1
|
Liu W, Jiang P, Song T, Yang K, Yuan F, Gao T, Liu Z, Li C, Guo R, Xiao S, Tian Y, Zhou D. A Recombinant Chimera Vaccine Composed of LTB and Mycoplasma hyopneumoniae Antigens P97R1, mhp390 and P46 Elicits Cellular Immunologic Response in Mice. Vaccines (Basel) 2023; 11:1291. [PMID: 37631860 PMCID: PMC10457768 DOI: 10.3390/vaccines11081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), leading to a mild and chronic pneumonia in swine. Relative control has been attained through active vaccination programs, but porcine enzootic pneumonia remains a significant economic challenge in the swine industry. Cellular immunity plays a key role in the prevention and control of porcine enzootic pneumonia. Therefore, the development of a more efficient vaccine that confers a strong immunity against M. hyopneumoniae is necessary. In this study, a multi-antigen chimera (L9m6) was constructed by combining the heat-labile enterotoxin B subunit (LTB) with three antigens of M. hyopneumoniae (P97R1, mhp390, and P46), and its immunogenic and antigenic properties were assessed in a murine model. In addition, we compared the effect of individual administration and multiple-fusion of these antigens. The chimeric multi-fusion vaccine induced significant cellular immune responses and high production of IgG and IgM antibodies against M. hyopneumoniae. Collectively, our data suggested that rL9m6 chimera exhibits potential as a viable vaccine candidate for the prevention and control of porcine enzootic pneumonia.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Peizhao Jiang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Tao Song
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (W.L.); (P.J.); (K.Y.); (F.Y.); (T.G.); (Z.L.); (C.L.); (R.G.)
| |
Collapse
|
2
|
Silva APSP, Storino GY, Ferreyra FSM, Zhang M, Miller JM, Harmon KM, Gauger PC, Witbeck W, Doolittle K, Zimmerman S, Wang C, Derscheid RJ, Clavijo MJ, Arruda BL, Zimmerman JJ. Effect of testing protocol and within-pen prevalence on the detection of Mycoplasma hyopneumoniae DNA in oral fluid samples. Prev Vet Med 2022; 204:105670. [DOI: 10.1016/j.prevetmed.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022]
|
3
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
4
|
Clampitt JM, Madsen ML, Minion FC. Construction of Mycoplasma hyopneumoniae P97 Null Mutants. Front Microbiol 2021; 12:518791. [PMID: 33967967 PMCID: PMC8101707 DOI: 10.3389/fmicb.2021.518791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia, a world-wide problem in the pig industry. This disease is characterized by a dry, non-productive cough, labored breathing, and pneumonia. Despite years of research, vaccines are marginally effective, and none fully protect pigs in a production environment. A better understanding of the host-pathogen interactions of the M. hyopneumoniae-pig disease, which are complex and involve both host and pathogen components, is required. Among the surface proteins involved in virulence are members of two gene families called P97 and P102. These proteins are the adhesins directing attachment of the organism to the swine respiratory epithelium. P97 is the major ciliary binding adhesin and has been studied extensively. Monoclonal antibodies that block its binding to swine cilia have contributed extensively to its characterization. In this study we use recombination to construct null mutants of P97 in M. hyopneumoniae and characterize the resulting mutants in terms of loss of protein by immunoblot using monoclonal antibodies, ability to bind purified swine cilia, and adherence to PK15 cells. Various approaches to recombination with this fastidious mycoplasma were tested including intact plasmid DNA, single-stranded DNA, and linear DNA with and without a heterologous RecA protein. Our results indicate that recombination can be used to generate site-specific mutants in M. hyopneumoniae. P97 mutants are deficient in cilia binding and PK15 cell adherence, and lack the characteristic banding pattern seen in immunoblots developed with the anti-P97 monoclonal antibody.
Collapse
Affiliation(s)
- Jeannett M Clampitt
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Melissa L Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Dresen M, Schenk J, Berhanu Weldearegay Y, Vötsch D, Baumgärtner W, Valentin-Weigand P, Nerlich A. Streptococcus suis Induces Expression of Cyclooxygenase-2 in Porcine Lung Tissue. Microorganisms 2021; 9:microorganisms9020366. [PMID: 33673302 PMCID: PMC7917613 DOI: 10.3390/microorganisms9020366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022] Open
Abstract
Streptococcus suis is a common pathogen colonising the respiratory tract of pigs. It can cause meningitis, sepsis and pneumonia leading to economic losses in the pig industry worldwide. Cyclooxygenase-2 (COX-2) and its metabolites play an important regulatory role in different biological processes like inflammation modulation and immune activation. In this report we analysed the induction of COX-2 and the production of its metabolite prostaglandin E2 (PGE2) in a porcine precision-cut lung slice (PCLS) model. Using Western blot analysis, we found a time-dependent induction of COX-2 in the infected tissue resulting in increased PGE2 levels. Immunohistological analysis revealed a strong COX-2 expression in the proximity of the bronchioles between the ciliated epithelial cells and the adjacent alveolar tissue. The morphology, location and vimentin staining suggested that these cells are subepithelial bronchial fibroblasts. Furthermore, we showed that COX-2 expression as well as PGE2 production was detected following infection with two prevalent S. suis serotypes and that the pore-forming toxin suilysin played an important role in this process. Therefore, this study provides new insights in the response of porcine lung cells to S. suis infections and serves as a basis for further studies to define the role of COX-2 and its metabolites in the inflammatory response in porcine lung tissue during infections with S. suis.
Collapse
Affiliation(s)
- Muriel Dresen
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
| | - Josephine Schenk
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
| | - Yenehiwot Berhanu Weldearegay
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
| | - Désirée Vötsch
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
| | - Wolfgang Baumgärtner
- Institute for Pathology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
- Correspondence: (P.V.-W.); (A.N.); Tel.: +49-511-856-7362 (P.V.-W.); +49-30-838-58508 (A.N.)
| | - Andreas Nerlich
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (M.D.); (J.S.); (Y.B.W.); (D.V.)
- Veterinary Centre for Resistance Research, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Correspondence: (P.V.-W.); (A.N.); Tel.: +49-511-856-7362 (P.V.-W.); +49-30-838-58508 (A.N.)
| |
Collapse
|
6
|
Paracellular Pathway-Mediated Mycoplasma hyopneumoniae Migration across Porcine Airway Epithelial Barrier under Air-Liquid Interface Conditions. Infect Immun 2020; 88:IAI.00470-20. [PMID: 32747599 DOI: 10.1128/iai.00470-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Mycoplasma hyopneumoniae is an important respiratory pathogen of pigs that causes persistent and secondary infections. However, the mechanisms by which this occurs are unclear. In this study, we established air-liquid interface culture systems for pig bronchial epithelial cells (ALI-PBECs) that were comparable to the conditions in the native bronchus in vivo We used this ALI-PBECs model to study the infection and migration characteristics of M. hyopneumoniae in vitro Based on the results, we confirmed that M. hyopneumoniae was able to adhere to ALI-PBECs and disrupt mucociliary function. Importantly, M. hyopneumoniae could migrate to the basolateral chamber through the paracellular route but not the transcellular pathway, and this was achieved by reversibly disrupting tight junctions (TJs) and increasing the permeability and damaging the integrity of the epithelial barrier. We examined the migration ability of M. hyopneumoniae using an ALI-PBECs model for the first time. The disruption of the epithelial barrier allowed M. hyopneumoniae to migrate to the basolateral chamber through the paracellular route, which may be related to immune evasion, extrapulmonary dissemination, and persistent infection of M. hyopneumoniae.
Collapse
|
7
|
Immunohistochemical and Ultrastructural Studies of Mycoplasma hyopneumoniae Strain in Naturally Infected Pigs in Nigeria. FOLIA VETERINARIA 2020. [DOI: 10.2478/fv-2020-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Enzootic pneumonia caused by hyopneumoniae (MHYO) remains a serious concern to the swine industry in many countries including Nigeria. MHYO strains isolated from pigs from different countries and geographical locations are known to vary in pathogenicity. There is a paucity of information on the pathogenicity of the MHYO strain affecting pigs in Nigeria. This study investigated the pathogenicity of the MHYO strain in naturally infected pigs using immunohisto-chemistry and electron microscopy. Two hundred and sixty four lungs of slaughtered pigs were randomly collected from abattoirs at Abeokuta, Ibadan and Lagos, in Southwest Nigeria. A sub-sample of 104 pneumonic and 20 apparently normal lungs was selected, processed for routine histopathological examination and immunohistochemistry, while 3 lung tissues samples were selected for ultrastructural studies. The most significant microscopic changes observed were suppurative broncho-interstitial pneumonia associated with varying degrees of lymphoid hyperplasia of the bronchus-associated lymphoid tissue (BALT) and thickened alveolar septa due to cellular infiltration consisting predominantly of neutrophils and a few mononuclear cells. Immunohistochemically, MHYO antigen was detected in 86/104 (82.69 %) of MHYO-infected lung tissues and typically exhibited a granular brown reaction on the bronchial and bronchiolar epithelial lining, mononuclear cells in the BALT and luminal cellular exudates within the airways. Transmission electron microscopy revealed numerous Mycoplasma organisms in the lumina of the airways, in between degenerated cilia, while a few Mycoplasmas were located within the alveoli. It was concluded that the MHYO strain detected in this study was pathogenic to pigs and capable of inducing pneumonia, and therefore implicated in the pathogenesis.
