS molecules. Anaerobic gonococci expressed the LOS molecule that acts as an acceptor for sialic acid from CMP-NANA in greater quantity than aerobic gonococci did. Finally, Triton X-100 extracts of anaerobic gonococci contained about four times more sialyltransferase activity than did extracts of aerobic gonococci. Sialyltransferase activity in these extracts was not inhibited by oxygen or enhanced by anaerobiosis. These data indicate that anaerobic conditions lead to altered LOS biosynthesis and to induction of sialyltransferase activity in gonococci. In vivo, where decreased oxygen levels and relevant concentrations of CMP-NANA are found, gonococci could readily become resistant to killing by normal and immune human serum.
Collapse
Affiliation(s)
- J V Frangipane
- Department of Microbiology and Immunology, Hahnemann University School of Medicine, Philadelphia, Pennsylvania 19102-1192
| | | |
Collapse
|