1
|
Lei EK, Azmat A, Henry KA, Hussack G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl Microbiol Biotechnol 2024; 108:232. [PMID: 38396192 PMCID: PMC10891261 DOI: 10.1007/s00253-024-13033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aruba Azmat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Chan C, Ng D, Schryvers AB. The Role of the Moraxella catarrhalis CopB Protein in Facilitating Iron Acquisition From Human Transferrin and Lactoferrin. Front Microbiol 2021; 12:714815. [PMID: 34630348 PMCID: PMC8497027 DOI: 10.3389/fmicb.2021.714815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Moraxella catarrhalis is a Gram-negative bacterium that is responsible for a substantial proportion of upper respiratory infections in children and lower respiratory infections in the elderly. Moraxella catarrhalis resides exclusively on the mucosal surfaces of the upper respiratory tract of humans and is capable of directly acquiring iron for growth from the host glycoproteins human transferrin (hTf) and human lactoferrin (hLf). The iron-bound form of these glycoproteins is initially captured by the surface lipoproteins Tf or Lf binding protein B (TbpB or LbpB) and delivered to the integral outer membrane TonB-dependent transport (TBDT) proteins, Tf binding protein A (TbpA) or Lf binding protein A (LbpA). The extraction of iron involves conformational changes in Lf and Tf to facilitate iron removal followed by its transport across the outer membrane by a well characterized process for TBDTs. Surprisingly the disruption of the gene encoding another TBDT, CopB, results in a reduction in the ability to grow on human Tf or Lf. The possibility that this could have been due to an artifact of mutant construction that resulted in the inhibition of TonB-mediated process was eliminated by a complete deletion of the CopB gene. A systematic evaluation of the impact on growth under various conditions by deletions of the genes encoding TbpA, LbpA, and CopB as well as mutations of the iron liganding residues and TonB box region of CopB was implemented. The results indicate that although CopB is capable of effectively acquiring iron from the growth medium, it does not directly acquire iron from Tf or Lf. We propose that the indirect effect on iron transport from Tf and Lf by CopB could possibly be explained by the association of TBDTs at gaps in the peptidoglycan layer that may enhance the efficiency of the process. This concept is supported by previous studies demonstrating an indirect effect on growth of Tf and Lf by deletion of the peptidoglycan binding outer membrane lipoprotein RmpM in Neisseria that also reduced the formation of larger complexes of TBDTs.
Collapse
Affiliation(s)
- Clement Chan
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dixon Ng
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Giebink GS, Bakaletz LO, Barenkamp SJ, Green B, Gu XX, Heikkinen T, Hotomi M, Karma P, Kurono Y, Kyd JM, Murphy TF, Ogra PL, Patel JA, Pelton SI. 6. Vaccine. Ann Otol Rhinol Laryngol 2016. [DOI: 10.1177/00034894051140s110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Yassin GM, Amin MA, Attia AS. Immunoinformatics Identifies a Lactoferrin Binding Protein A Peptide as a Promising Vaccine With a Global Protective Prospective Against Moraxella catarrhalis. J Infect Dis 2016; 213:1938-45. [PMID: 26908723 DOI: 10.1093/infdis/jiw062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/04/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Moraxella catarrhalis is an established pathogen that is causing substantial infections to both children and adults. However, so far there is no effective vaccine to halt the spread of these infections. METHODS Immunoinformatics tools were used to predict M. catarrhalis epitopes that could offer immunoprotection among major proportions of human populations worldwide. Mice were immunized with the best 3 peptides and then challenged with M. catarrhalis in the pulmonary clearance model. Finally, antibodies against these epitopes were detected in humans. RESULTS Immunoinformatics analyses identified 44 epitopes that are predicted to be good major histocompatibility complex class II binders and at the same time show high population coverage worldwide. After intraperitoneal immunization of mice with the best 3 peptides, peptide A, derived from lactoferrin-binding protein A, showed superior activity in immunogenicity and in clearing M. catarrhalis from mouse lungs. Higher clearance was obtained by combining intraperitoneal and intranasal immunization. In the serum samples from children with otitis media infected with M. catarrhalis, antibody levels against peptide A were significantly lower than in samples from children without otitis media. CONCLUSIONS Peptide A is the first promising peptide-based vaccine against M. catarrhalis Immunoinformatics predicts that it should have a global protection around the world.
Collapse
Affiliation(s)
| | - Magdy A Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
5
|
Mocca B, Yin D, Gao Y, Wang W. Moraxella catarrhalis-produced nitric oxide has dual roles in pathogenicity and clearance of infection in bacterial-host cell co-cultures. Nitric Oxide 2015; 51:52-62. [PMID: 26537639 DOI: 10.1016/j.niox.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/30/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
In humans, the free radical nitric oxide (NO) is a concentration-dependent multifunctional signaling or toxic molecule that modulates various physiological and pathological processes, and innate immunity against bacterial infections. Because the expression of bacterial genes encoding nitrite reductase (AniA) and NO reductase (NorB) is highly upregulated in biofilms in vitro, it is important to investigate whether bacterial NO-metabolism might subvert host NO signaling and play pathogenic roles during infection. The Moraxella catarrhalis AniA and NorB directly function in production and reduction of NO. Using M. catarrhalis-human bronchial epithelial cell (HBEC) co-cultures, we recently reported AniA/nitrite-dependent cytotoxic effects on HBECs, including altered protein profiles of HBECs and induced HBEC apoptosis, suggesting bacterial nitrite reduction likely dysregulates host cell gene expression. To further clarify whether nitrite reduction-derived NO or nitrite-dependent stimulation of bacterial growth was responsible for adverse effects on HBECs, we monitored bacterial nitrite reduction, levels of NO in co-cultures and resulted dynamic effects on HBEC proliferation and bacterial viability. This study demonstrated that M. catarrhalis nitrite reduction-derived NO was responsible for observed adverse effects on HBECs at mid-to-late stages of infection. More importantly, our data showed that while nitrite promoted bacterial growth and biofilm formation at early hours of infection, nitrite reduction-derived NO was toxic towards M. catarrhalis in maturing biofilms, suggesting nitrite reduction-derived NO might be a possible dualistic mechanism by which M. catarrhalis promotes diseases and spontaneous resolutions.
Collapse
Affiliation(s)
- Brian Mocca
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Dandan Yin
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Yamei Gao
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Wei Wang
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA.
| |
Collapse
|
6
|
Abstract
INTRODUCTION Moraxella catarrhalis is a prominent pathogen that causes acute otitis media in children and lower respiratory tract infections in adults, resulting in a significant socioeconomic burden on healthcare systems globally. No vaccine is currently available for M. catarrhalis. Promising M. catarrhalis target antigens have been characterized in animal models and should soon enter human clinical trials. AREAS COVERED This review discusses the detailed features and research status of current candidate target antigens for an M. catarrhalis vaccine. The approaches for assessing M. catarrhalis vaccine efficacy are also discussed. EXPERT OPINION Targeting the key molecules contributing to serum resistance may be a viable strategy to identify effective vaccine targets among M. catarrhalis antigens. Elucidating the role and mechanisms of the serum and mucosal immune responses to M. catarrhalis is significant for vaccine target selection, testing and evaluation. Developing animal models closely simulating M. catarrhalis-caused human respiratory diseases is of great benefit in better understanding pathogenesis and evaluating vaccine efficacy. Carrying out clinical trials will be a landmark in the progress of M. catarrhalis vaccine research. Combined multicomponent vaccines will be a focus of future M. catarrhalis vaccine studies.
Collapse
Affiliation(s)
- Dabin Ren
- a 1 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA +1 585 922 3706 ;
| | - Michael E Pichichero
- b 2 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA
| |
Collapse
|
7
|
Augustyniak D, Piekut M, Majkowska-Skrobek G, Skała J. Bactericidal, opsonophagocytic and anti-adhesive effectiveness of cross-reactive antibodies against Moraxella catarrhalis. Pathog Dis 2015; 73:ftu026. [PMID: 25743473 DOI: 10.1093/femspd/ftu026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Moraxella catarrhalis is a human-restricted significant respiratory tract pathogen. The bacteria accounts for 15-20% of cases of otitis media in children and is an important causative agent of infectious exacerbations of chronic obstructive pulmonary disease in adults. The acquisition of new M. catarrhalis strains plays a central role in the pathogenesis of both mentioned disorders. The antibody-dependent immune response to this pathogen is critical for its effective elimination. Thus, the knowledge about the protective threshold of cross-reactive antibodies with defined functionality seems to be important. The complex analysis of broad-spectrum effectiveness of cross-reactive antibodies against M. catarrhalis has never been performed. The goal of the present study was to demonstrate and compare the bactericidal, opsonophagocytic and blocking function of cross-reacting antibodies produced in response to this bacterium or purified outer membrane proteins incorporated in Zwittergent-based micelles. The multivalent immunogens were used in order to better mimic the natural response of the host. The demonstrated broad-spectrum effectiveness of cross-reactive antibodies in pathogen eradication or inhibition strongly indicates that this pool of antibodies by recognition of pivotal shared M. catarrhalis surface epitopes seems to be an essential additional source to control host-microbe interaction.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland;
| | - Monika Piekut
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Grażyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Jacek Skała
- Department of Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
8
|
A Moraxella catarrhalis two-component signal transduction system necessary for growth in liquid media affects production of two lysozyme inhibitors. Infect Immun 2014; 83:146-60. [PMID: 25312959 DOI: 10.1128/iai.02486-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There are a paucity of data concerning gene products that could contribute to the ability of Moraxella catarrhalis to colonize the human nasopharynx. Inactivation of a gene (mesR) encoding a predicted response regulator of a two-component signal transduction system in M. catarrhalis yielded a mutant unable to grow in liquid media. This mesR mutant also exhibited increased sensitivity to certain stressors, including polymyxin B, SDS, and hydrogen peroxide. Inactivation of the gene (mesS) encoding the predicted cognate sensor (histidine) kinase yielded a mutant with the same inability to grow in liquid media as the mesR mutant. DNA microarray and real-time reverse transcriptase PCR analyses indicated that several genes previously shown to be involved in the ability of M. catarrhalis to persist in the chinchilla nasopharynx were upregulated in the mesR mutant. Two other open reading frames upregulated in the mesR mutant were shown to encode small proteins (LipA and LipB) that had amino acid sequence homology to bacterial adhesins and structural homology to bacterial lysozyme inhibitors. Inactivation of both lipA and lipB did not affect the ability of M. catarrhalis O35E to attach to a human bronchial epithelial cell line in vitro. Purified recombinant LipA and LipB fusion proteins were each shown to inhibit human lysozyme activity in vitro and in saliva. A lipA lipB deletion mutant was more sensitive than the wild-type parent strain to killing by human lysozyme in the presence of human apolactoferrin. This is the first report of the production of lysozyme inhibitors by M. catarrhalis.
