1
|
Kamarajan P, Timm JC, Goetting-Minesky MP, Malone ET, Ganther S, Radaic A, Tafolla C, Fenno JC, Kapila YL. Purification of Native Dentilisin Complex from Treponema denticola by Preparative Continuous Polyacrylamide Gel Electrophoresis and Functional Analysis by Gelatin Zymography. Bio Protoc 2024; 14:e4970. [PMID: 38618176 PMCID: PMC11006804 DOI: 10.21769/bioprotoc.4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024] Open
Abstract
Periodontal disease is characterized by the destruction of the hard and soft tissues comprising the periodontium. This destruction translates to a degradation of the extracellular matrices (ECM), mediated by bacterial proteases, host-derived matrix metalloproteinases (MMPs), and other proteases released by host tissues and immune cells. Bacterial pathogens interact with host tissue, triggering adverse cellular functions, including a heightened immune response, tissue destruction, and tissue migration. The oral spirochete Treponema denticola is highly associated with periodontal disease. Dentilisin, a T. denticola outer membrane protein complex, contributes to the chronic activation of pro-MMP-2 in periodontal ligament (PDL) cells and triggers increased expression levels of activators and effectors of active MMP-2 in PDL cells. Despite these advances, no mechanism for dentilisin-induced MMP-2 activation or PDL cytopathic behaviors leading to disease is known. Here, we describe a method for purification of large amounts of the dentilisin protease complex from T. denticola and demonstrate its ability to activate MMP-2, a key regulator of periodontal tissue homeostasis. The T. denticola dentilisin and MMP-2 activation model presented here may provide new insights into the dentilisin protein and identify potential therapeutic targets for further research. Key features • This protocol builds upon a method described by Cunningham et al. [1] for selective release of Treponema outer membrane proteins. • We adapted the protocol for the purification of biologically active, detergent-stable outer membrane protein complexes from large batch cultures of T. denticola. • The protocol involves large-scale preparative electrophoresis using a Model 491 Prep Cell. • We then use gelatin zymography to demonstrate the activity of the purified dentilisin complex by its ability to activate matrix metalloproteinase 2 (MMP-2).
Collapse
Affiliation(s)
- Pachiyappan Kamarajan
- Department of Biosystems and Function, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - John C. Timm
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - M. Paula Goetting-Minesky
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Erin T. Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Allan Radaic
- Department of Biosystems and Function, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Christian Tafolla
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - J. Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Yvonne L. Kapila
- Department of Biosystems and Function, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Kamarajan P, Ateia I, Shin JM, Fenno JC, Le C, Zhan L, Chang A, Darveau R, Kapila YL. Periodontal pathogens promote cancer aggressivity via TLR/MyD88 triggered activation of Integrin/FAK signaling that is therapeutically reversible by a probiotic bacteriocin. PLoS Pathog 2020; 16:e1008881. [PMID: 33002094 PMCID: PMC7529280 DOI: 10.1371/journal.ppat.1008881] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies reveal significant associations between periodontitis and oral cancer. However, knowledge about the contribution of periodontal pathogens to oral cancer and potential regulatory mechanisms involved is limited. Previously, we showed that nisin, a bacteriocin and commonly used food preservative, reduced oral cancer tumorigenesis and extended the life expectancy in tumor-bearing mice. In addition, nisin has antimicrobial effects on key periodontal pathogens. Thus, the purpose of this study was to test the hypothesis that key periodontal pathogens (Porphyromonas gingivalis, Treponema denticola, and Fusobacterium nucleatum) promote oral cancer via specific host-bacterial interactions, and that bacteriocin/nisin therapy may modulate these responses. All three periodontal pathogens enhanced oral squamous cell carcinoma (OSCC) cell migration, invasion, tumorsphere formation, and tumorigenesis in vivo, without significantly affecting cell proliferation or apoptosis. In contrast, oral commensal bacteria did not affect OSCC cell migration. Pathogen-enhanced OSCC cell migration was mediated via integrin alpha V and FAK activation, since stably blocking alpha V or FAK expression abrogated these effects. Nisin inhibited these pathogen-mediated processes. Further, Treponema denticola induced TLR2 and 4 and MyD88 expression. Stable suppression of MyD88 significantly inhibited Treponema denticola-induced FAK activation and abrogated pathogen-induced migration. Together, these data demonstrate that periodontal pathogens contribute to a highly aggressive cancer phenotype via crosstalk between TLR/MyD88 and integrin/FAK signaling. Nisin can modulate these pathogen-mediated effects, and thus has therapeutic potential as an antimicrobial and anti-tumorigenic agent.