Collapse
|
8
|
Wang X, Nijman R, Camuzeaux S, Sands C, Jackson H, Kaforou M, Emonts M, Herberg JA, Maconochie I, Carrol ED, Paulus SC, Zenz W, Van der Flier M, de Groot R, Martinon-Torres F, Schlapbach LJ, Pollard AJ, Fink C, Kuijpers TT, Anderson S, Lewis MR, Levin M, McClure M. Plasma lipid profiles discriminate bacterial from viral infection in febrile children. Sci Rep 2019; 9:17714. [PMID: 31776453 PMCID: PMC6881435 DOI: 10.1038/s41598-019-53721-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/03/2019] [Indexed: 11/16/2022] Open
Abstract
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics.
Collapse
Affiliation(s)
- Xinzhu Wang
- Department of Infectious Disease, Imperial College London, London, W2 1PG, United Kingdom
| | - Ruud Nijman
- Department of Infectious Disease, Imperial College London, London, W2 1PG, United Kingdom
| | - Stephane Camuzeaux
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, IRDB Building, Du Cane Road, Imperial College London, London, W12 0NN, United Kingdom
| | - Caroline Sands
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, IRDB Building, Du Cane Road, Imperial College London, London, W12 0NN, United Kingdom
| | - Heather Jackson
- Department of Infectious Disease, Imperial College London, London, W2 1PG, United Kingdom
| | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, W2 1PG, United Kingdom
| | - Marieke Emonts
- Great North Children's Hospital, Paediatric Immunology, Infectious Diseases & Allergy, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
- NIHR Newcastle Biomedical Research Centre based at Newcastle upon Tyne Hospitals NHS Trust and Newcastle University, Newcastle upon Tyne, NE4 5PL, United Kingdom
| | - Jethro A Herberg
- Department of Infectious Disease, Imperial College London, London, W2 1PG, United Kingdom
| | - Ian Maconochie
- Department of Paediatric Emergency Medicine, St Mary's Hospital, Imperial College NHS Healthcare Trust, London, W2 1NY, United Kingdom
| | - Enitan D Carrol
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, United Kingdom
- Department of Infectious Diseases, Alder Hey Children's NHS Foundation Trust, Liverpool, L12 2AP, United Kingdom
- Liverpool Health Partners, Liverpool, L3 5TF, United Kingdom
| | - Stephane C Paulus
- Department of Infectious Diseases, Alder Hey Children's NHS Foundation Trust, Liverpool, L12 2AP, United Kingdom
- Liverpool Health Partners, Liverpool, L3 5TF, United Kingdom
| | - Werner Zenz
- Department of General Paediatrics, Medical University of Graz, Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Michiel Van der Flier
- Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, 3508 AB, The Netherlands
- Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, and Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Ronald de Groot
- Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, and Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Federico Martinon-Torres
- Genetic, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidad de Santiago de Compostela (USC), Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, 15706, Spain
| | - Luregn J Schlapbach
- Paediatirc Criticial Care Research Group, Child Health Research Centre, The University of Queensland and Paediatric Intensive Care Research Group, Queensland Children's Hospital, Brisbane, Australia
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, United Kingdom
| | - Colin Fink
- Micropathology Ltd, University of Warwick, Warwick, CV4 7EZ, United Kingdom
| | - Taco T Kuijpers
- Division of Pediatric Hematology, Immunology and Infectious diseases, Emma Children's Hospital Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Suzanne Anderson
- Medical Research Council Unit at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Matthew R Lewis
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, IRDB Building, Du Cane Road, Imperial College London, London, W12 0NN, United Kingdom
| | - Michael Levin
- Department of Infectious Disease, Imperial College London, London, W2 1PG, United Kingdom
| | - Myra McClure
- Department of Infectious Disease, Imperial College London, London, W2 1PG, United Kingdom.
| |
Collapse
|
9
|
Liu W, Zhou D, Yuan F, Liu Z, Duan Z, Yang K, Guo R, Li M, Li S, Fang L, Xiao S, Tian Y. Surface proteins mhp390 (P68) contributes to cilium adherence and mediates inflammation and apoptosis in Mycoplasma hyopneumoniae. Microb Pathog 2018; 126:92-100. [PMID: 30385395 DOI: 10.1016/j.micpath.2018.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (EP) and responsible for major economic losses in global swine industry. After colonization of the respiratory epithelium, M. hyopneumoniae elicits a general mucociliary clearance loss, prolonged inflammatory response, host immunosuppression and secondary infections. Until now, the pathogenesis of M. hyopneumoniae is not completely elucidated. This present study explores the pathogenicity of mhp390 (P68, a membrane-associated lipoprotein) by elucidating its multiple functions. Microtitrer plate adherence assay demonstrated that mhp390 is a new cilia adhesin that plays an important role in binding to swine tracheal cilia. Notably, mhp390 could induce significant apoptosis of lymphocytes and monocytes from peripheral blood mononuclear cells (PBMCs), as well as primary alveolar macrophages (PAMs), which might weaken the host immune response. In addition, mhp390 contributes to the production of proinflammatory cytokines, at least partially, via the release of IL-1β and TNF-α. To the best of our knowledge, this is the first report of the multiple functions of M. hyopneumoniae mhp390, which may supplement known virulence genes and further develop our understanding of the pathogenicity of M. hyopneumoniae.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Zhengyin Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China
| | - Mao Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Sha Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liurong Fang
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shaobo Xiao
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
Kwon D, Choi C, Chae C. Chronologic Localization ofMycoplasma hyopneumoniaein Experimentally Infected Pigs. Vet Pathol 2016; 39:584-7. [PMID: 12243470 DOI: 10.1354/vp.39-5-584] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chronologic localization of Mycoplasma hyopneumoniae was examined by in situ hybridization in experimentally infected pigs for a period of 35 days after intratracheal inoculation. M. hyopneumoniae DNA was detected in bronchial and bronchiolar epithelial cells from infected pigs at 7, 14, 21, and 28 days postinoculation (DPI) and in alveolar and interstitial macrophages and type I pneumocytes from infected pigs at 14, 21, 28, and 35 DPI. Strong hybridization signals for M. hyopneumoniae were detected mainly at the luminal surface of bronchial and bronchiolar lining epithelial cells. When a hybridization signal was detected at the luminal surface of bronchial and bronchiolar lining epithelial cells, a given bronchus or bronchiole also exhibited peribronchiolar lymphoid cuffing. These observations suggested that the presence of M. hyopneumoniae in different tissues could be due to a difference in the duration of the infection.
Collapse
|
11
|
Wang H, Feng Z, Wu Y, Wei Y, Gan Y, Hua L, Li B, Wang X, Liu M, Xiong Q, Shao G. The effects of Mycoplasma hyopneumoniae on porcine circovirus type 2 replication in vitro PK-15 cells. Res Vet Sci 2016; 105:56-61. [PMID: 27033909 DOI: 10.1016/j.rvsc.2016.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/27/2015] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS). Mycoplasma hyopneumoniae (Mhp) is a very well-known co-factor that potentially enhances PCV2 replication and thus the development of PMWS. However, co-infection with Mhp and PCV2 in vivo under different conditions can produce divergent clinical signs and lesions. In this study, PCV2 replication could be enhanced by subsequent co-inoculation with Mhp (PCV2+Mhp) in a time and dose dependent method, but not by prior (Mhp+PCV2) or simultaneous (Mhp/PCV2) co-inoculation. Furthermore, different magnitudes of PCV2-infected cells, varying from 150% ± 14% to 351% ± 28%, were detected when co-infected with different Mhp strains. The relative percentage of PCV2-infected cells greatly decreased from 351% ± 28 to 141% ± 18 when the Mhp strain was treated with UV light for 12 h. These results offer the evidences to better understand the complex clinical syndromes in Mhp/PCV2 co-infection cases, and the occurrence of PMWS.