Collapse
|
9
|
Identification of an outer membrane lipoprotein involved in nasopharyngeal colonization by Moraxella catarrhalis in an animal model. Infect Immun 2014; 82:2287-99. [PMID: 24643539 DOI: 10.1128/iai.01745-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Colonization of the human nasopharynx by Moraxella catarrhalis is presumed to involve attachment of this bacterium to the mucosa. DNA microarray analysis was used to determine whether attachment of M. catarrhalis to human bronchial epithelial (HBE) cells in vitro affected gene expression in this bacterium. Attachment affected expression of at least 454 different genes, with 163 being upregulated and 291 being downregulated. Among the upregulated genes was one (ORF113) previously annotated as encoding a protein with some similarity to outer membrane protein A (OmpA). The protein encoded by ORF113 was predicted to have a signal peptidase II cleavage site, and globomycin inhibition experiments confirmed that this protein was indeed a lipoprotein. The ORF113 protein also contained a predicted peptidoglycan-binding domain in its C-terminal half. The use of mutant and recombinant M. catarrhalis strains confirmed that the ORF113 protein was present in outer membrane preparations, and this protein was also shown to be at least partially exposed on the bacterial cell surface. A mutant unable to produce the ORF113 protein showed little or no change in its growth rate in vitro, in its ability to attach to HBE cells in vitro, or in its autoagglutination characteristics, but it did exhibit a reduced ability to survive in the chinchilla nasopharynx. This is the first report of a lipoprotein essential to the ability of M. catarrhalis to persist in an animal model.
Collapse
|
10
|
Abstract
Otitis media is a major cause of morbidity in 80% of all children less than 3 years of age and often goes undiagnosed in the general population. There is evidence to suggest that the incidence of otitis media is increasing. The major cause of otitis media is infection of the middle ear with microbes from the nasopharynx. The anatomical orientation of the eustachian tube, in association with a number of risk factors, predisposes infants and young children to the infection. Bacteria are responsible for approximately 70% of cases of acute otitis media, with Streptococcus pneumoniae, nontypeable Haemophilus influenzae and Moraxella catarrhalis predominating as the causative agents. The respiratory viruses, respiratory syncytial virus, rhinovirus, parainfluenza and influenza, account for 30% of acute otitis media cases. Over the past decade, there has been a profound increase in the reported resistance to antibiotics, which, with increased disease burden, has focussed attention on vaccine development for otitis media. A polymicrobial formulation containing antigens from all major pathogens would have the greatest potential to deliver a sustained reduction in the disease burden globally. The disappointing outcomes for otitis media seen with the polysaccharide pneumococcal conjugate vaccine have raised major challenges for the vaccination strategy. Clearly, more knowledge is required concerning immune mechanisms in the middle ear, as well as vaccine formulations containing antigens that are more representative of the polymicrobial nature of the disease. Antigens that have been extensively tested in animal models are now available for testing in human subjects.
Collapse
Affiliation(s)
- Allan W Cripps
- Griffith University, School of Medicine, Gold Coast Campus, PMB 50, Gold Coast, MC, QLD, 9726, Australia.
| | | |
Collapse
|
11
|
Mawas F, Ho MM, Corbel MJ. Current progress withMoraxella catarrhalisantigens as vaccine candidates. Expert Rev Vaccines 2014; 8:77-90. [DOI: 10.1586/14760584.8.1.77] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Shaffer TL, Balder R, Buskirk SW, Hogan RJ, Lafontaine ER. Use of the Chinchilla model to evaluate the vaccinogenic potential of the Moraxella catarrhalis filamentous hemagglutinin-like proteins MhaB1 and MhaB2. PLoS One 2013; 8:e67881. [PMID: 23844117 PMCID: PMC3699455 DOI: 10.1371/journal.pone.0067881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Moraxella catarrhalis causes significant health problems, including 15–20% of otitis media cases in children and ∼10% of respiratory infections in adults with chronic obstructive pulmonary disease. The lack of an efficacious vaccine, the rapid emergence of antibiotic resistance in clinical isolates, and high carriage rates reported in children are cause for concern. In addition, the effectiveness of conjugate vaccines at reducing the incidence of otitis media caused by Streptococcus pneumoniae and nontypeable Haemophilus influenzae suggest that M. catarrhalis infections may become even more prevalent. Hence, M. catarrhalis is an important and emerging cause of infectious disease for which the development of a vaccine is highly desirable. Studying the pathogenesis of M. catarrhalis and the testing of vaccine candidates have both been hindered by the lack of an animal model that mimics human colonization and infection. To address this, we intranasally infected chinchilla with M. catarrhalis to investigate colonization and examine the efficacy of a protein-based vaccine. The data reveal that infected chinchillas produce antibodies against antigens known to be major targets of the immune response in humans, thus establishing immune parallels between chinchillas and humans during M. catarrhalis infection. Our data also demonstrate that a mutant lacking expression of the adherence proteins MhaB1 and MhaB2 is impaired in its ability to colonize the chinchilla nasopharynx, and that immunization with a polypeptide shared by MhaB1 and MhaB2 elicits antibodies interfering with colonization. These findings underscore the importance of adherence proteins in colonization and emphasize the relevance of the chinchilla model to study M. catarrhalis–host interactions.
Collapse
Affiliation(s)
- Teresa L. Shaffer
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Rachel Balder
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Sean W. Buskirk
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia, United States of America
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Su YC, Singh B, Riesbeck K. Moraxella catarrhalis: from interactions with the host immune system to vaccine development. Future Microbiol 2013; 7:1073-100. [PMID: 22953708 DOI: 10.2217/fmb.12.80] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Moraxella catarrhalis is a human-restricted commensal that over the last two decades has developed into an emerging respiratory tract pathogen. The bacterial species is equipped with various adhesins to facilitate its colonization. Successful evasion of the human immune system is a prerequisite for Moraxella infection. This strategy involves induction of an excessive proinflammatory response, intervention of granulocyte recruitment to the infection site, activation of selected pattern recognition receptors and cellular adhesion molecules to counteract the host bacteriolytic attack, as well as, finally, reprogramming of antigen presenting cells. Host immunomodulator molecules are also exploited by Moraxella to aid in resistance against complement killing and host bactericidal molecules. Thus, breaking the basis of Moraxella immune evasion mechanisms is fundamental for future invention of effective therapy in controlling Moraxella infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
14
|
Bacterium-generated nitric oxide hijacks host tumor necrosis factor alpha signaling and modulates the host cell cycle in vitro. J Bacteriol 2012; 194:4059-68. [PMID: 22636782 DOI: 10.1128/jb.00476-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, nitric oxide (NO·) is an important signal molecule with concentration-dependent and often controversial functions of promoting cell survival and inducing cell death. An inducible nitric oxide synthase (iNOS) in various mammalian cells produces higher levels of NO· from l-arginine upon infections to eliminate pathogens. In this study, we reveal novel pathogenic roles of NO· generated by bacteria in bacterium-host cell cocultures using Moraxella catarrhalis, a respiratory tract disease-causing bacterium, as a biological producer of NO·. We recently demonstrated that M. catarrhalis cells that express the nitrite reductase (AniA protein) can produce NO· by reducing nitrite. Our study suggests that, in the presence of pathophysiological levels of nitrite, this opportunistic pathogen hijacks host cell signaling and modulates host gene expression through its ability to produce NO· from nitrite. Bacterium-generated NO· significantly increases the secretion of tumor necrosis factor alpha (TNF-α) and modulates the expression of apoptotic proteins, therefore triggering host cell programmed death partially through TNF-α signaling. Furthermore, our study reveals that bacterium-generated NO· stalls host cell division and directly results in the death of dividing cells by reducing the levels of an essential regulator of cell division. This study provides unique insight into why NO· may exert more severe cytotoxic effects on fast growing cells, providing an important molecular basis for NO·-mediated pathogenesis in infections and possible therapeutic applications of NO·-releasing molecules in tumorigenesis. This study strongly suggests that bacterium-generated NO· can play important pathogenic roles during infections.