Collapse
Affiliation(s)
- Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| | - Islam Ateia
- Department of Oral Medicine and Periodontology, Mansoura University, Mansoura, Egypt
| | - Jae M. Shin
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - J. Christopher Fenno
- Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann arbor, MI, United States of America
| | - Charles Le
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
| | - Ana Chang
- Department of Periodontics, Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - Richard Darveau
- Department of Periodontics, Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
3
|
Hashemi S, Sepehrizadeh Z, Setayesh N, Kadkhoda Z, Faramarzi MA, Shahverdi AR, Glogauer M, Amin M. PerioVax3, a key antigenic determinant with immunoprotective potential against periodontal pathogen. Microb Pathog 2019; 135:103661. [PMID: 31400445 DOI: 10.1016/j.micpath.2019.103661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Treponema (T.) denticola is one of the key etiological agents in the development of periodontitis. The major outer sheath protein (Msp) of T. denticola has been shown to mediate pathogenesis and to facilitate adhesion of T. denticola to mucosal surfaces. This study aimed to find short polypeptides in the amino acid sequence of Msp which may be immunogenic and might elicit protective antisera against T. denticola. The complete msp sequence was divided into six fragments and the corresponding genes were cloned and expressed. Antisera against the polypeptides were raised in rabbits and fragment 3 (F3), hereinafter called PerioVax3 was the most potent fragment of the Msp in terms of yielding high titer antiserum. An adhesion assay was done to examine the inhibitory effects of antisera on the attachment of T. denticola to human gingival fibroblasts (HGFs) and human fibronectin. Antiserum against PerioVax3 significantly inhibited attachment of T. denticola to the substratum. Also, antiserum against PerioVax3 inhibited detachment of HGFs upon T. denticola exposure. To begin examining the clinical relevance of this work, blood samples from 12 sever periodontitis patients were collected and the sera were used in western blotting against the recombinant polypeptides. Periodontitis patient antisera exclusively detected PerioVax3 in western blotting. The data suggest that PerioVax3 carries epitopes that may trigger humoral immunity against T. denticola, which may protect against its adhesion functions. The complexity of periodontitis suggests that PerioVax3 may be considered for testing as a component of an experimental multivalent periodontal vaccine in further preclinical and clinical studies.
Collapse
Affiliation(s)
- Saba Hashemi
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Setayesh
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Kadkhoda
- Department of Periodontology, School of Dentistry, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Mohsen Amin
- Department of Drug and Food Control, Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Wang Y, Chung FFL, Lee SM, Dykes GA. Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components. BMC Res Notes 2013; 6:143. [PMID: 23578062 PMCID: PMC3637544 DOI: 10.1186/1756-0500-6-143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/03/2013] [Indexed: 01/30/2023] Open
Abstract
Background Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel. Findings This study investigated the effect of five commercial tea (green, oolong, black, pu-erh and chrysanthemum) extracts and tea components (epigallocatechin gallate and gallic acid) on the attachment of five oral pathogens (Streptococcus mutans ATCC 25175, Streptococcus mutans ATCC 35668, Streptococcus mitis ATCC 49456, Streptococcus salivarius ATCC 13419 and Actinomyces naeslundii ATCC 51655) to the HGF-1 gingival cell line. Extracts of two of the teas (pu-erh and chrysanthemum) significantly (p < 0.05) reduced attachment of all the Streptococcus strains by up to 4 log CFU/well but effects of other teas and components were small. Conclusions Pu-erh and chrysanthemum tea may have the potential to reduce attachment of oral pathogens to gingival tissue and improve the health of oral soft tissues.