Collapse
Affiliation(s)
- Haiyan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yuzi Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yuan Gan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Lizhong Hua
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Xiaomin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
12
|
Jarocki VM, Santos J, Tacchi JL, Raymond BBA, Deutscher AT, Jenkins C, Padula MP, Djordjevic SP. MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae. Open Biol 2015; 5:140175. [PMID: 25589579 PMCID: PMC4313372 DOI: 10.1098/rsob.140175] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aminopeptidases are part of the arsenal of virulence factors produced by bacterial pathogens that inactivate host immune peptides. Mycoplasma hyopneumoniae is a genome-reduced pathogen of swine that lacks the genetic repertoire to synthesize amino acids and relies on the host for availability of amino acids for growth. M. hyopneumoniae recruits plasmin(ogen) onto its cell surface via the P97 and P102 adhesins and the glutamyl aminopeptidase MHJ_0125. Plasmin plays an important role in regulating the inflammatory response in the lungs of pigs infected with M. hyopneumoniae. We show that recombinant MHJ_0461 (rMHJ_0461) functions as a leucine aminopeptidase (LAP) with broad substrate specificity for leucine, alanine, phenylalanine, methionine and arginine and that MHJ_0461 resides on the surface of M. hyopneumoniae. rMHJ_0461 also binds heparin, plasminogen and foreign DNA. Plasminogen bound to rMHJ_0461 was readily converted to plasmin in the presence of tPA. Computational modelling identified putative DNA and heparin-binding motifs on solvent-exposed sites around a large pore on the LAP hexamer. We conclude that MHJ_0461 is a LAP that moonlights as a multifunctional adhesin on the cell surface of M. hyopneumoniae.
Collapse
Affiliation(s)
- Veronica M Jarocki
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Jerran Santos
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Jessica L Tacchi
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Benjamin B A Raymond
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Ania T Deutscher
- NSW Department of Primary Industries, Private Bag 4008, Narellan, New South Wales 2567, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Private Bag 4008, Narellan, New South Wales 2567, Australia
| | - Matthew P Padula
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia Proteomics Core Facility, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| |
Collapse
|
13
|
Recombinant secreted antigens from Mycoplasma hyopneumoniae delivered as a cocktail vaccine enhance the immune response of mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1370-6. [PMID: 23803903 DOI: 10.1128/cvi.00140-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), which is a respiratory disease responsible for huge economic losses in the pig industry worldwide. The commercially available vaccines provide only partial protection and are expensive. Thus, the development of alternatives for the prophylaxis of EP is critical for improving pig health. The use of multiple antigens in the same immunization may represent a promising alternative. In the present study, seven secreted proteins of M. hyopneumoniae were cloned, expressed in Escherichia coli, and evaluated for antigenicity using serum from naturally and experimentally infected pigs. In addition, the immunogenicity of the seven recombinant proteins delivered individually or in protein cocktail vaccines was evaluated in mice. In Western blot assays and enzyme-linked immunosorbent assays, most of the recombinant proteins evaluated were recognized by convalescent-phase serum from the animals, indicating that they are expressed during the infectious process. The recombinant proteins were also immunogenic, and most induced a mixed IgG1/IgG2a humoral immune response. The use of these proteins in a cocktail vaccine formulation enhanced the immune response compared to their use as antigens delivered individually, providing evidence of the efficacy of the multiple-antigen administration strategy for the induction of an immune response against M. hyopneumoniae.
Collapse
|
14
|
Liu W, Xiao S, Li M, Guo S, Li S, Luo R, Feng Z, Li B, Zhou Z, Shao G, Chen H, Fang L. Comparative genomic analyses of Mycoplasma hyopneumoniae pathogenic 168 strain and its high-passaged attenuated strain. BMC Genomics 2013; 14:80. [PMID: 23384176 PMCID: PMC3626624 DOI: 10.1186/1471-2164-14-80] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 01/31/2013] [Indexed: 12/14/2022] Open
Abstract
Background Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (EP), a mild, chronic pneumonia of swine. Despite presenting with low direct mortality, EP is responsible for major economic losses in the pig industry. To identify the virulence-associated determinants of M. hyopneumoniae, we determined the whole genome sequence of M. hyopneumoniae strain 168 and its attenuated high-passage strain 168-L and carried out comparative genomic analyses. Results We performed the first comprehensive analysis of M. hyopneumoniae strain 168 and its attenuated strain and made a preliminary survey of coding sequences (CDSs) that may be related to virulence. The 168-L genome has a highly similar gene content and order to that of 168, but is 4,483 bp smaller because there are 60 insertions and 43 deletions in 168-L. Besides these indels, 227 single nucleotide variations (SNVs) were identified. We further investigated the variants that affected CDSs, and compared them to reported virulence determinants. Notably, almost all of the reported virulence determinants are included in these variants affected CDSs. In addition to variations previously described in mycoplasma adhesins (P97, P102, P146, P159, P216, and LppT), cell envelope proteins (P95), cell surface antigens (P36), secreted proteins and chaperone protein (DnaK), mutations in genes related to metabolism and growth may also contribute to the attenuated virulence in 168-L. Furthermore, many mutations were located in the previously described repeat motif, which may be of primary importance for virulence. Conclusions We studied the virulence attenuation mechanism of M. hyopneumoniae by comparative genomic analysis of virulent strain 168 and its attenuated high-passage strain 168-L. Our findings provide a preliminary survey of CDSs that may be related to virulence. While these include reported virulence-related genes, other novel virulence determinants were also detected. This new information will form the foundation of future investigations into the pathogenesis of M. hyopneumoniae and facilitate the design of new vaccines.
Collapse
Affiliation(s)
- Wei Liu
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Normal to cancer microbiome transformation and its implication in cancer diagnosis. Biochim Biophys Acta Rev Cancer 2012; 1826:331-7. [PMID: 22683403 DOI: 10.1016/j.bbcan.2012.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 01/05/2023]
Abstract
Microbial communities coexisting with humans are collectively known as microbiome. It influences almost every aspect of an individual's body function. Microbiome is idiosyncratic for body condition and its alteration is indicative for several abnormalities. This article discusses about recent ideas for developing microbiology based cancer indicators using alterations in microbiome. It is noteworthy that large exploratory studies are required to identify cancer indicator microorganisms from complex and diverse microbiome constituents. This complexity also warrants that these markers should be used in conjunction with other routine cancer indicators. The present article concludes that such studies can spur development of novel microbiome based cancer diagnostics.
Collapse
|
16
|
Takahashi T, Suzuki T. Role of sulfatide in normal and pathological cells and tissues. J Lipid Res 2012; 53:1437-50. [PMID: 22619219 DOI: 10.1194/jlr.r026682] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sulfatide is 3-O-sulfogalactosylceramide that is synthesized by two transferases (ceramide galactosyltransferase and cerebroside sulfotransferase) from ceramide and is specifically degraded by a sulfatase (arylsulfatase A). Sulfatide is a multifunctional molecule for various biological fields including the nervous system, insulin secretion, immune system, hemostasis/thrombosis, bacterial infection, and virus infection. Therefore, abnormal metabolism or expression change of sulfatide could cause various diseases. Here, we discuss the important biological roles of sulfatide in the nervous system, insulin secretion, immune system, hemostasis/thrombosis, cancer, and microbial infections including human immunodeficiency virus and influenza A virus. Our review will be helpful to achieve a comprehensive understanding of sulfatide, which serves as a fundamental target of prevention of and therapy for nervous disorders, diabetes mellitus, immunological diseases, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka and Global COE Program for Innovation in Human Health Sciences, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | |
Collapse
|
17
|
Ott C, Elia N, Jeong SY, Insinna C, Sengupta P, Lippincott-Schwartz J. Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts. Cilia 2012; 1:3. [PMID: 23351752 PMCID: PMC3541541 DOI: 10.1186/2046-2530-1-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/25/2012] [Indexed: 12/11/2022] Open
Abstract
Background The central tenet of cilia function is sensing and transmitting information. The capacity to directly contact extracellular surfaces would empower primary cilia to probe the environment for information about the nature and location of nearby surfaces. It has been well established that flagella and other motile cilia perform diverse cellular functions through adhesion. We hypothesized that mammalian primary cilia also interact with the extracellular environment through direct physical contact. Methods We identified cilia in rod photoreceptors and cholangiocytes in fixed mouse tissues and examined the structures that these cilia contact in vivo. We then utilized an MDCK cell culture model to characterize the nature of the contacts we observed. Results In retina and liver tissue, we observed that cilia from nearby cells touch one another. Using MDCK cells, we found compelling evidence that these contacts are stable adhesions that form bridges between two cells, or networks between many cells. We examined the nature and duration of the cilia-cilia contacts and discovered primary cilia movements that facilitate cilia-cilia encounters. Stable adhesions form as the area of contact expands from a single point to a stretch of tightly bound, adjacent cilia membranes. The cilia-cilia contacts persisted for hours and were resistant to several harsh treatments such as proteases and DTT. Unlike many other cell adhesion mechanisms, calcium was not required for the formation or maintenance of cilia adhesion. However, swainsonine, which blocks maturation of N-linked glycoproteins, reduced contact formation. We propose that cellular control of adhesion maintenance is active because cilia adhesion did not prevent cell division; rather, contacts dissolved during mitosis as cilia were resorbed. Conclusions The demonstration that mammalian primary cilia formed prolonged, direct, physical contacts supports a novel paradigm: that mammalian primary cilia detect features of the extracellular space, not just as passive antennae, but also through direct physical contact. We present a model for the cycle of glycoprotein-dependent contact formation, maintenance, and termination, and discuss the implications for potential physiological functions of cilia-cilia contacts.