Collapse
|
15
|
CHRISTENSEN JENSJØRGEN. Moraxella (Branhamella) catarrhalis: Clinical, microbiological and immunological features in lower respiratory tract infections. APMIS 2011. [DOI: 10.1111/j.1600-0463.1999.tb05670.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Ren D, Yu S, Gao S, Peng D, Petralia RS, Muszynski A, Carlson RW, Robbins JB, Tsai CM, Lim DJ, Gu XX. Mutant lipooligosaccharide-based conjugate vaccine demonstrates a broad-spectrum effectiveness against Moraxella catarrhalis. Vaccine 2011; 29:4210-7. [PMID: 21501641 DOI: 10.1016/j.vaccine.2011.03.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 03/20/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
There is no licensed vaccine available against Moraxella catarrhalis, an exclusive human pathogen responsible for otitis media in children and respiratory infections in adults. We previously developed conjugate vaccine candidates based on lipooligosaccharides (LOSs) of M. catarrhalis serotypes A, B, and C, each of which was shown to cover a portion of the clinical strains. To generate conserved LOS antigens and eliminate a potential autoimmune response to a similar epitope between M. catarrhalis LOS moiety Galα1-4Galβ1-4Glc and human P(k) antigen, two LOS mutants from strain O35E were constructed. Mutant O35Elgt5 or O35EgalE revealed a deletion of one or two terminal galactose residues of wild type O35E LOS. Each LOS molecule was purified, characterized, detoxified, and coupled to tetanus toxoid (TT) to form conjugates, namely dLOS-TT. Three subcutaneous immunizations using dLOS-TT from O35Elgt5 or O35EgalE elicited significant increases (a 729- or 1263-fold above the preimmune serum levels) of serum immunoglobulin (Ig)G against O35E LOS in rabbits with an adjuvant or without an adjuvant (an 140- or 140-fold above the preimmune serum levels). Rabbit antisera demonstrated elevated complement-mediated bactericidal activities against the wild type strain O35E. The rabbit sera elicited by O35Elgt5 dLOS-TT were further examined and showed cross bactericidal activity against all additional 19 M. catarrhalis strains and clinical isolates studied. Moreover, the rabbit sera displayed cross-reactivity not only among three serotype strains but also clinical isolates in a whole-cell enzyme-linked immunosorbent assay (ELISA), which was further confirmed under transmission electron microscopy. In conclusion, O35Elgt5 dLOS-TT may act as a vaccine against most M. catarrhalis strains and therefore can be used for further in vivo efficacy studies.
Collapse
Affiliation(s)
- Dabin Ren
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
The Moraxella catarrhalis nitric oxide reductase is essential for nitric oxide detoxification. J Bacteriol 2011; 193:2804-13. [PMID: 21441505 DOI: 10.1128/jb.00139-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Moraxella catarrhalis is a Gram-negative obligate aerobe that is an important cause of human respiratory tract infections. The M. catarrhalis genome encodes a predicted truncated denitrification pathway that reduces nitrate to nitrous oxide. We have previously shown that expression of both the M. catarrhalis aniA (encoding a nitrite reductase) and norB (encoding a putative nitric oxide reductase) genes is repressed by the transcriptional regulator NsrR under aerobic conditions and that M. catarrhalis O35E nsrR mutants are unable to grow in the presence of low concentrations of nitrite (W. Wang, et al., J. Bacteriol. 190:7762-7772, 2008). In this study, we constructed an M. catarrhalis norB mutant and showed that planktonic growth of this mutant is inhibited by low levels of nitrite, whether or not an nsrR mutation is present. To determine the importance of NorB in this truncated denitrification pathway, we analyzed the metabolism of nitrogen oxides by norB, aniA norB, and nsrR norB mutants. We found that norB mutants are unable to reduce nitric oxide and produce little or no nitrous oxide from nitrite. Furthermore, nitric oxide produced from nitrite by the AniA protein is bactericidal for a Moraxella catarrhalis O35E norB mutant but not for wild-type O35E bacteria under aerobic growth conditions in vitro, suggesting that nitric oxide catabolism in M. catarrhalis is accomplished primarily by the norB gene product. Measurement of bacterial protein S-nitrosylation directly implicates nitrosative stress resulting from AniA-dependent nitric oxide formation as a cause of the growth inhibition of norB and nsrR mutants by nitrite.
Collapse
|
18
|
Mitov IG, Gergova RT, Ouzounova-Raykova VV. Distribution of Genes Encoding Virulence Factors ompB2, ompCD, ompE, β-Lactamase and Serotype in Pathogenic and Colonizing Strains of Moraxella catarrhalis. Arch Med Res 2010; 41:530-5. [DOI: 10.1016/j.arcmed.2010.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 09/30/2010] [Indexed: 11/27/2022]
|
19
|
Jetter M, Spaniol V, Troller R, Aebi C. Down-regulation of porin M35 in Moraxella catarrhalis by aminopenicillins and environmental factors and its potential contribution to the mechanism of resistance to aminopenicillins. J Antimicrob Chemother 2010; 65:2089-96. [PMID: 20801781 PMCID: PMC2941675 DOI: 10.1093/jac/dkq312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Objectives The outer membrane protein M35 of Moraxella catarrhalis is an antigenically conserved porin. Knocking out M35 significantly increases the MICs of aminopenicillins. The aim of this study was to determine the biological mechanism of this potentially new antimicrobial resistance mechanism of M. catarrhalis and the behaviour of M35 in general stress situations. Methods PCR using m35-specific primers was used to detect the m35 gene in clinical isolates. The m35 mRNA expression of strains 300, O35E and 415 after exposure to amoxicillin and different stress conditions was measured by real-time PCR and normalized in relation to their 16S rRNA expression. The expression of M35 protein was analysed by SDS-PAGE and western blotting. Results Screening of 52 middle ear isolates resulted in positive PCR products for all tested strains. The analysis of m35 mRNA expression after amoxicillin treatment showed 24%–85% down-regulation compared with the respective amoxicillin-free controls in all three strains tested. Also, analysis of protein concentrations revealed lower M35 expression after growth with amoxicillin. Investigation of M35 during general stress responses showed down-regulation of the porin with growth at 26°C and 42°C, under hyperosmolar stress and under iron restriction. Conclusions The reduced expression of M35 after aminopenicillin exposure indicates a novel resistance mechanism against aminopenicillins in M. catarrhalis, which may be relevant in vivo. The differences in expression after different stress treatments demonstrate that M35 is involved in general stress responses.
Collapse
Affiliation(s)
- Marion Jetter
- Institute for Infectious Diseases, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
20
|
Characterization of proteins Msp22 and Msp75 as vaccine antigens of Moraxella catarrhalis. Vaccine 2009; 27:7065-72. [PMID: 19786139 DOI: 10.1016/j.vaccine.2009.09.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/31/2009] [Accepted: 09/16/2009] [Indexed: 11/24/2022]
Abstract
Moraxella catarrhalis is a respiratory tract pathogen causing otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. This study examined two newly identified proteins as potential vaccine antigens. Antisera raised to recombinant purified proteins Msp22 and Msp75 recognized corresponding native proteins in multiple strains of M. catarrhalis. Vaccine formulations individually administered subcutaneously and intranasally showed enhanced clearance of M. catarrhalis in a mouse pulmonary clearance model by both routes of administration. Msp22 and Msp75 are antigenically conserved proteins that induce potentially protective immune responses and should be examined further as vaccine antigens for M. catarrhalis.
Collapse
|
21
|
Outer membrane porin M35 of Moraxella catarrhalis mediates susceptibility to aminopenicillins. BMC Microbiol 2009; 9:188. [PMID: 19732412 PMCID: PMC3224680 DOI: 10.1186/1471-2180-9-188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/04/2009] [Indexed: 11/17/2022] Open
Abstract
Background The outer membrane protein M35 is a conserved porin of type 1 strains of the respiratory pathogen Moraxella catarrhalis. It was previously shown that M35 is involved in the uptake of essential nutrients required for bacterial growth and for nasal colonization in mice. The aim of this study was (i) to characterize the potential roles of M35 in the host-pathogen interactions considering the known multifunctionality of porins and (ii) to characterize the degree of conservation in the phylogenetic older subpopulation (type 2) of M. catarrhalis. Results Isogenic m35 mutants of the type 1 strains O35E, 300 and 415 were tested for their antimicrobial susceptibility against 15 different agents. Differences in the MIC (Minimum Inhibitory Concentration) between wild-type and mutant strains were found for eight antibiotics. For ampicillin and amoxicillin, we observed a statistically significant 2.5 to 2.9-fold MIC increase (p < 0.03) in the m35 mutants. Immunoblot analysis demonstrated that human saliva contains anti-M35 IgA. Wild-type strains and their respective m35 mutants were indistinguishable with respect to the phenotypes of autoagglutination, serum resistance, iron acquisition from human lactoferrin, adherence to and invasion of respiratory tract epithelial cells, and proinflammatory stimulation of human monocytes. DNA sequencing of m35 from the phylogenetic subpopulation type 2 strain 287 revealed 94.2% and 92.8% identity on the DNA and amino acid levels, respectively, in comparison with type 1 strains. Conclusion The increase in MIC for ampicillin and amoxicillin, respectively, in the M35-deficient mutants indicates that this porin affects the outer membrane permeability for aminopenicillins in a clinically relevant manner. The presence of IgA antibodies in healthy human donors indicates that M35 is expressed in vivo and recognized as a mucosal antigen by the human host. However, immunoblot analysis of human saliva suggests the possibility of antigenic variation of immunoreactive epitopes, which warrants further analysis before M35 can be considered a potential vaccine candidate.
Collapse
|
22
|
Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J Bacteriol 2008; 190:7762-72. [PMID: 18820017 DOI: 10.1128/jb.01032-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Growth of Moraxella catarrhalis in a biofilm resulted in marked upregulation of two open reading frames (ORFs), aniA and norB, predicted to encode a nitrite reductase and a nitric oxide reductase, respectively (W. Wang, L. Reitzer, D. A. Rasko, M. M. Pearson, R. J. Blick, C. Laurence, and E. J. Hansen, Infect. Immun. 75:4959-4971, 2007). An ORF designated nsrR, which was located between aniA and norB, was shown to encode a predicted transcriptional regulator. Inactivation of nsrR resulted in increased expression of aniA and norB in three different M. catarrhalis strains, as measured by both DNA microarray analysis and quantitative reverse transcriptase PCR. Provision of a wild-type nsrR gene in trans in an nsrR mutant resulted in decreased expression of the AniA protein. DNA microarray analysis revealed that two other ORFs (MC ORF 683 and MC ORF 1550) were also consistently upregulated in an nsrR mutant. Consumption of both nitrite and nitric oxide occurred more rapidly with cells of an nsrR mutant than with wild-type cells. However, growth of nsrR mutants was completely inhibited by a low level of sodium nitrite. This inhibition of growth by nitrite was significantly reversed by introduction of an aniA mutation into the nsrR mutant and was completely reversed by the presence of a wild-type nsrR gene in trans. NsrR regulation of the expression of aniA was sensitive to nitrite, whereas NsrR regulation of norB was sensitive to nitric oxide.