Collapse
Affiliation(s)
- Yi Wang
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor, Malaysia
| | | | | | | |
Collapse
|
5
|
Feghali K, Grenier D. Priming effect of fibronectin fragments on the macrophage inflammatory response: potential contribution to periodontitis. Inflammation 2013; 35:1696-705. [PMID: 22696147 DOI: 10.1007/s10753-012-9487-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fibronectin, an extracellular matrix component, is a substrate for multiple host and bacterial proteinases found in inflamed periodontal sites. In the present study, we investigated the potential contribution of various fibronectin fragments to the inflammatory process of periodontitis. Our results showed that the smaller fragments of fibronectin (30 and 45 kDa) were the most potent inflammatory inducers as they dose-dependently increased the secretion of TNF-α, IL-1β, and IL-8 by human macrophages. The 120-kDa fragment did not induce the secretion of all the cytokines tested, while intact fibronectin only increased IL-8 secretion and to a lesser extent TNF-α secretion. Cytokine secretion was associated with increased amounts of phosphorylated ERK1/2, JNK2, and p38α MAPK in treated macrophages. The combination of fibronectin or fibronectin fragments with Porphyromonas gingivalis lipopolysaccharide had an additive effect, but no synergism appeared to occur. It was also demonstrated that gingival crevicular fluid samples recovered from patients with moderate to severe periodontitis contained more fibronectin fragments than samples obtained from healthy subjects. Finally, both Arg- and Lys-gingipains purified from P. gingivalis were found to modulate fibronectin fragmentation. In conclusion, we showed that specific fibronectin fragments that may be present in diseased periodontal sites may contribute to maintaining and amplifying the inflammatory state and that P. gingivalis gingipains may be involved in the production of these fragments.
Collapse
Affiliation(s)
- Karine Feghali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420 Rue de la Terrasse, Quebec City, QC, Canada, G1V 0A6
| | | |
Collapse
|
6
|
Abstract
Oral Treponema species, most notably T. denticola, are implicated in the destructive effects of human periodontal disease. Progress in the molecular analysis of interactions between T. denticola and host proteins is reviewed here, with particular emphasis on the characterization of surface-expressed and secreted proteins of T. denticola involved in interactions with host cells, extracellular matrix components, and components of the innate immune system.
Collapse
Affiliation(s)
- J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Visser M, Ellen R. New insights into the emerging role of oral spirochaetes in periodontal disease. Clin Microbiol Infect 2011; 17:502-12. [DOI: 10.1111/j.1469-0691.2011.03460.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Bamford CV, Francescutti T, Cameron CE, Jenkinson HF, Dymock D. Characterization of a novel family of fibronectin-binding proteins with M23 peptidase domains from Treponema denticola. Mol Oral Microbiol 2011; 25:369-83. [PMID: 21040511 DOI: 10.1111/j.2041-1014.2010.00584.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions with fibronectin are important in the virulence strategies of a range of disease-related bacteria. The periodontitis-associated oral spirochaete Treponema denticola expresses at least two fibronectin-binding proteins, designated Msp (major surface protein) and OppA (oligopeptide-binding protein homologue). To identify other T. denticola outer membrane fibronectin-binding proteins, the amino acid sequence of the Treponema pallidum fibronectin-binding protein Tp0155 was used to survey the T. denticola genome. Seven T. denticola genes encoding orthologous proteins were identified. All but two were expressed in Escherichia coli and purified recombinant proteins bound fibronectin. Using antibodies to the N-terminal region of Tp0155, it was demonstrated that T. denticola TDE2318, with highest homology to Tp0155, was cell surface localized. Like Tp0155, the seven T. denticola proteins contained an M23 peptidase domain and four (TDE2318, TDE2753, TDE1738, TDE1297) contained one or two LysM domains. M23 peptidases can degrade peptidoglycan whereas LysM domains recognize carbohydrate polymers. In addition, TDE1738 may act as a bacteriocin based on homology with other bacterial lysins and the presence of an adjacent gene encoding a putative immunity factor. Collectively, these results suggest that T. denticola expresses fibronectin-binding proteins associated with the cell surface that may also have cell wall modifying or lytic functions.