Collapse
Affiliation(s)
- Carolyn Ott
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Seymour LM, Falconer L, Deutscher AT, Minion FC, Padula MP, Dixon NE, Djordjevic SP, Walker MJ. Mhp107 is a member of the multifunctional adhesin family of Mycoplasma hyopneumoniae. J Biol Chem 2011; 286:10097-104. [PMID: 21245147 DOI: 10.1074/jbc.m110.208140] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative pathogen of porcine enzootic pneumonia, an economically significant disease that disrupts the mucociliary escalator in the swine respiratory tract. Expression of Mhp107, a P97 paralog encoded by the gene mhp107, was confirmed using ESI-MS/MS. To investigate the function of Mhp107, three recombinant proteins, F1(Mhp107), F2(Mhp107), and F3(Mhp107), spanning the N-terminal, central, and C-terminal regions of Mhp107 were constructed. Colonization of swine by M. hyopneumoniae requires adherence of the bacterium to ciliated cells of the respiratory tract. Recent studies have identified a number of M. hyopneumoniae adhesins that bind heparin, fibronectin, and plasminogen. F1(Mhp107) was found to bind porcine heparin (K(D) ∼90 nM) in a dose-dependent and saturable manner, whereas F3(Mhp107) bound fibronectin (K(D) ∼180 nM) at physiologically relevant concentrations. F1(Mhp107) also bound porcine plasminogen (K(D) = 24 nM) in a dose-dependent and physiologically relevant manner. Microspheres coated with F3(Mhp107) mediate adherence to porcine kidney epithelial-like (PK15) cells, and all three recombinant proteins (F1(Mhp107)-F3(Mhp107)) bound swine respiratory cilia. Together, these findings indicate that Mhp107 is a member of the multifunctional M. hyopneumoniae adhesin family of surface proteins and contributes to both adherence to the host and pathogenesis.
Collapse
Affiliation(s)
- Lisa M Seymour
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Seymour LM, Deutscher AT, Jenkins C, Kuit TA, Falconer L, Minion FC, Crossett B, Padula M, Dixon NE, Djordjevic SP, Walker MJ. A processed multidomain mycoplasma hyopneumoniae adhesin binds fibronectin, plasminogen, and swine respiratory cilia. J Biol Chem 2010; 285:33971-8. [PMID: 20813843 DOI: 10.1074/jbc.m110.104463] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porcine enzootic pneumonia is a chronic respiratory disease that affects swine. The etiological agent of the disease, Mycoplasma hyopneumoniae, is a bacterium that adheres to cilia of the swine respiratory tract, resulting in loss of cilia and epithelial cell damage. A M. hyopneumoniae protein P116, encoded by mhp108, was investigated as a potential adhesin. Examination of P116 expression using proteomic analyses observed P116 as a full-length protein and also as fragments, ranging from 17 to 70 kDa in size. A variety of pathogenic bacterial species have been shown to bind the extracellular matrix component fibronectin as an adherence mechanism. M. hyopneumoniae cells were found to bind fibronectin in a dose-dependent and saturable manner. Surface plasmon resonance was used to show that a recombinant C-terminal domain of P116 bound fibronectin at physiologically relevant concentrations (K(D) 24 ± 6 nm). Plasmin(ogen)-binding proteins are also expressed by many bacterial pathogens, facilitating extracellular matrix degradation. M. hyopneumoniae cells were found to also bind plasminogen in a dose-dependent and saturable manner; the C-terminal domain of P116 binds to plasminogen (K(D) 44 ± 5 nm). Plasminogen binding was abolished when the C-terminal lysine of P116 was deleted, implicating this residue as part of the plasminogen binding site. P116 fragments adhere to the PK15 porcine kidney epithelial-like cell line and swine respiratory cilia. Collectively these data suggest that P116 is an important adhesin and virulence factor of M. hyopneumoniae.
Collapse
Affiliation(s)
- Lisa M Seymour
- Schools of Biological Sciences, University of Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wilton J, Jenkins C, Cordwell SJ, Falconer L, Minion FC, Oneal DC, Djordjevic MA, Connolly A, Barchia I, Walker MJ, Djordjevic SP. Mhp493 (P216) is a proteolytically processed, cilium and heparin binding protein of Mycoplasma hyopneumoniae. Mol Microbiol 2008; 71:566-82. [PMID: 19040640 DOI: 10.1111/j.1365-2958.2008.06546.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mycoplasma hyopneumoniae induces respiratory disease in swine by colonizing cilia causing ciliostasis, cilial loss and epithelial cell death. Heparin binds to M. hyopneumoniae cells in a dose-dependent manner and blocks its ability to adhere to porcine cilia. We show here that Mhp493 (P216), a paralogue of the cilium adhesin P97 (Mhp183), is cleaved between amino acids 1040 and 1089 generating surface-accessible, heparin-binding proteins P120 and P85. Antiphosphoserine antibodies recognized P85 in 2-D immunoblotting studies and TiO(2) chromatography of trypsin digests of P85 isolated a single peptide with an m/z of 917.3. A phosphoserine residue in the tryptic peptide (90)VSELpSFR(96) (position 94 in P85) was identified by MALDI-MS/MS. Polyhistidine fusion proteins (F1(P216), F2(P216), F3(P216)) spanning Mhp493 bound heparin with biologically significant Kd values, and heparin, fucoidan and mucin inhibited this interaction. Latex beads coated with F1(P216), F2(P216) and F3(P216) adhered to and entered porcine kidney epithelial-like (PK15) cell monolayers. Microtitre plate-based assays showed that sequences within P120 and P85 bind to porcine cilia and are recognized by serum antibodies elicited during infection by M. hyopneumoniae. Mhp493 contributes significantly to the surface architecture of M. hyopneumoniae and is the first cilium adhesin to be described that lacks an R1 cilium-binding domain.
Collapse
Affiliation(s)
- Jody Wilton
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden, NSW 2570, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Evolving complexities of influenza virus and its receptors. Trends Microbiol 2008; 16:149-57. [PMID: 18375125 DOI: 10.1016/j.tim.2008.01.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 01/08/2008] [Accepted: 01/08/2008] [Indexed: 01/12/2023]
Abstract
Sialic acids (Sias) are regarded as receptors for influenza viruses and are usually bound to galactose (Gal) in an alpha2-3 or alpha2-6 configuration. The detection of these Sia configurations in tissues has commonly been through the use of plant lectins that are able to identify which cells contain Siaalpha2-3- and Siaalpha2-6-linked glycans, although other techniques for receptor distribution have been used. Initial experiments indicated that avian versus human influenza virus binding was determined by either Siaalpha2-6 or Siaalpha2-3 expression. In this review, we suggest that the distribution and detection of these terminal Siaalpha2-3- and Siaalpha2-6-linked receptors within the respiratory tract might not be as clear cut as has been reported. We will also review how other viral and receptor components might act as determinants for successful viral replication and transmission. Understanding these additional components is important in comprehending the infection and the transmission of both existing human influenza viruses and newly emerging avian influenza viruses.