Collapse
|
23
|
Gao S, Peng D, Zhang W, Muszyński A, Carlson RW, Gu XX. Identification of two late acyltransferase genes responsible for lipid A biosynthesis in Moraxella catarrhalis. FEBS J 2008; 275:5201-14. [PMID: 18795947 DOI: 10.1111/j.1742-4658.2008.06651.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipid A is a biological component of the lipo-oligosaccharide of a human pathogen, Moraxella catarrhalis. No other acyltransferases except for UDP-GlcNAc acyltransferase, responsible for lipid A biosynthesis in M. catarrhalis, have been identified. By bioinformatics, two late acyltransferase genes, lpxX and lpxL, responsible for lipid A biosynthesis were identified, and knockout mutants of each gene in M. catarrhalis strain O35E were constructed and named O35ElpxX and O35ElpxL. Structural analysis of lipid A from the parental strain and derived mutants showed that O35ElpxX lacked two decanoic acids (C10:0), whereas O35ElpxL lacked one dodecanoic (lauric) acid (C12:0), suggesting that lpxX encoded decanoyl transferase and lpxL encoded dodecanoyl transferase. Phenotypic analysis revealed that both mutants were similar to the parental strain in their toxicity in vitro. However, O35ElpxX was sensitive to the bactericidal activity of normal human serum and hydrophobic reagents. It had a reduced growth rate in broth and an accelerated bacterial clearance at 3 h (P < 0.01) or 6 h (P < 0.05) after an aerosol challenge in a murine model of bacterial pulmonary clearance. O35ElpxL presented similar patterns to those of the parental strain, except that it was slightly sensitive to the hydrophobic reagents. These results indicate that these two genes, particularly lpxX, encoding late acyltransferases responsible for incorporation of the acyloxyacyl-linked secondary acyl chains into lipid A, are important for the biological activities of M. catarrhalis.
Collapse
Affiliation(s)
- Song Gao
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
24
|
Moraxella catarrhalis synthesizes an autotransporter that is an acid phosphatase. J Bacteriol 2007; 190:1459-72. [PMID: 18065547 DOI: 10.1128/jb.01688-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis O35E was shown to synthesize a 105-kDa protein that has similarity to both acid phosphatases and autotransporters. The N-terminal portion of the M. catarrhalis acid phosphatase A (MapA) was most similar (the BLAST probability score was 10(-10)) to bacterial class A nonspecific acid phosphatases. The central region of the MapA protein had similarity to passenger domains of other autotransporter proteins, whereas the C-terminal portion of MapA resembled the translocation domain of conventional autotransporters. Cloning and expression of the M. catarrhalis mapA gene in Escherichia coli confirmed the presence of acid phosphatase activity in the MapA protein. The MapA protein was shown to be localized to the outer membrane of M. catarrhalis and was not detected either in the soluble cytoplasmic fraction from disrupted M. catarrhalis cells or in the spent culture supernatant fluid from M. catarrhalis. Use of the predicted MapA translocation domain in a fusion construct with the passenger domain from another predicted M. catarrhalis autotransporter confirmed the translocation ability of this MapA domain. Inactivation of the mapA gene in M. catarrhalis strain O35E reduced the acid phosphatase activity expressed by this organism, and this mutation could be complemented in trans with the wild-type mapA gene. Nucleotide sequence analysis of the mapA gene from six M. catarrhalis strains showed that this protein was highly conserved among strains of this pathogen. Site-directed mutagenesis of a critical histidine residue (H233A) in the predicted active site of the acid phosphatase domain in MapA eliminated acid phosphatase activity in the recombinant MapA protein. This is the first description of an autotransporter protein that expresses acid phosphatase activity.
Collapse
|
25
|
Wang W, Reitzer L, Rasko DA, Pearson MM, Blick RJ, Laurence C, Hansen EJ. Metabolic analysis of Moraxella catarrhalis and the effect of selected in vitro growth conditions on global gene expression. Infect Immun 2007; 75:4959-71. [PMID: 17620351 PMCID: PMC2044516 DOI: 10.1128/iai.00073-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The nucleotide sequence from the genome of Moraxella catarrhalis ATCC 43617 was annotated and used both to assess the metabolic capabilities and limitations of this bacterium and to design probes for a DNA microarray. An absence of gene products for utilization of exogenous carbohydrates was noteworthy and could be correlated with published phenotypic data. Gene products necessary for aerobic energy generation were present, as were a few gene products generally ascribed to anaerobic systems. Enzymes for synthesis of all amino acids except proline and arginine were present. M. catarrhalis DNA microarrays containing 70-mer oligonucleotide probes were designed from the genome-derived nucleotide sequence data. Analysis of total RNA extracted from M. catarrhalis ATCC 43617 cells grown under iron-replete and iron-restricted conditions was used to establish the utility of these DNA microarrays. These DNA microarrays were then used to analyze total RNA from M. catarrhalis cells grown in a continuous-flow biofilm system and in the planktonic state. The genes whose expression was most dramatically increased by growth in the biofilm state included those encoding a nitrate reductase, a nitrite reductase, and a nitric oxide reductase. Real-time reverse transcriptase PCR analysis was used to validate these DNA microarray results. These results indicate that growth of M. catarrhalis in a biofilm results in increased expression of gene products which can function not only in energy generation but also in resisting certain elements of the innate immune response.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu DF, McMichael JC, Baker SM. Moraxella catarrhalis outer membrane protein CD elicits antibodies that inhibit CD binding to human mucin and enhance pulmonary clearance of M. catarrhalis in a mouse model. Infect Immun 2007; 75:2818-25. [PMID: 17403868 PMCID: PMC1932855 DOI: 10.1128/iai.00074-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane protein CD of Moraxella catarrhalis is considered to be a potential vaccine antigen against Moraxella infection. We purified the native CD from isolate O35E, administered it to mice, and detected considerable titers of anti-CD antibodies. Anti-CD sera were cross-reactive towards six different M. catarrhalis isolates and promoted bacterial clearance of O35E in a pulmonary challenge model. To circumvent the difficulty of generating large quantities of CD from M. catarrhalis for vaccine use, the CD gene from O35E was cloned into Escherichia coli, and the recombinant CD, expressed without a signal sequence or fusion tags, represented approximately 70% of the total E. coli proteins. The recombinant CD formed inclusion bodies that were solubilized with 6 M urea and then purified by ion-exchange chromatography, a procedure that produced soluble CD of high purity and yield. Mice immunized with the purified recombinant CD had significant titers of anti-CD antibodies that were cross-reactive towards 24 different M. catarrhalis isolates. Upon challenge, these mice showed enhanced bacterial clearance of both O35E and a heterologous M. catarrhalis isolate, TTA24. In an in vitro assay, antisera to either the native or the recombinant CD inhibited the binding activity of CD to human tracheobronchial mucin in a serum concentration-dependent manner, and the extent of inhibition appeared to correlate with the corresponding anti-CD antibody titer and whole-cell enzyme-linked immunosorbent assay titer. Our results demonstrate that the recombinant CD is a promising vaccine candidate for preventing Moraxella infection.
Collapse
Affiliation(s)
- Dai-Fang Liu
- Wyeth Vaccines Research, 401 N. Middletown Road 205/281, Pearl River, NY 10965, USA.
| | | | | |
Collapse
|
27
|
Hays JP, Gorkink R, Simons G, Peeters JK, Eadie K, Verduin CM, Verbrugh H, van Belkum A. High-throughput amplification fragment length polymorphism (htAFLP) analysis identifies genetic lineage markers but not complement phenotype-specific markers in Moraxella catarrhalis. Clin Microbiol Infect 2007; 13:55-62. [PMID: 17184288 DOI: 10.1111/j.1469-0691.2006.01582.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparative high-throughput amplified fragment length polymorphism (htAFLP) analysis was performed on a set of 25 complement-resistant and 23 complement-sensitive isolates of Moraxella catarrhalis in order to determine whether there were complement phenotype-specific markers within this species. The htAFLP analysis used 21 primer-pair combinations, generating 41 364 individual fragments and 2273 fragment length polymorphisms, with an average of 862 polymorphisms per isolate. Analysis of polymorphism data clearly indicated the presence of two phylogenetic lineages and 40 (2%) lineage-specific polymorphisms. However, despite the presence of 361 (16%) statistically significant complement phenotype-associated polymorphisms, no single marker was 100% complement phenotype-specific. Furthermore, no complement phenotype-specific marker was found within different phylogenetic lineages. These findings agree with previous results indicating that the complement resistance phenotype within M. catarrhalis is probably defined by multiple genes, although not all of these genes may be present within all M. catarrhalis isolates.