Collapse
Affiliation(s)
- C V Bamford
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol, UK.
| | | | | | | | | |
Collapse
|
9
|
Miao D, Fenno JC, Timm JC, Joo NE, Kapila YL. The Treponema denticola chymotrypsin-like protease dentilisin induces matrix metalloproteinase-2-dependent fibronectin fragmentation in periodontal ligament cells. Infect Immun 2011; 79:806-11. [PMID: 21115719 PMCID: PMC3028863 DOI: 10.1128/iai.01001-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/26/2010] [Accepted: 11/19/2010] [Indexed: 11/20/2022] Open
Abstract
Periodontal disease is a bacterially mediated chronic inflammatory disease that results in destruction of the periodontal ligament (PDL) and alveolar bone that surround and support the dentition. While their precise roles are not well understood, periodontal pathogens, including Treponema denticola, are believed to initiate the destructive inflammatory responses and dysregulation of tissue homeostasis that characterize the disease. These responses are believed to result from both proinflammatory effects of acylated bacterial membrane components (lipopolysaccharides and lipoproteins) and degradative effects of secreted bacterial proteases. Host-derived matrix metalloproteinases (MMPs) are key enzymes both in tissue homeostasis and tissue destruction. MMP expression is modulated in part by specific proteolytic fragments of fibronectin (FN), which are associated with periodontal disease. FN is a predominant extracellular matrix component in the periodontium. We examined the ability of Treponema denticola and its acylated outer membrane PrtP protease complex to induce both activation of MMP-2 and generation of FN fragments in human PDL cell culture supernatants. T. denticola parent and isogenic mutant strains, as well as MMP-2 small interfering RNA and specific inhibitors of MMP-2 and PrtP activity, were used to examine protein expression, gelatinolytic activity, and FN fragmentation in culture supernatants. T. denticola and its purified protease induced both MMP-2 activation and FN fragmentation. Here, we demonstrate that PrtP proteolytic activity induces the activation of MMP-2 and that active MMP-2 is required for FN fragmentation. These results suggest a specific mechanism by which the T. denticola protease may disrupt homeostatic processes required for the maintenance of periodontal health.
Collapse
Affiliation(s)
- Di Miao
- Department of Periodontics and Oral Medicine, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, State Key Laboratory of Oral Disease, Sichuan University, Chengdu, Sichuan, People's Republic of China 610041
| | - J. Christopher Fenno
- Department of Periodontics and Oral Medicine, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, State Key Laboratory of Oral Disease, Sichuan University, Chengdu, Sichuan, People's Republic of China 610041
| | - John C. Timm
- Department of Periodontics and Oral Medicine, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, State Key Laboratory of Oral Disease, Sichuan University, Chengdu, Sichuan, People's Republic of China 610041
| | - Nam Eok Joo
- Department of Periodontics and Oral Medicine, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, State Key Laboratory of Oral Disease, Sichuan University, Chengdu, Sichuan, People's Republic of China 610041
| | - Yvonne L. Kapila
- Department of Periodontics and Oral Medicine, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, State Key Laboratory of Oral Disease, Sichuan University, Chengdu, Sichuan, People's Republic of China 610041
| |
Collapse
|
10
|