Collapse
|
22
|
Jang EJ, Kim TJ. In vitro expression of the 50-kDa and 30-kDa fragments of the P97 adhesin of Mycoplasma hyopneumoniae in Escherichia coli and their use for serodiagnosis. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2007; 71:278-282. [PMID: 17955902 PMCID: PMC1940275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 12/14/2006] [Indexed: 05/25/2023]
Abstract
This article reports the cloning and expression of 2 fragments of the P97 adhesin of Mycoplasma hyopneumoniae for use in serodiagnosis: a 50-kDa fragment (including the N-terminal cleavage site) and a 30-kDa fragment (including the C-terminal R1 and R2 repeats, which are essential for adherence). The genes encoding the fragments were amplified, cloned, and expressed in the Escherichia coli expression system BL21 (DE3)pLysS. Antiserum against the purified recombinant proteins reacted with the mycoplasmal 97-kDa intact protein and the 66-kDa major cleavage fragment, confirming that both cloned fragments could induce antigen-specific antibodies in mice. Of 70 serum samples from nonvaccinated pigs, 26 (37%) were seropositive when the 30-kDa fragment was used as an antigen for enzyme-linked immunosorbent assay, suggesting that natural mycoplasmal infection is quite common in Korea. However, only 4 samples were seropositive when the 50-kDa fragment was used; this fragment was therefore deemed unsuitable for serodiagnosis. The 30-kDa fragment protein might be useful for measuring antibody response to vaccination and for detecting mycoplasmal infection.
Collapse
Affiliation(s)
| | - Tae Jung Kim
- Address all correspondence and reprint requests to Professor Tae Jung Kim; telephone: +82–62–530–2858; fax: +82–62–530–2857; e–mail:
| |
Collapse
|
23
|
Ferreira HB, Castro LAD. A preliminary survey of M. hyopneumoniae virulence factors based on comparative genomic analysis. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Bressan A, Clair D, Sémétey O, Boudon-Padieu E. Insect injection and artificial feeding bioassays to test the vector specificity of flavescence dorée phytoplasma. PHYTOPATHOLOGY 2006; 96:790-796. [PMID: 18943154 DOI: 10.1094/phyto-96-0790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT The specificity of vector transmission of Flavescence dorée phytoplasma (FDP) was tested by injecting FDP, extracted from laboratory-reared infective Euscelidius variegatus, into specimens of 15 other hemipteran insect species collected in European vineyards. Concentrations of viable phytoplasma extracts and latency in vectors were monitored by injection of healthy-reared E. variegatus leafhoppers. Based on these preliminary results, insects were injected by using phytoplasma extracts that ensured the highest rate of FDP acquisition and transmission by E. variegatus. Transmission into an artificial diet through a Parafilm membrane about 3 weeks after insect injection was attempted. FDP-injected insects that belonged to 15 hemipteran species were confined in cages and fed through the membrane for a 4- to 5-day inoculation access period. FDP DNA was detected by polymerase chain reaction (PCR) in the feeding buffer fed upon by Anoplotettix fuscovenosus, Aphrodes makarovi,E. variegatus, and Euscelis incisus. PCR amplification with specific primers detected FDP DNA in injected insects of all test insect species. Band intensity was positively correlated with the transmissibility of FDP. Transmission of FDP to plants by feeding was confirmed for Anoplotettix fuscovenosus, E. variegatus, and Euscelis incisus, but not for Aphrodes makarovi. Our results suggest that vector competency of FDP is restricted to specimens belonging to the family Cicadellidae, subfamily Deltocephalinae.
Collapse
|
25
|
Jenkins C, Wilton JL, Minion FC, Falconer L, Walker MJ, Djordjevic SP. Two domains within the Mycoplasma hyopneumoniae cilium adhesin bind heparin. Infect Immun 2006; 74:481-7. [PMID: 16369004 PMCID: PMC1346629 DOI: 10.1128/iai.74.1.481-487.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia, a chronic and economically significant respiratory disease that affects swine production worldwide. M. hyopneumoniae adheres to and adversely affects the function of ciliated epithelial cells of the respiratory tract, and the cilium adhesin (Mhp183, P97) is intricately but not exclusively involved in this process. Although binding of pathogenic bacteria to glycosaminoglycans is a recognized step in pathogenesis, knowledge of glycosaminoglycan-binding proteins in M. hyopneumoniae is lacking. However, heparin and other sulfated polysaccharides are known to block the binding of M. hyopneumoniae to purified swine respiratory cilia. In this study, four regions within the cilium adhesin were examined for the ability to bind heparin. Cilium adhesin fragments comprising 653 amino acids of the N terminus and 301 amino acids of the C terminus (containing two repeat regions, R1 and R2) were cloned and expressed. These fragments bound heparin in a dose-dependent and saturable manner with physiologically significant binding affinities of 0.27 +/- 0.02 microM and 1.89 +/- 0.33 microM, respectively. Heparin binding of both fragments was strongly inhibited by the sulfated polysaccharides fucoidan and mucin but not by chondroitin sulfate B. When the C-terminal repeat regions R1 and R2 were cloned separately and expressed, heparin-binding activity was lost, suggesting that both regions are required for heparin binding. The ability of the cilium adhesin to bind heparin indicates that this molecule plays a multifunctional role in the adherence of M. hyopneumoniae to host respiratory surfaces and therefore has important implications with respect to the pathogenesis of this organism.
Collapse
Affiliation(s)
- Cheryl Jenkins
- Microbiology and Immunology, Elizabeth Macarthur Agricultural Institute, PMB 8, Camden, New South Wales 2570, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Adams C, Pitzer J, Minion FC. In vivo expression analysis of the P97 and P102 paralog families of Mycoplasma hyopneumoniae. Infect Immun 2005; 73:7784-7. [PMID: 16239586 PMCID: PMC1273896 DOI: 10.1128/iai.73.11.7784-7787.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P97 adhesin and P102 genes of Mycoplasma hyopneumoniae each have six paralogs in the genome. We tested whether these genes were expressed during infection. P102 is associated with the mycoplasma and with swine cilia. Further, most of the paralogs were transcribed in vivo in two gene transcriptional units.
Collapse
Affiliation(s)
- Cary Adams
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
27
|
Szathmáry S, Rajapakse N, Székely I, Pitlik E, Bíró J, Erdei N, Stipkovits L. Binding of mycoplasmas to solid phase adsorbents. Acta Vet Hung 2005; 53:299-307. [PMID: 16156125 DOI: 10.1556/avet.53.2005.3.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The capture of mycoplasmas (M. hominis, M. buccale, M. fermentans, M. bovis, M. synoviae, M. gallisepticum and M. arthritidis) based on lipid structures and adhesion molecules present in the mycoplasmal membrane was tested using different chromatographic resins (ActiClean Etox, ClarEtox, Heparin-Actigel, Sulfated Hiflow and SulfEtox). All of the resins efficiently reduced mycoplasma concentrations in Phosphate Buffered Saline (PBS) and in Fetal Bovine Serum (FBS) by 3-8 logs in a few minutes. This technology could be used for removing mycoplasmas from tissue culture components such as serum, and for concentrating mycoplasmas in vaccine production.
Collapse
|
28
|
Killiny N, Castroviejo M, Saillard C. Spiroplasma citri Spiralin Acts In Vitro as a Lectin Binding to Glycoproteins from Its Insect Vector Circulifer haematoceps. PHYTOPATHOLOGY 2005; 95:541-548. [PMID: 18943320 DOI: 10.1094/phyto-95-0541] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT In order to understand the molecular mechanisms underlying transmission of Spiroplasma citri by the leafhopper Circulifer haematoceps, we screened leafhopper proteins as putative S. citri-binding molecules using a spiroplasma overlay assay of protein blots (Far-western assay). Insect proteins were separated by one- or two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, blotted, and probed with S. citri proteins. In this in vitro assay, we found that spiroplasma proteins exhibited affinity for seven leafhopper proteins. The interactions between S. citri proteins and insect proteins with molecular masses of 50 and 60 kDa were found to be sugar sensitive. These insect proteins were identified as high mannose N-glycoproteins, which support an interaction of glycoprotein-lectin type with S. citri proteins. Lectin detection in S. citri has revealed only one protein of 24 kDa. Using a leafhopper protein overlay assay on an S. citri protein blot, one spiroplasma protein with a similar molecular mass of 24 kDa was shown to display an insect protein-binding capacity. This protein was identified as the spiralin, which is the most abundant membrane protein of S. citri. Far-western experiments performed with purified spiralin and insect glycoproteins confirmed the binding of spiralin to the insect glycoproteins of 50 and 60 kDa. Thus, the spiralin could play a key role in the transmission of S. citri by mediating spiroplasma adherence to epithelial cells of insect vector gut or salivary gland.