Collapse
Affiliation(s)
- J P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Becker PD, Bertot GM, Souss D, Ebensen T, Guzmán CA, Grinstein S. Intranasal vaccination with recombinant outer membrane protein CD and adamantylamide dipeptide as the mucosal adjuvant enhances pulmonary clearance of Moraxella catarrhalis in an experimental murine model. Infect Immun 2006; 75:1778-84. [PMID: 17101651 PMCID: PMC1865668 DOI: 10.1128/iai.01081-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis causes acute otitis media in children and lower respiratory tract infections in adults and elderly. In children the presence of antibodies against the highly conserved outer membrane protein CD correlates with protection against infection, suggesting that this protein may be useful as a vaccine antigen. However, native CD is difficult to purify, and it is still unclear if recombinant CD (rCD) is a valid alternative. We performed a side-by-side comparison of the immunogenicities and efficacies of vaccine formulations containing native CD and rCD with adamantylamide dipeptide as the mucosal adjuvant. Intranasal vaccination of mice stimulated the production of high CD-specific antibody titers in sera and of secretory immunoglobulin A in mucosal lavages, which cross-recognized both antigens. While vaccination with native CD increased the number of interleukin-2 (IL-2)- and gamma interferon-producing cells, rCD mainly stimulated IL-4-secreting cells. Nevertheless, efficient bacterial clearance was observed in the lungs of challenged mice receiving native CD and in the lungs of challenged mice receiving rCD (96% and 99%, respectively). Thus, rCD is a promising candidate for incorporation in vaccine formulations for use against M. catarrhalis.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Amantadine/administration & dosage
- Amantadine/analogs & derivatives
- Amantadine/immunology
- Animals
- Antibodies, Bacterial/blood
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Cell Proliferation
- Colony Count, Microbial
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Dipeptides/administration & dosage
- Dipeptides/immunology
- Disease Models, Animal
- Immunoglobulin A, Secretory/analysis
- Interferon-gamma/biosynthesis
- Interleukins/biosynthesis
- Lung/immunology
- Lung/microbiology
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Moraxella catarrhalis/immunology
- Moraxella catarrhalis/isolation & purification
- Moraxellaceae Infections/immunology
- Moraxellaceae Infections/microbiology
- Mucous Membrane/immunology
- Spleen/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Pablo D Becker
- Virology Laboratory, Ricardo Gutiérrez Children's Hospital, Gallo 1330, 1425 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
29
|
Brooks MJ, Laurence CA, Hansen EJ, Gray-Owen SD. Characterization of the Moraxella catarrhalis opa-like protein, OlpA, reveals a phylogenetically conserved family of outer membrane proteins. J Bacteriol 2006; 189:76-82. [PMID: 17041038 PMCID: PMC1797210 DOI: 10.1128/jb.00788-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a human-restricted pathogen that can cause respiratory tract infections. In this study, we identified a previously uncharacterized 24-kDa outer membrane protein with a high degree of similarity to Neisseria Opa protein adhesins, with a predicted beta-barrel structure consisting of eight antiparallel beta-sheets with four surface-exposed loops. In striking contrast to the antigenically variable Opa proteins, the M. catarrhalis Opa-like protein (OlpA) is highly conserved and constitutively expressed, with 25 of 27 strains corresponding to a single variant. Protease treatment of intact bacteria and isolation of outer membrane vesicles confirm that the protein is surface exposed yet does not bind host cellular receptors recognized by neisserial Opa proteins. Genome-based analyses indicate that OlpA and Opa derive from a conserved family of proteins shared by a broad array of gram-negative bacteria.
Collapse
Affiliation(s)
- Michael J Brooks
- Department of Medical Genetics and Microbiology, Room 4381, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
30
|
Attia AS, Hansen EJ. A conserved tetranucleotide repeat is necessary for wild-type expression of the Moraxella catarrhalis UspA2 protein. J Bacteriol 2006; 188:7840-52. [PMID: 16963572 PMCID: PMC1636323 DOI: 10.1128/jb.01204-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UspA2 protein has been shown to be directly involved in the serum-resistant phenotype of Moraxella catarrhalis. The predicted 5'-untranslated regions (UTR) of the uspA2 genes in several different M. catarrhalis strains were shown to contain various numbers (i.e., 6 to 23) of a heteropolymeric tetranucleotide (AGAT) repeat. Deletion of the AGAT repeats from the uspA2 genes in the serum-resistant M. catarrhalis strains O35E and O12E resulted in a drastic reduction in UspA2 protein expression and serum resistance. PCR and transformation were used to construct a series of M. catarrhalis O12E strains that differed only in the number of AGAT repeats in their uspA2 genes. Expression of UspA2 was maximal in the presence of 18 AGAT repeats, although serum resistance attained wild-type levels in the presence of as few as nine AGAT repeats. Increased UspA2 expression was correlated with both increased binding of vitronectin and decreased binding of polymerized C9. Real-time reverse transcription-PCR analysis showed that changes in the number of AGAT repeats affected the levels of uspA2 mRNA, with 15 to 18 AGAT repeats yielding maximal levels. Primer extension analysis indicated that these AGAT repeats were contained in the 5'-UTR of the uspA2 gene. The mRNA transcribed from a uspA2 gene containing 18 AGAT repeats was found to have a longer half-life than that transcribed from a uspA2 gene lacking AGAT repeats. These data confirm that the presence of the AGAT repeats in the 5'-UTR of the uspA2 gene is necessary for both normal expression of the UspA2 protein and serum resistance.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
31
|
Liu DF, Xie X, Mastri MG, Fortuna-Nevin M, Colocillo C, Fletcher L, Dilts DA, McMichael JC, Baker SM. Polymorphism of the major surface epitope of the CopB outer membrane protein ofMoraxella catarrhalis. ACTA ACUST UNITED AC 2006; 47:343-50. [PMID: 16872370 DOI: 10.1111/j.1574-695x.2006.00093.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CopB outer membrane protein has been considered a vaccine candidate for the prevention of infections due to Moraxella catarrhalis. Monoclonal antibody 10F3 recognizes whole cells of about 70% of clinical isolates, suggesting that this epitope is reasonably conserved. To determine whether CopB has other surface epitopes, we analyzed M. catarrhalis isolates using polyclonal sera against recombinant CopB proteins from a 10F3 positive isolate and a 10F3 negative isolate, and polyclonal sera against synthetic peptides that contained the sequence corresponding to the 10F3 epitope region of three different isolates. Extensive cross-reactivity was observed with the anti-CopB sera towards purified recombinant CopB proteins in Western blot and antigen ELISA, implying that antigenic regions common to both proteins were present. However, anti-CopB sera resembled anti-CopB peptide sera in exhibiting similar binding specificity to whole cells, segregating M. catarrhalis isolates into four CopB groups. We subsequently cloned and sequenced the copB genes from representative isolates. The deduced CopB amino acid sequences and the degree of sequence identity also demonstrated the existence of the same four CopB groups. Each of the four groups had a unique sequence in the 10F3 epitope region and a fifth group had the epitope deleted. The polymorphism of the major surface epitope prompts further consideration regarding the utility of CopB as a vaccine component as well as the design of an efficacious CopB-based vaccine to achieve broad protection against Moraxella infection.
Collapse
Affiliation(s)
- Dai-Fang Liu
- Vaccines Research, Wyeth, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Attia AS, Ram S, Rice PA, Hansen EJ. Binding of vitronectin by the Moraxella catarrhalis UspA2 protein interferes with late stages of the complement cascade. Infect Immun 2006; 74:1597-611. [PMID: 16495531 PMCID: PMC1418666 DOI: 10.1128/iai.74.3.1597-1611.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Moraxella catarrhalis strains are resistant to the bactericidal activity of normal human serum (NHS). The UspA2 protein of the serum-resistant strain O35E has previously been shown to be directly involved in conferring serum resistance on this strain. Testing of 11 additional serum-resistant M. catarrhalis wild-type isolates and their uspA1 and uspA2 mutants showed that the uspA1 mutants of all 11 strains were consistently serum resistant and that the uspA2 mutants of these same 11 strains were always serum sensitive. Analysis of complement deposition on four different serum-resistant M. catarrhalis strains and their serum-sensitive uspA2 mutants showed that, for three of these four strain sets, the wild-type and mutant strains bound similar amounts of early complement components. In contrast, there was a significant reduction in the amount of the polymerized C9 on the wild-type strains relative to that on the uspA2 mutants. These same three wild-type strains bound more vitronectin than did their uspA2 mutants. UspA2 proteins from these three strains, when expressed in Haemophilus influenzae, bound vitronectin and conferred serum resistance on this organism. Furthermore, vitronectin-depleted NHS exhibited bactericidal activity against these same three serum-resistant wild-type strains; addition of purified vitronectin to this serum restored serum resistance. In contrast, binding of the complement regulator C4b-binding protein by the M. catarrhalis strains used in this study was found to be highly variable and did not appear to correlate with the serum-resistant phenotype. These results indicate that binding of vitronectin by UspA2 is involved in the serum resistance of M. catarrhalis; this represents the first example of vitronectin-mediated serum resistance on a microbe.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | | | | | |
Collapse
|
33
|
Hays JP, van Selm S, Hoogenboezem T, Estevão S, Eadie K, van Veelen P, Tommassen J, van Belkum A, Hermans PWM. Identification and characterization of a novel outer membrane protein (OMP J) of Moraxella catarrhalis that exists in two major forms. J Bacteriol 2005; 187:7977-84. [PMID: 16291671 PMCID: PMC1291255 DOI: 10.1128/jb.187.23.7977-7984.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a common commensal of the human respiratory tract that has been associated with a number of disease states, including acute otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults. During studies to investigate the outer membrane proteins of this bacterium, two novel major proteins, of approximately 19 kDa and 16 kDa (named OMP J1 and OMP J2, respectively), were identified. Further analysis indicated that these two proteins possessed almost identical gene sequences, apart from two insertion/deletion events in predicted external loops present within the putative barrel-like structure of the proteins. The development of a PCR screening strategy found a 100% (96/96) incidence for the genes encoding the OMP J1 and OMP J2 proteins within a set of geographically diverse M. catarrhalis isolates, as well as a significant association of OMP J1/OMP J2 with both the genetic lineage and the complement resistance phenotype (Fisher's exact test; P < 0.01). Experiments using two DeltaompJ2 mutants (one complement resistant and the other complement sensitive) indicated that both were less easily cleared from the lungs of mice than were their isogenic wild-type counterparts, with a significant difference in bacterial clearance being observed for the complement-resistant isolate but not for its isogenic DeltaompJ2 mutant (unpaired Student's t test; P < 0.001 and P = 0.32). In this publication, we characterize a novel outer membrane protein of Moraxella catarrhalis which exists in two variant forms associated with particular genetic lineages, and both forms are suggested to contribute to bacterial clearance from the lungs.