Collapse
|
29
|
Park SC, Yibchok-Anun S, Cheng H, Young TF, Thacker EL, Minion FC, Ross RF, Hsu WH. Mycoplasma hyopneumoniae increases intracellular calcium release in porcine ciliated tracheal cells. Infect Immun 2002; 70:2502-6. [PMID: 11953388 PMCID: PMC127901 DOI: 10.1128/iai.70.5.2502-2506.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the effects of intact pathogenic Mycoplasma hyopneumoniae, nonpathogenic M. hyopneumoniae, and Mycoplasma flocculare on intracellular free Ca2+ concentrations ([Ca2+]i) in porcine ciliated tracheal epithelial cells. The ciliated epithelial cells had basal [Ca2+]i of 103 +/- 3 nM (n = 217 cells). The [Ca2+]i increased by 250 +/- 19 nM (n = 47 cells) from the basal level within 100 s of the addition of pathogenic M. hyopneumoniae strain 91-3 (300 microg/ml), and this increase lasted approximately 60 s. In contrast, nonpathogenic M. hyopneumoniae and M. flocculare at concentrations of 300 microg/ml failed to increase [Ca2+]i. In Ca2+-free medium, pathogenic M. hyopneumoniae still increased [Ca2+]i in tracheal cells. Pretreatment with thapsigargin (1 microM for 30 min), which depleted the Ca2+ store in the endoplasmic reticulum, abolished the effect of M. hyoneumoniae. Pretreatment with pertussis toxin (100 ng/ml for 3 h) or U-73122 (2 microM for 100 s), an inhibitor of phospholipase C, also abolished the effect of M. hyopneumoniae. The administration of mastoparan 7, an activator of pertussis toxin-sensitive proteins G(i) and G(o), increased [Ca2+]i in ciliated tracheal cells. These results suggest that pathogenic M. hyopneumoniae activates receptors that are coupled to G(i) or G(o), which in turn activates a phospholipase C pathway, thereby releasing Ca2+ from the endoplasmic reticulum. Thus, an increase in Ca2+ may serve as a signal for the pathogenesis of M. hyopneumoniae.
Collapse
Affiliation(s)
- Seung-Chun Park
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Berg M, Melcher U, Fletcher J. Characterization of Spiroplasma citri adhesion related protein SARP1, which contains a domain of a novel family designated sarpin. Gene 2001; 275:57-64. [PMID: 11574152 DOI: 10.1016/s0378-1119(01)00655-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transmission of the plant pathogen Spiroplasma citri by its leafhopper vector, Circulifer tenellus, involves adherence to and invasion of insect host cells. The S. citri adhesion related protein P89 (SARP1) was purified by immunoprecipitation using anti-SARP1 monoclonal antibodies. The protein's N-terminal amino acid sequence was determined and used to design a degenerate oligonucleotide. The labeled oligonucleotide hybridized to a 3.5 kb MboI fragment from S. citri DNA, which was then cloned and sequenced. Additionally, a 1.9 kb RsaI fragment of S. citri DNA, partially overlapping the MboI fragment, was isolated and characterized. Sequence analysis of the two clones revealed four open reading frames. ORF1 (675 bp) encodes the C-terminal part of a Soj-like protein. ORFs 1 and 2 were separated from ORFs 3 and 4 by a putative transcription termination site, indicated by a hairpin structure. ORF3 encodes an amphiphilic 798 amino acid long protein with a cleavable signal peptide and a predicted transmembrane helix near the C-terminus. The mature protein of 85.96 kDa has a calculated pI value of 5.5 and has an N-terminal amino acid sequence consistent with that determined from the purified SARP1. At the N-terminus of this protein is a region consisting of six repeats, each 39-42 amino acids, a motif belonging to a previously unrecognized family of repeats found in a variety of bacterial proteins. The taxonomically spotty presence of this 'sarpin' domain and the relationship of the repeats to each other suggests a convergent evolution in multiple lineages.
Collapse
Affiliation(s)
- M Berg
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
31
|
Young TF, Thacker EL, Erickson BZ, Ross RF. A tissue culture system to study respiratory ciliary epithelial adherence of selected swine mycoplasmas. Vet Microbiol 2000; 71:269-79. [PMID: 10703709 DOI: 10.1016/s0378-1135(99)00176-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An in vitro culture system for swine tracheal epithelial cells was developed to study the adherence of swine mycoplasmas. Swine tracheal epithelial cells were isolated by enzymatic digestion and cultured on microporous membranes. Growth medium was placed under the membrane support to create air-liquid interface feeding resulting in the cells growing cilia and microvilli on the apical surface. Two strains of Mycoplasma hyopneumoniae (pathogenic strain 91-3 and non-pathogenic type strain J) and two strains of Mycoplasma flocculare (type strain Ms42 and field isolate 7160T) were used in this study. The morphology of the cultured tracheal cells was evaluated by transmission electron microscopy. Adherence of M. hyopneumoniae and M. flocculare and damage to the cilia were demonstrated using scanning electron microscopy. The pathogenic M. hyopneumoniae strain 91-3 adhered to cilia inducing obvious damage. The non-pathogenic M. hyopneumoniae strain J did not adhere to mature cilia. Both M. flocculare strains Ms42 and 7160T adhered to mature and budding cilia. No obvious ciliary damage was observed with strain Ms42. Minimal damage consisting of a slight tangling of the cilia occurred after adherence by strain 7160T. This model will enable us to further study the role of adherence of mycoplasmas on the pathogenesis of swine pneumonia.
Collapse
Affiliation(s)
- T F Young
- Veterinary Medical Research Institute, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
32
|
Kwon D, Chae C. Detection and localization of Mycoplasma hyopneumoniae DNA in lungs from naturally infected pigs by in situ hybridization using a digoxigenin-labeled probe. Vet Pathol 1999; 36:308-13. [PMID: 10421097 DOI: 10.1354/vp.36-4-308] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycoplasma hyopneumoniae DNA was detected in 20 naturally infected pigs by in situ hybridization using a nonradioactive digoxigenin-labeled DNA probe. A 520-base-pair DNA probe targeting a reiterative sequence of the M. hyopneumoniae genome was generated by the polymerase chain reaction. All 20 pigs infected with M. hyopneumoniae had distinct and positive hybridization signals without background staining. A strong hybridization signal was detected mainly in the luminal surface of bronchial and bronchiolar lining epithelial cells, whereas no hybridization signal was seen in the cytoplasm of bronchial and bronchiolar lining epithelial cells. When hybridization signal was detected in the luminal surface of bronchial and bronchiolar lining epithelial cells, a given bronchus or bronchiole had peribronchiolar lymphoid hyperplastic tissues. Hybridization signals were not seen in the peribronchiolar lymphoid hyperplastic tissues. A less intense signal was detected in the interstitial and alveolar macrophages randomly scattered in the thickened alveolar septa and spaces. Hybridization signal was rarely detected in the type I pneumocytes. The in situ hybridization technique developed in this study was useful for detection of M. hyopneumoniae nucleic acids in tissues taken from naturally infected piglets and may be a valuable technique for studying the pathogenesis of M. hyopneumoniae infection.
Collapse
Affiliation(s)
- D Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Suwon, Republic of Korea
| | | |
Collapse
|
33
|
Abstract
The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors' chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.
Collapse
Affiliation(s)
- S Razin
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
34
|
Hsu T, Minion FC. Identification of the cilium binding epitope of the Mycoplasma hyopneumoniae P97 adhesin. Infect Immun 1998; 66:4762-6. [PMID: 9746576 PMCID: PMC108587 DOI: 10.1128/iai.66.10.4762-4766.1998] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyopneumoniae colonizes the swine respiratory tract at the level of ciliated cells by attaching specifically to the cilium membrane. This interaction involves an adhesin called P97; the cilium binding activity of this protein was localized to the carboxy terminus, which included two repeat regions, R1 and R2 (T. Hsu, S. Artiushin, and F. C. Minion, J. Bacteriol. 179:1317-1323, 1997). To further delineate the molecular mechanisms of M. hyopneumoniae interactions with ciliated epithelium, we used a bank of transposon inserts in the cloned P97 gene to identify the site for cilium binding by testing the truncated gene products in an in vitro microtiter plate adherence assay. These studies showed that the cilium binding site was located in the AAKPV(E) repeat sequence of P97, referred to as the R1 repeat. For functional binding, at least seven AAKPV(E) repeats were required. The adherence-blocking monoclonal antibody F1B6 also recognized this region but required fewer AAKPV(E) repeats for recognition. We then constructed R1 region-lacZ gene fusions and used the resulting R1 repeat-beta-galactosidase fusion proteins in an in vitro assay to confirm the role of R1 in cilium binding. A comparison of the R1 regions of M. hyopneumoniae strains displaying variation in cilium adherence failed to identify changes that could account for the differences in adherence shown by the strains. Thus, we concluded that other proteins, in addition to P97, must be involved in cilium adherence, possibly in combination with P97.