Collapse
Affiliation(s)
- John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Peng D, Hong W, Choudhury BP, Carlson RW, Gu XX. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect Immun 2005; 73:7569-77. [PMID: 16239560 PMCID: PMC1273912 DOI: 10.1128/iai.73.11.7569-7577.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lipooligosaccharide (LOS) is a major surface component of Moraxella catarrhalis and a possible virulence factor in the pathogenesis of human infections caused by this organism. The presence of LOS on the bacterium is an obstacle to the development of vaccines derived from whole cells or outer membrane components of the bacterium. An lpxA gene encoding UDP-N-acetylglucosamine acyltransferase responsible for the first step of lipid A biosynthesis was identified by the construction and characterization of an isogenic M. catarrhalis lpxA mutant in strain O35E. The resulting mutant was viable despite the complete loss of LOS. The mutant strain showed significantly decreased toxicity by the Limulus amebocyte lysate assay, reduced resistance to normal human serum, reduced adherence to human epithelial cells, and enhanced clearance in lungs and nasopharynx in a mouse aerosol challenge model. Importantly, the mutant elicited high levels of antibodies with bactericidal activity and provided protection against a challenge with the wild-type strain. These data suggest that the null LOS mutant is attenuated and may be a potential vaccine candidate against M. catarrhalis.
Collapse
Affiliation(s)
- Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|
35
|
Yagupsky P, Slonim A. Characterization and immunogenicity of Kingella kingae outer-membrane proteins. ACTA ACUST UNITED AC 2005; 43:45-50. [PMID: 15607635 DOI: 10.1016/j.femsim.2004.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 05/30/2004] [Accepted: 07/01/2004] [Indexed: 11/21/2022]
Abstract
In recent years, Kingella kingae has emerged as an important pediatric pathogen but the antigenicity of the organism and the host immune response have not been studied. Outer membrane proteins (OMPs) of 57 K. kingae isolates were characterized and the immune response of 19 children with invasive infections was studied by immunoblotting. Kingella kingae OMPs were remarkably similar disregarding place and time of isolation and associated clinical condition (asymptomatic carriage, bacteremia, endocarditis, septic arthritis or osteomyelitis). Most OMPs were immunogenic but the specific bands that reacted in each strain and the intensity of the reactions varied substantially. When convalescent sera were reacted with heterologous strains, bands that either were not recognized by the homologous serum or were not present in the homologous strain were visualized. These results demonstrate that OMPs of K. kingae are highly conserved but suggest that some epitopes are polymorphic, resulting in a variable pattern of immune response.
Collapse
Affiliation(s)
- Pablo Yagupsky
- Clinical Microbiology Laboratory, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.
| | | |
Collapse
|
36
|
Yu S, Gu XX. Synthesis and characterization of lipooligosaccharide-based conjugate vaccines for serotype B Moraxella catarrhalis. Infect Immun 2005; 73:2790-6. [PMID: 15845482 PMCID: PMC1087343 DOI: 10.1128/iai.73.5.2790-2796.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is an important cause of otitis media in children and respiratory tract infections in the elderly. Lipooligosaccharide (LOS) is a major surface antigen of the bacterium that elicits bactericidal antibodies. Serological studies show that three major LOS types (A, B, and C) have been identified among clinical isolates. Our previous studies demonstrated that the type A LOS-based conjugates were immunogenic in animals. In this study, LOS from type B strain 26397 was detoxified and conjugated to tetanus toxoid (TT) or a cross-reactive mutant (CRM) of diphtheria toxin to form detoxified LOS (dLOS)-TT and dLOS-CRM, respectively, as vaccine candidates. The molar ratios of dLOS to TT and CRM in the conjugates were 43:1 and 19:1, respectively, while both weight ratios were around 0.9. The antigenicity of the conjugates was similar to that of the LOS, as determined by enzyme-linked immunosorbent assay using a rabbit antiserum to strain 26397. Subcutaneous immunization with each conjugate elicited a 180- to 230-fold rise of serum anti-LOS immunoglobulin G in mice and >2,000-fold rise in rabbits. In addition, both mouse and rabbit antisera showed elevated complement-mediated bactericidal activity against the homologous strain, and a representative rabbit antiserum showed bactericidal activity against nine of twelve clinical isolates studied. The bactericidal activity of the rabbit antiserum can be fully inhibited by the type B LOS but not the A or C LOS. These results indicate that the type B LOS-based conjugates can be used as vaccine components for further investigation.
Collapse
Affiliation(s)
- Shengqing Yu
- Vaccine Research Facility, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA
| | | |
Collapse
|
37
|
Holm MM, Vanlerberg SL, Foley IM, Sledjeski DD, Lafontaine ER. The Moraxella catarrhalis porin-like outer membrane protein CD is an adhesin for human lung cells. Infect Immun 2004; 72:1906-13. [PMID: 15039309 PMCID: PMC375153 DOI: 10.1128/iai.72.4.1906-1913.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane protein CD (OMPCD) of Moraxella catarrhalis is an outer membrane protein with several attributes of a potential vaccine antigen. We isolated four transposon mutants of strain O35E on the basis of their reduced binding to A549 human lung cells in microcolony formation assays, and we determined that they contain a transposon in ompCD. We also found that these transposon insertions had pleiotropic effects: mutants grew slower, became serum sensitive, bound approximately 10-fold less to A549 cells, and appeared transparent when grown on solid medium. We confirmed that these various phenotypes could be attributed solely to disruption of ompCD by constructing the isogenic strain O35E.CD1. O35E-ompCD was cloned, and recombinant Escherichia coli bacteria expressing the gene product exhibited a 10-fold increase in adherence to A549 cells. This is the first report of M. catarrhalis ompCD mutants, and our findings demonstrate that this gene product is an adhesin for human lung cells.
Collapse
Affiliation(s)
- Melissa M Holm
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614-5806, USA
| | | | | | | | | |
Collapse
|
38
|
Stutzmann Meier P, Heiniger N, Troller R, Aebi C. Salivary antibodies directed against outer membrane proteins of Moraxella catarrhalis in healthy adults. Infect Immun 2004; 71:6793-8. [PMID: 14638765 PMCID: PMC308912 DOI: 10.1128/iai.71.12.6793-6798.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract, but the mucosal immune response directed against surface components of this organism has not been characterized in detail. The aim of this study was to investigate the salivary immunoglobulin A (IgA) response toward outer membrane proteins (OMP) of M. catarrhalis in healthy adults, the group of individuals least likely to be colonized and thus most likely to display mucosal immunity. Unstimulated saliva samples collected from 14 healthy adult volunteers were subjected to IgA immunoblot analysis with OMP preparations of M. catarrhalis strain O35E. Immunoblot analysis revealed a consistent pattern of IgA reactivity, with the appearance of five major bands located at >250, 200, 120, 80, and 60 kDa. Eleven (79%) of 14 saliva samples elicited reactivity to all five bands. Immunoblot analysis with a set of isogenic knockout mutants lacking the expression of individual OMP was used to determine the identities of OMP giving rise to IgA bands. Human saliva was shown consistently to exhibit IgA-binding activity for oligomeric UspA2 (>250 kDa), hemagglutinin (200 kDa), monomeric UspA1 (120 kDa), transferrin-binding protein B (TbpB), monomeric UspA2, CopB, and presumably OMP CD. TbpB, oligomeric UspA2, and CopB formed a cluster of bands at about 80 kDa. These data indicate that the human salivary IgA response is directed consistently against a small number of major OMP, some of which are presently considered vaccine candidates. The functional properties of these mucosal antibodies remain to be elucidated.
Collapse
Affiliation(s)
- Patricia Stutzmann Meier
- Institute for Infectious Diseases. Department of Pediatrics, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
39
|
El Ahmer OR, Braun JM, Amyes SGB, Weir DM, Beuth J, Blackwell CC. Comparison of Moraxella catarrhalis isolates from children and adults for growth on modified New York City medium and potential virulence factors. J Med Microbiol 2003; 52:853-859. [PMID: 12972578 DOI: 10.1099/jmm.0.05124-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initial studies found that Moraxella catarrhalis isolates from adults that grew on modified New York City medium (MNYC(+)) that contained antibiotics selective for pathogenic neisseriae differed from strains that did not grow on this medium (MNYC(-)) in their potential virulence properties. It was predicted that higher usage of antibiotics to treat respiratory illness in children might result in higher proportions of MNYC(+) isolates if antibiotics were an important selective pressure for this phenotype. Two of 100 adult isolates (2 %) were MNYC(+), compared to 88 of 88 isolates (100 %) from children (P = 0.000). MNYC(+) strains were serum-resistant and bound in higher numbers to HEp-2 cells that were infected with respiratory syncytial virus (RSV). Endotoxin from an MNYC(+) isolate induced significantly higher pro-inflammatory response levels than endotoxin from an MNYC(-) strain. MNYC(-) adult isolates expressed haemagglutinins and bound in lower numbers to RSV-infected cells, but serum resistance was variable. All isolates from children were MNYC(+), serum-resistant and bound in greater numbers to RSV-infected cells. These results indicate that both RSV infection and antibiotic usage select for the MNYC(+) phenotype.
Collapse
Affiliation(s)
- Omar R El Ahmer
- Department of Medical Microbiology, University of Edinburgh, Edinburgh, Scotland, UK 2Institute for Scientific Evaluation of Naturopathy, University of Cologne, Cologne, Germany 3Discipline of Immunology and Microbiology, University of Newcastle, Newcastle, Australia
| | - J Matthias Braun
- Department of Medical Microbiology, University of Edinburgh, Edinburgh, Scotland, UK 2Institute for Scientific Evaluation of Naturopathy, University of Cologne, Cologne, Germany 3Discipline of Immunology and Microbiology, University of Newcastle, Newcastle, Australia
| | - Sebastian G B Amyes
- Department of Medical Microbiology, University of Edinburgh, Edinburgh, Scotland, UK 2Institute for Scientific Evaluation of Naturopathy, University of Cologne, Cologne, Germany 3Discipline of Immunology and Microbiology, University of Newcastle, Newcastle, Australia
| | - Donald M Weir
- Department of Medical Microbiology, University of Edinburgh, Edinburgh, Scotland, UK 2Institute for Scientific Evaluation of Naturopathy, University of Cologne, Cologne, Germany 3Discipline of Immunology and Microbiology, University of Newcastle, Newcastle, Australia
| | - Josef Beuth
- Department of Medical Microbiology, University of Edinburgh, Edinburgh, Scotland, UK 2Institute for Scientific Evaluation of Naturopathy, University of Cologne, Cologne, Germany 3Discipline of Immunology and Microbiology, University of Newcastle, Newcastle, Australia
| | - C Caroline Blackwell
- Department of Medical Microbiology, University of Edinburgh, Edinburgh, Scotland, UK 2Institute for Scientific Evaluation of Naturopathy, University of Cologne, Cologne, Germany 3Discipline of Immunology and Microbiology, University of Newcastle, Newcastle, Australia
| |
Collapse
|
40
|
Kakuda T, Oishi D, Tsubaki S, Takai S. Molecular cloning and characterization of a 79-kDa iron-repressible outer-membrane protein of Moraxella bovis. FEMS Microbiol Lett 2003; 225:279-84. [PMID: 12951253 DOI: 10.1016/s0378-1097(03)00554-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Moraxella bovis expresses an iron-repressible 79-kDa outer-membrane protein, IrpA. DNA and N-terminal amino acid sequence analysis indicate that IrpA is closely related to FrpB of Neisseria meningitidis, FetA of Neisseria gonorrhoeae and CopB of Moraxella catarrhalis. The results of manganese mutagenesis and a gel-shift assay suggested that the transcription of irpA is negatively regulated by the ferric uptake regulator. The insertion of an antibiotic resistance cassette into the irpA gene affected the strain's ability to utilize bovine transferrin and lactoferrin. IrpA was detected in geographically diverse clinical isolates, and the antigenicity of IrpA was conserved in all the isolates tested. Therefore, IrpA may have potential as a candidate vaccine.