Collapse
Affiliation(s)
- T Hsu
- Department of Microbiology, Immunology and Preventive Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
35
|
Abstract
Mycoplasma hyopneumoniae causes an economically significant respiratory disease of swine called Enzootic Pneumonia. The disease process is initiated by adherence of M. hyopneumoniae to the cilia of swine respiratory epithelium through an interaction involving P97, a surface-associated protein, and cilia-specific receptors. Binding specificity is associated with a repeat region located near the C-terminus of the P97 protein. Further analysis of the DNA sequences surrounding the P97 structural gene revealed an operon composed of two ORFs, P97 and one coding for a 102.3-kDa protein designated P102. Hybridization analysis and subcloning experiments showed that the P97 adhesin-encoding gene was present as a single copy in the M. hyopneumoniae chromosome. P102 sequences, however, were found on four distinct chromosomal fragments, suggesting that multiple copies of P102 were present in the chromosome. One of these clones was identified by screening the genomic library with swine convalescent sera showing that P102 is expressed in vivo during M. hyopneumoniae infections. All copies of P102 were mapped to a single chromosomal region comprising approximately 13% of the genome (140kb), although the exact distance between the copies is not known. The function of P102 is also not known, but the translated sequence shows a prominent transmembrane domain, suggesting that it may be a surface protein.
Collapse
Affiliation(s)
- T Hsu
- Department of Microbiology, Immunology and Preventive Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
36
|
Suarez SS, Revah I, Lo M, Kölle S. Bull sperm binding to oviductal epithelium is mediated by a Ca2+-dependent lectin on sperm that recognizes Lewis-a trisaccharide. Biol Reprod 1998; 59:39-44. [PMID: 9674991 DOI: 10.1095/biolreprod59.1.39] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sperm binding to oviductal epithelium produces a reservoir in vivo that may serve to maintain sperm fertility and provide sperm for fertilization when ovulation occurs. Previously, it was determined that bull sperm binding could be blocked by fucoidan and its component fucose; furthermore, treatment of epithelium with fucosidase prevented binding. The present study was conducted to further characterize binding. Because fucose would probably be present on the epithelium as part of oligosaccharide moieties of glycoproteins and/or glycolipids, competitive binding inhibition activity was tested for fucose in five linkages commonly found in oligosaccharides. Binding inhibition was assayed by determining the concentration of motile, frozen/thawed sperm bound to fresh epithelial explants in the presence of test inhibitors. Initially, 5 monosaccharides were tested at 30 mM (fucose, mannose, sialic acid, glucose, N-acetyl glucosamine, and galactose), and only fucose significantly reduced sperm binding compared to vehicle control (p = 0.03). Of the oligosaccharides tested (lacto-N-fucopentaose I, 3-fucosyllactose, Lewis-X, Lewis-a, and GlcNAcbeta1-4[Fucalpha1-6]GlcNAc-O-Me), only Lewis-a significantly reduced binding, and it did so in a dose-dependent fashion (p = 0.009 at 12.5 mM). Ca2+ dependency of binding was examined. Sperm were incubated with explants in Tyrode's albumin lactate pyruvate (TALP) containing 2 mM CaCl2 or lacking CaCl2 and containing 2 mM EGTA. Sperm-binding density was reduced significantly in EGTA (p < 0.03) but could be restored by readdition of CaCl2. Also, live sperm were labeled with the oligosaccharide ligand Lewis-a conjugated to fluorescein isothiocyanate-tagged polyacrylamide. Sperm exhibited labeling on the head only in the presence of Ca2+. Labeling could be blocked by fucose or Lewis-a-polyacrylamide. It was concluded that bull sperm bind to an oligosaccharide ligand on the oviductal epithelium that resembles Lewis-a and that binding is Ca2+-dependent.
Collapse
Affiliation(s)
- S S Suarez
- Department of Anatomy, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
37
|
Wilton JL, Scarman AL, Walker MJ, Djordjevic SP. Reiterated repeat region variability in the ciliary adhesin gene of Mycoplasma hyopneumoniae. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1931-1943. [PMID: 9695926 DOI: 10.1099/00221287-144-7-1931] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma hyopneumoniae is a highly prevalent pathogen which colonizes the ciliated epithelial lining of the porcine respiratory tract. Expression libraries constructed from genomic DNA of the non-pathogenic strain M. hyopneumoniae J were screened with porcine hyperimmune antiserum against M. hyopneumoniae. One clone expressed a 28 kDa protein which was also reactive with monospecific antiserum raised against a putative M. hyopneumoniae-specific 94 kDa antigen derived from strain J. Trypsin digestion of whole M. hyopneumoniae cells showed the 94 kDa antigen to be surface-accessible. DNA sequence analysis of the gene encoding the 94 kDa antigen revealed greater than 90% homology to two adhesin genes, encoding P97 and Mhp1, cloned from pathogenic strain 232 and strain P5722 of M. hyopneumoniae, respectively. Two regions of repetitive DNA sequence were identified in the gene encoding the 94 kDa antigen. The first encoded the deduced amino acid sequence A(T)-K-P-E(V)-A(T) arranged as nine tandem repeats (RR1). The second region of repetitive DNA sequence encoded the deduced amino acid sequence G-A(E,S)-P-N(S)-Q-G-K-K-A-E arranged as five tandem repeats (RR2). Comparison of the three M. hyopneumoniae adhesin genes revealed that the genes encoding P97 and Mhp1, and the strain J gene encoding the 94 kDa antigen contained 15, 12 and 9 tandem repeats, respectively, in RR1, and 4, 5 and 5 tandem repeats, respectively, in RR2. Southern hybridization analysis of EcoRI-digested genomic DNA probed with an 820 bp fragment spanning RR1 and RR2 identified a strongly hybridizing fragment ranging in size from 2.15 to 2.30 kb among seven geographically diverse strains of M. hyopneumoniae but failed to hybridize with DNA from four strains of Mycoplasma hyorhinis or Mycoplasma flocculare strain Ms42. PCR primers flanking the DNA sequence encoding RR1 and RR2 were used to amplify DNA from the seven strains of M. hyopneumoniae and DNA sequence analysis of the amplification products showed that the number of tandem amino acid repeats in RR1 varied considerably between strains. RR1 from M. hyopneumoniae strains YZ, Beaufort, Sue, OMZ407 and C1735/2 comprised 11, 15, 12, 15 and 8 tandem copies, respectively, of the 5-aa repeat whilst RR2 comprised 4, 3, 4, 3 and 4 tandem copies, respectively, of the 10-aa repeat. Two putative integrin binding sites (L-E-T and R-X-X-X-D) were identified in the 94 kDa ciliary adhesin. Variability in the number of amino acid repeats in RR1 amongst strains of M. hyopneumoniae may influence ciliary binding.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Base Sequence
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- Enzyme-Linked Immunosorbent Assay
- Genes, Bacterial/genetics
- Minisatellite Repeats/genetics
- Molecular Sequence Data
- Mycoplasma/genetics
- Mycoplasma/immunology
- Polymerase Chain Reaction
- Rabbits
- Sequence Analysis, DNA
- Swine
Collapse
Affiliation(s)
- Jody L Wilton
- Microbiology and Immunology Section, Elizabeth Macarthur Agricultural InstitutePMB 8, Camden, NSWAustralia 2570
- Department of Biological Sciences, University of WollongongWollongong, NSWAustralia
| | - Anthony L Scarman
- Microbiology and Immunology Section, Elizabeth Macarthur Agricultural InstitutePMB 8, Camden, NSWAustralia 2570
- School of Biotechnology, University of New South WalesSydney, NSWAustralia
| | - Mark J Walker
- Department of Biological Sciences, University of WollongongWollongong, NSWAustralia
| | - Steven P Djordjevic
- Microbiology and Immunology Section, Elizabeth Macarthur Agricultural InstitutePMB 8, Camden, NSWAustralia 2570
| |
Collapse
|
38
|
Chen JR, Lin JH, Weng CN, Lai SS. Identification of a novel adhesin-like glycoprotein from Mycoplasma hyopneumoniae. Vet Microbiol 1998; 62:97-110. [PMID: 9695283 DOI: 10.1016/s0378-1135(98)00207-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study identifies an adhesin-like glycoprotein, which was a 110 kDa protein (P110) under HPLC-GPC assay. This adhesin consisted of one P54 and two P28 subunits. In addition, N-glycosidase F could cleave all N-linked oligosaccharides on the P54 subunit. Experimental results indicated that P110 with native conformations significantly inhibited the adherence of biotin-labeled porcine tracheal epithelial cell extracts to the intact M. hyopneumoniae cells (p < 0.01). Furthermore, the biotin-labeled porcine tracheal epithelial cell extracts specifically bound to P54 and P28 subunits. This binding could be competitively inhibited by unlabeled porcine tracheal epithelial extracts and SPF porcine antisera against Mycoplasma hyopneumoniae. Both P54 and P28 subunits were constitutively expressed in different strains of M. hyopneumoniae. Their production was negligibly changed at various passages during in vitro cultivation. The significant role of this adhesin-like glycoprotein in the pathogenesis of swine pneumonia is under study.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/immunology