Collapse
Affiliation(s)
- Tsutomu Kakuda
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Science, Kitasato University, Towada, Aomori 034-8628, Japan.
| | | | | | | |
Collapse
|
41
|
Hays JP, van der Schee C, Loogman A, Eadie K, Verduin C, Faden H, Verbrugh H, van Belkum A. Total genome polymorphism and low frequency of intra-genomic variation in the uspA1 and uspA2 genes of Moraxella catarrhalis in otitis prone and non-prone children up to 2 years of age. Consequences for vaccine design? Vaccine 2003; 21:1118-24. [PMID: 12559789 DOI: 10.1016/s0264-410x(02)00522-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intra-genomic variation in the uspA1 and uspA2 genes of Moraxella catarrhalis was studied using pulsed field gel electrophoresis (PFGE) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. From a set of 91 M. catarrhalis isolates, 19 pairs of PFGE identical isolates were found. Five pairs originated from otitis non-prone children, 11 pairs from otitis prone children and for 3 pairs, one of the pair originated from an otitis prone and the other from an otitis non-prone child. No particular M. catarrhalis isolate was associated with either the otitis prone or non-prone children. One of these 19 pairs of isolates was found to exhibit both uspA1 and uspA2 intra-genomic variation, whilst another pair exhibited uspA2 intra-genomic variation only. Sequence data obtained from these variants showed that PCR-RFLP pattern differences reflected actual changes in predicted amino acid composition and that minor amino acid changes in a 23 base pair "NINNIY" repeat region (a conserved UspA1 and UspA2 binding site for the neutralising antibody mAb17C7) occurred. Variation in the uspA2 5' non-coding "AGAT" repeat region was also observed. These results may have implications for future M. catarrhalis vaccines comprising UspA1 or UspA2 components.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Child, Preschool
- Complement System Proteins/immunology
- DNA, Bacterial/genetics
- Electrophoresis, Gel, Pulsed-Field
- Epitopes/genetics
- Epitopes/immunology
- Female
- Genetic Variation
- Genome, Bacterial
- Humans
- Infant
- Male
- Molecular Sequence Data
- Moraxella catarrhalis/classification
- Moraxella catarrhalis/genetics
- Moraxella catarrhalis/isolation & purification
- Otitis Media/microbiology
- Otitis Media/prevention & control
- Phylogeny
- Polymerase Chain Reaction
- Polymorphism, Genetic
- Polymorphism, Restriction Fragment Length
- Recurrence
- Repetitive Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Meier PS, Freiburghaus S, Martin A, Heiniger N, Troller R, Aebi C. Mucosal immune response to specific outer membrane proteins of Moraxella catarrhalis in young children. Pediatr Infect Dis J 2003; 22:256-62. [PMID: 12634588 DOI: 10.1097/01.inf.0000054827.86683.bd] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Moraxella catarrhalis is an important cause of otitis media. A number of candidate antigens for a future infant otitis media vaccine have been identified, but their mucosal immunogenicity induced by nasopharyngeal M. catarrhalis colonization has not been characterized. The aim of this study was to determine the salivary IgA response to M. catarrhalis outer membrane proteins (OMP) in young children. METHODS Children ages 1 to 24 months evaluated for acute respiratory tract infection were prospectively enrolled. M. catarrhalis nasopharyngeal colonization was determined by (1) selective culture and (2) detection by reverse transcription-PCR of messenger RNA specific for the OMP UspA1 and UspA2. Salivary IgA responses were detected by immunoblot analysis of M. catarrhalis OMP. Isogenic knockout mutants for UspA1, UspA2, hemagglutinin (Hag), transferrin-binding protein B (TbpB) and CopB were constructed for identification of specific target OMP. RESULTS Sixty-six patients were studied. The rates of M. catarrhalis colonization by culture, reverse transcription-PCR for messenger RNA and mRNA were 40, 94 and 58%, respectively. Anti-M. catarrhalis salivary IgA was detected in 62 patients (94%). IgA directed against a >250-kDa antigen (assigned to UspA1/UspA2 by mutant analysis) and a 200-kDa antigen (Hag) were detected in 65 and 70% of patients, respectively. Bands at 80 to 85 kDa (82%) consisted of IgA directed against monomeric UspA2, TbpB and CopB. CONCLUSIONS colonization occurring in early infancy is associated with a consistent mucosal immune response directed against the UspA proteins, Hag and other OMP. The data suggest that several M. catarrhalis OMP are immunogens of the nasopharyngeal mucosal immune system of infants.
Collapse
|
43
|
Jiao X, Hirano T, Hou Y, Gu XX. Specific immune responses and enhancement of murine pulmonary clearance of Moraxella catarrhalis by intranasal immunization with a detoxified lipooligosaccharide conjugate vaccine. Infect Immun 2002; 70:5982-9. [PMID: 12379673 PMCID: PMC130355 DOI: 10.1128/iai.70.11.5982-5989.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Revised: 06/05/2002] [Accepted: 08/05/2002] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is an important human mucosal pathogen. This study investigated the effect of intranasal immunization with a detoxified-lipooligosaccharide-cross-reactive mutant of diphtheria toxin (dLOS-CRM) vaccine candidate on pulmonary clearance following an aerosol challenge of mice with M. catarrhalis. Intranasal immunization with dLOS-CRM plus cholera toxin induced a significantly dose-dependent increase of immunoglobulin A (IgA) and IgG in the nasal wash, lung lavage fluid, saliva, and fecal extract. In addition, serum IgG, IgM, and IgA against LOS of M. catarrhalis were detected. LOS-specific antibody-forming cells were found in the nasal passages, spleens, nasally associated lymphoid tissues, cervical lymph nodes, lungs, and Peyer's patches using an enzyme-linked immunospot assay. The dLOS-CRM vaccine induced a significant bacterial clearance (70 to 90%) of both homologous and heterologous strains in the lungs compared to that observed in the controls (P < 0.01). Intriguingly, intranasal immunization with dLOS-CRM showed a higher level of bacterial clearance compared with subcutaneous injections with dLOS-CRM. These data indicate that dLOS-CRM induces specific mucosal and systemic immunity through intranasal immunization and also provides effective bacterial clearance. On the basis of these results, we believe that dLOS-CRM should undergo continued testing to determine whether it would induce protective immune response in humans.
Collapse
Affiliation(s)
- Xinan Jiao
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
44
|
Pearson MM, Lafontaine ER, Wagner NJ, St Geme JW, Hansen EJ. A hag mutant of Moraxella catarrhalis strain O35E is deficient in hemagglutination, autoagglutination, and immunoglobulin D-binding activities. Infect Immun 2002; 70:4523-33. [PMID: 12117964 PMCID: PMC128162 DOI: 10.1128/iai.70.8.4523-4533.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2002] [Revised: 04/05/2002] [Accepted: 05/06/2002] [Indexed: 11/20/2022] Open
Abstract
Previous studies correlated the presence of a 200-kDa protein on the surface of Moraxella catarrhalis with the ability of this organism to agglutinate human erythrocytes (M. Fitzgerald, R. Mulcahy, S. Murphy, C. Keane, D. Coakley, and T. Scott, FEMS Immunol. Med. Microbiol. 18:209-216, 1997). In the present study, the gene encoding the 200-kDa protein (designated Hag) of M. catarrhalis strain O35E was subjected to nucleotide sequence analysis and then was inactivated by insertional mutagenesis. The isogenic hag mutant was unable to agglutinate human erythrocytes and lost its ability to autoagglutinate but was still attached at wild-type levels to several human epithelial cell lines. The hag mutation also eliminated the ability of this mutant strain to bind human immunoglobulin D. The presence of the Hag protein on the M. catarrhalis cell surface, as well as that of the UspA1 and UspA2 proteins (C. Aebi, I. Maciver, J. L. Latimer, L. D. Cope, M. K. Stevens, S. E. Thomas, G. H. McCracken, Jr., and E. J. Hansen, Infect. Immun. 65:4367-4377, 1997), was investigated by transmission electron and cryoimmunoelectron microscopy. Wild-type M. catarrhalis strain O35E possessed a dense layer of surface projections, whereas an isogenic uspA1 uspA2 hag triple mutant version of this strain did not possess any detectable surface projections. Examination of a uspA1 uspA2 double mutant that expressed the Hag protein revealed the presence of a relatively sparse layer of surface projections, similar to those seen on a uspA2 hag mutant that expressed UspA1. In contrast, a uspA1 hag mutant that expressed UspA2 formed a very dense layer of relatively short surface projections. These results indicate that the surface-exposed Hag protein and UspA1 and UspA2 have the potential to interact both with each other and directly with host defense systems.