- Amidohydrolases/chemistry
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Monoclonal
- Binding, Competitive/immunology
- Blotting, Western/veterinary
- Chromatography, Affinity/veterinary
- Chromatography, Gel/veterinary
- Chromatography, High Pressure Liquid/veterinary
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay/veterinary
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Immune Adherence Reaction/veterinary
- Mice
- Molecular Weight
- Mycoplasma/chemistry
- Mycoplasma/immunology
- Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase
- Pneumonia of Swine, Mycoplasmal/immunology
- Pneumonia of Swine, Mycoplasmal/veterinary
- Rabbits
- Specific Pathogen-Free Organisms
- Swine
- Swine Diseases/immunology
- Trachea/immunology
Collapse
Affiliation(s)
- J R Chen
- Department of Pathobiology, Pig Research Institute Taiwan, Chunan, Miaoli, Taiwan
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- I Ishizuka
- Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Hsu T, Artiushin S, Minion FC. Cloning and functional analysis of the P97 swine cilium adhesin gene of Mycoplasma hyopneumoniae. J Bacteriol 1997; 179:1317-23. [PMID: 9023217 PMCID: PMC178831 DOI: 10.1128/jb.179.4.1317-1323.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Colonization of the swine respiratory tract by Mycoplasma hyopneumoniae is accomplished by specific binding to the cilia of the mucosal epithelial cells. Previous studies have implicated a 97-kDa outer membrane-associated protein, P97, that appeared to mediate this interaction. In order to further define the role of P97 in adherence to porcine cilia, the structural gene was cloned and sequenced, and the recombinant products were analyzed. Monoclonal antibodies were used to identify recombinant clones in a genomic library expressed in an opal suppressor host because of alternate codon usage by mycoplasmas. The gene coding for P97 was then identified by Tn1000 mutagenesis of recombinant clones. DNA sequence analysis revealed an open reading frame coding for a 124.9-kDa protein with a hydrophobic transmembrane spanning domain. The N-terminal sequence of purified P97 mapped at amino acid position 195 of the translated sequence, indicating that a processing event had occurred in M. hyopneumoniae. Both recombinant P97 protein expressed in an Escherichia coli opal suppressor host and M. hyopneumoniae bound specifically to swine cilia, and the binding was inhibited by heparin and fucoidan, thus supporting the hypothesis that P97 was actively involved in binding to swine cilia in vivo.
Collapse
Affiliation(s)
- T Hsu
- Department of Microbiology, Immunology, and Preventive Medicine, Veterinary Medical Research Institute, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
41
|
Khan AS, Johnston NC, Goldfine H, Schifferli DM. Porcine 987P glycolipid receptors on intestinal brush borders and their cognate bacterial ligands. Infect Immun 1996; 64:3688-93. [PMID: 8751918 PMCID: PMC174282 DOI: 10.1128/iai.64.9.3688-3693.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Certain strains of enterotoxigenic Escherichia coli adhere to piglet intestinal epithelial cells by means of the 987P fimbriae. The 987P fimbrial structure consists of a helical arrangement of three fimbrial proteins, namely, the major subunit FasA and two minor subunits, FasF and FasG. FasG, which is located at the fimbrial tip and at various positions along the fimbriae, mediates 987P binding to glycoprotein receptors. In this study, we isolated and analyzed the structure of piglet glycolipid brush border receptors and characterized their cognate ligands on the 987P fimbriae. Two major glycolipid bands recognized by 987P fimbrial probes in thin-layer chromatography overlay assays were further purified by high-performance thin-layer chromatography and shown to comigrate with control galactosylceramide containing hydroxylated fatty acids and with sulfatide. Their structures were confirmed by fast atom bombardment mass spectrometry, which detected homologous series of ceramide monohexoside and sulfatide with hydroxylated fatty acyl chains ranging from h16:0 to h24:0. Assembled 987P fimbriae, pre- and postassembly dissociated fimbrial subunits, and Fab fragments of specific anti-FasG, -FasF, and -FasA were used to inhibit 987P-mediated bacterial binding to the two identified piglet glycolipids and corresponding isoreceptor controls. Only assembled fimbriae and anti-FasG Fab fragments were significantly able to inhibit bacterial binding to sulfatide, indicating that in addition to glycoproteins, FasG recognizes a specific glycolipid of piglet brush borders. In contrast, only anti-FasA Fab fragments were significantly able to inhibit bacterial binding to galactosylceramide with hydroxylated fatty acids and piglet hydroxylated ceramide monohexoside, indicating that FasA may determine a third type of ligand-receptor interaction in the piglet intestines. Since these bacterial adhesins recognize their respective glycolipid receptors only after being assembled in their final fimbrial quaternary structure, adhesin binding may involve cooperative interactions and the subunits by themselves may have very low binding affinities. Alternatively, conformation-sensitive domains of these subunits present in the assembled fimbriae may be required for glycolipid binding.
Collapse
Affiliation(s)
- A S Khan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
42
|
Boulanger J, Faulds D, Eddy EM, Lingwood CA. Members of the 70 kDa heat shock protein family specifically recognize sulfoglycolipids: role in gamete recognition and mycoplasma-related infertility. J Cell Physiol 1995; 165:7-17. [PMID: 7559808 DOI: 10.1002/jcp.1041650103] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have previously shown that several mycoplasma species associated with infertility bind specifically to sulfated glycolipids isolated from the mammalian reproductive tract. We now show that a germ cell-specific sulfoglycolipid binding protein (SLIP 1), which is a potent inhibitor of sperm/egg binding in vitro, is immunologically related to the heat shock protein(Hsp) 70 family of stress proteins and that Hsps are surface antigens in male germ cells. Our present data demonstrate that several mycoplasma and mammalian Hsps share this glycolipid binding specificity in vitro, and suggest that surface Hsps can function as adhesins which mediate sulfoglycolipid recognition in infectious disease and normal reproductive physiology.
Collapse
Affiliation(s)
- J Boulanger
- Department of Microbiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Zhang Q, Young TF, Ross RF. Identification and characterization of a Mycoplasma hyopneumoniae adhesin. Infect Immun 1995; 63:1013-9. [PMID: 7868222 PMCID: PMC173103 DOI: 10.1128/iai.63.3.1013-1019.1995] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An adhesin of Mycoplasma hyopneumoniae was identified and characterized in this study. A monoclonal antibody (MAb), F2G5, and its F(ab')2 fragments inhibited the adherence of M. hyopneumoniae to porcine tracheal cilia, the natural targets to which the mycoplasma binds during infection. MAb F2G5 detected multiple bands, but predominantly recognized a 97-kDa (P97) protein of M. hyopneumoniae on immunoblots. Affinity chromatography, conducted with immobilized MAb F2G5, mainly purified P97. The purified proteins were able to bind to cilia and blocked the adherence of intact M. hyopneumoniae cells to cilia. Immunolabeling of mycoplasmas with MAb F2G5 under electron microscopy demonstrated that the proteins recognized by MAb F2G5 were located at the surface of the mycoplasma, predominantly on a surface fuzzy layer. These results indicate that P97 functions as an adhesin of M. hyopneumoniae. The N-terminal amino acid sequence of P97 did not have significant homology with any known bacterial or mycoplasmal adhesins, suggesting that P97 is a novel protein. The predominant proteins detected by MAb F2G5 in different strains varied in size, indicating that the antigen bearing the epitope for MAb F2G5 undergo intraspecies size variation. Antigenic variation of adhesins may be a pathogenic mechanism utilized by M. hyopneumoniae to evade the porcine immune system.
Collapse
Affiliation(s)
- Q Zhang
- Veterinary Medical Research Institute, Iowa State University, Ames 50011
| | | | | |
Collapse
|