Collapse
Affiliation(s)
- Melanie M Pearson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | |
Collapse
|
45
|
Hou Y, Hu WG, Hirano T, Gu XX. A new intra-NALT route elicits mucosal and systemic immunity against Moraxella catarrhalis in a mouse challenge model. Vaccine 2002; 20:2375-81. [PMID: 12009294 DOI: 10.1016/s0264-410x(02)00097-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mucosally administered antigens are often poorly immunogenic due to the difficulty of transporting antigens through the mucosal epithelium. We investigated a new route of intranasal-associated lymphoid tissue (intra-NALT) administration of antigens to circumvent the antigen transportation barrier. A comparative study was carried out on mice administered with killed whole cells of Moraxella catarrhalis strain 25238 plus cholera toxin (CT) by intra-NALT injection and nasal inoculation. Both routes induced significant elevations of several isotype antibodies against strain 25238 in saliva, lung lavage, and serum as measured by an enzyme-linked immunosorbent assay (ELISA). Most of these antibodies were paralleled by the numbers of their corresponding antibody forming cells in mucosal or systemic lymphoid tissues. However, intra-NALT injection elicited higher levels of immunoglobulin (Ig) A and IgG in saliva, IgA and IgG in lung lavage, and IgG and IgM in sera than nasal inoculation (P<or=0.05). In addition, both routes generated significant reductions of bacteria in lungs following an aerosol challenge with strain 25238 in a mouse model of pulmonary clearance. Once again, intra-NALT route showed better bacterial clearance in mouse lungs than nasal inoculation (P<0.01). These results demonstrate that intra-NALT administration of antigens is a convenient and effective route for mucosal immunization that elicits improved mucosal and systemic immunity. This new route can be used as a model to study mucosal antigens or vaccine candidates for antigen activation and interaction with the NALT that is one of major inductive sites for common mucosal immune system.
Collapse
Affiliation(s)
- Yingchun Hou
- National Institute for Deafness and Other Communication Disorders, National Institute of Health, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
46
|
Luke NR, Karalus RJ, Campagnari AA. Inactivation of the Moraxella catarrhalis superoxide dismutase SodA induces constitutive expression of iron-repressible outer membrane proteins. Infect Immun 2002; 70:1889-95. [PMID: 11895952 PMCID: PMC127887 DOI: 10.1128/iai.70.4.1889-1895.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pathogens produce one or more superoxide dismutases (SODs), enzymes involved in the detoxification of endogenous and exogenous reactive oxygen species that are encountered during the infection process. One detectable cytoplasmic SOD was identified in the human mucosal pathogen Moraxella catarrhalis, and the gene responsible for the SOD activity, sodA, was isolated from a recent pediatric clinical isolate (strain 7169). Sequence analysis of the cloned M. catarrhalis 7169 DNA fragment revealed an open reading frame of 618 bp encoding a polypeptide of 205 amino acids with 48 to 67% identity to known bacterial manganese-cofactored SODs. An isogenic M. catarrhalis sodA mutant was constructed in strain 7169 by allelic exchange. In contrast to the wild-type 7169, the 7169::sodK20 mutant was severely attenuated for aerobic growth, even in rich medium containing supplemental amino acids, and exhibited extreme sensitivity to the redox-active agent methyl viologen. The ability of recombinant SodA to rescue the aerobic growth defects of E. coli QC774, a sodA sodB-deficient mutant, demonstrated the functional expression of SOD activity by cloned M. catarrhalis sodA. Indirect SOD detection assays were used to visualize both native and recombinant SodA activity in bacterial lysates. This study demonstrates that M. catarrhalis SodA plays a critical role in the detoxification of endogenous, metabolically produced oxygen radicals. In addition, the outer membrane protein (OMP) profile of 7169::sodK20 was consistent with iron starvation in spite of growth under iron-replete conditions. This novel observation indicates that M. catarrhalis strains lacking SodA constitutively express immunogenic OMPs previously described as iron repressible, and this potentially attenuated mutant strain may be an attractive vaccine candidate.
Collapse
Affiliation(s)
- Nicole R Luke
- Department of Microbiology, Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
47
|
Meier PS, Troller R, Grivea IN, Syrogiannopoulos GA, Aebi C. The outer membrane proteins UspA1 and UspA2 of Moraxella catarrhalis are highly conserved in nasopharyngeal isolates from young children. Vaccine 2002; 20:1754-60. [PMID: 11906762 DOI: 10.1016/s0264-410x(02)00030-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UspA1 and UspA2 of Moraxella catarrhalis are vaccine candidates. The aims of this study were to determine: (1) the frequencies of occurrence and (2) the degrees of conservation of two surface-exposed epitopes of the uspA1 and uspA2 genes and their respective gene products in 108 nasopharyngeal isolates from young children. The uspA1 and uspA2 genes were detected in 107 (99%) and 108 (100%) isolates, respectively. Twenty-three of 108 uspA2 genes (21%) were identified as the variant gene uspA2H. One-hundred and five isolates (97%) expressed the mAb17C7-reactive epitope shared by UspA1 and UspA2, and 103 isolates (95%) reacted with the UspA1-specific mAb24B5. The only isolate which lacked a uspA1 gene demonstrated reduced adherence to HEp-2 cells and complement sensitivity. The data indicate that both uspA genes and the expression of at least two surface-exposed epitopes are virtually ubiquitous in isolates from a population at risk for otitis media. A vaccine capable of inducing a bactericidal immune response against the mAb17C7- and/or mAb24B5-reactive epitopes appears promising.
Collapse
Affiliation(s)
- Patricia Stutzmann Meier
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Bong CTH, Fortney KR, Katz BP, Hood AF, San Mateo LR, Kawula TH, Spinola SM. A superoxide dismutase C mutant of Haemophilus ducreyi is virulent in human volunteers. Infect Immun 2002; 70:1367-71. [PMID: 11854222 PMCID: PMC127809 DOI: 10.1128/iai.70.3.1367-1371.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi produces a periplasmic copper-zinc superoxide dismutase (Cu-Zn SOD), which is thought to protect the organism from exogenous reactive oxygen species generated by neutrophils during an inflammatory response. We had previously identified the gene, sodC, responsible for the production and secretion of Cu-Zn SOD and constructed an isogenic H. ducreyi strain with a mutation in the sodC gene (35000HP-sodC-cat). Compared to the parent, the mutant does not survive in the presence of exogenous superoxide (L. R. San Mateo, M. Hobbs, and T. H. Kawula, Mol. Microbiol. 27:391-404, 1998) and is impaired in the swine model of H. ducreyi infection (L. R. San Mateo, K. L. Toffer, P. E. Orndorff, and T. H. Kawula, Infect. Immun. 67:5345-5351, 1999). To test whether Cu-Zn SOD is important for bacterial survival in vivo, six human volunteers were experimentally infected with 35000HP and 35000HP-sodC-cat and observed for papule and pustule formation. Papules developed at similar rates at sites inoculated with the mutant or parent. The pustule formation rates were 75% (95% confidence intervals [CI], 43 to 95%) at 12 parent-inoculated sites and 67% (95% CI, 41 to 88%) at 18 mutant-inoculated sites (P = 0.47). There was no significant difference in levels of H. ducreyi recovery from mutant- and parent-inoculated biopsy sites. These results suggest that expression of Cu-Zn SOD does not play a major role in the survival of this pathogen in the initial stages of experimental infection of humans.
Collapse
Affiliation(s)
- Cliffton T H Bong
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Forsgren A, Brant M, Möllenkvist A, Muyombwe A, Janson H, Woin N, Riesbeck K. Isolation and characterization of a novel IgD-binding protein from Moraxella catarrhalis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2112-20. [PMID: 11489995 DOI: 10.4049/jimmunol.167.4.2112] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel surface protein of the bacterial species Moraxella catarrhalis that displays a high affinity for IgD (MID) was solubilized in Empigen and isolated by ion exchange chromatography and gel filtration. The apparent molecular mass of monomeric MID was estimated to approximately 200 kDa by SDS-PAGE. The mid gene was cloned and expressed in Escherichia coli. The complete mid nucleotide gene sequence was determined, and the deduced amino acid sequence consists of 2123 residues. The sequence of MID has no similarity to other Ig-binding proteins and differs from all previously described outer membrane proteins of M. catarrhalis. MID was found to exhibit unique Ig-binding properties. Thus, in ELISA, dot blots, and Western blots, MID bound two purified IgD myeloma proteins, four IgD myeloma sera, and finally one IgD standard serum. No binding of MID was detected to IgG, IgM, IgA, or IgE myeloma proteins. MID also bound to the surface-expressed B cell receptor IgD, but not to other membrane molecules on human PBLs. This novel Ig-binding reagent promises to be of theoretical and practical interest in immunological research.
Collapse
Affiliation(s)
- A Forsgren
- Department of Medical Microbiology, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 2001; 14:336-63. [PMID: 11292642 PMCID: PMC88978 DOI: 10.1128/cmr.14.2.336-363.2001] [Citation(s) in RCA: 395] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States. The precise role of bacterial infection in the course and pathogenesis of COPD has been a source of controversy for decades. Chronic bacterial colonization of the lower airways contributes to airway inflammation; more research is needed to test the hypothesis that this bacterial colonization accelerates the progressive decline in lung function seen in COPD (the vicious circle hypothesis). The course of COPD is characterized by intermittent exacerbations of the disease. Studies of samples obtained by bronchoscopy with the protected specimen brush, analysis of the human immune response with appropriate immunoassays, and antibiotic trials reveal that approximately half of exacerbations are caused by bacteria. Nontypeable Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae are the most common causes of exacerbations, while Chlamydia pneumoniae causes a small proportion. The role of Haemophilus parainfluenzae and gram-negative bacilli remains to be established. Recent progress in studies of the molecular mechanisms of pathogenesis of infection in the human respiratory tract and in vaccine development guided by such studies promises to lead to novel ways to treat and prevent bacterial infections in COPD.
Collapse
Affiliation(s)
- S Sethi
- Division of Pulmonary and Critical Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | | |
Collapse
|