Batista da Silva AP, Lee W, Bajenova E, McCulloch CAG, Ellen RP. The major outer sheath protein of Treponema denticola inhibits the binding step of collagen phagocytosis in fibroblasts. Cell Microbiol 2004; 6:485-98. [PMID: 15056218 DOI: 10.1111/j.1462-5822.2004.00377.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial infections contribfute to the chronicity of connective tissue lesions in part by perturbing extracellular matrix remodelling processes. We examined a novel mechanism by which the major outer sheath protein (Msp) of the spirochaete Treponema denticola disrupts matrix remodelling mediated by intracellular digestion of collagen. The initial collagen-binding step of phagocytosis was examined in human gingival fibroblasts and Rat-2 fibroblasts. Cells were pretreated with Msp or vehicle, and binding of collagen-coated beads was measured by flow cytometry. Exposure to Msp induced a dose- and time-dependent decrease in cells that bound collagen beads; the inhibition of binding was reversed by absorption with anti-Msp antibodies. Msp-treated fibroblasts remained viable but underwent actin reorganization, including the assembly of a dense meshwork of subcortical actin filaments. Shear force assays showed that Msp abrogated collagen-binding interactions in the minimal affinity range required for stable adhesion. Fluorescence microscopy and immunoblotting showed equivalent amounts of beta1 integrin associated with collagen beads bound to Msp- and vehicle-treated cells. Photobleaching experiments found a similar percentage mobile fraction of beta1 integrins recovered in bleached areas of the plasma membrane. In contrast, Msp-induced inhibition of collagen binding was reversed by beta1 integrin affinity-activating antibodies and by latrunculin B, which prevented subcortical actin assembly. We conclude that native Msp of T. denticola inhibits the binding step of collagen phagocytosis in fibroblasts by inducing subcortical actin filament assembly and restricting affinity modulation of beta1 integrins. We suggest that, like Msp, bacterial toxins that target the cytoskeleton may also perturb the signalling networks required for cellular engagement of matrix ligands.
Collapse
Affiliation(s)
- Andre Paes Batista da Silva
- CIHR Group in Matrix Dynamics, University of Toronto, 124 Edward Street, Room 450, Toronto, Ontario, Canada M5G 1G6
| | | | | | | | | |
Collapse
|
11
|
Lee SY, Bian XL, Wong GWK, Hannam PM, McBride BC, Fenno JC. Cleavage of Treponema denticola PrcA polypeptide to yield protease complex-associated proteins Prca1 and Prca2 is dependent on PrtP. J Bacteriol 2002; 184:3864-70. [PMID: 12081957 PMCID: PMC135188 DOI: 10.1128/jb.184.14.3864-3870.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of potential virulence factors of oral spirochetes focuses on surface and secreted proteins. The Treponema denticola chymotrypsin-like protease (CTLP) is implicated in degradation of host cell molecules and contributes to tissue invasion. The CTLP complex, composed of the 72-kDa PrtP protein and two auxiliary proteins with molecular masses of approximately 40 and 30 kDa, is also involved in localization and oligomerization of the T. denticola major surface protein (Msp). The larger auxiliary protein was reported to be encoded by an open reading frame (ORF2) directly upstream of prtP. The deduced 39-kDa translation product of ORF2 contains a sequence matching the N-terminal sequence determined from one of the CTLP complex proteins. No proteins with significant homology are known, nor was information available on the third protein of the complex. DNA sequence analysis showed that ORF2 extended an additional 852 bp upstream of the reported sequence. The complete gene, designated prcA, encodes a predicted N-terminally-acylated polypeptide of approximately 70 kDa. Isogenic mutants with mutations in prtP, prcA, and prcA-prtP all lacked CTLP protease activity. The prcA mutant lacked all three CTLP proteins. The prcA-prtP mutant produced only a C-terminally-truncated 62-kDa PrcA protein. The prtP mutant produced a full-length 70-kDa PrcA. Immunoblot analysis of recombinant PrcA constructs confirmed that PrcA is cleaved to yield the two smaller proteins of the CTLP complex, designated PrcA1 and PrcA2. These data indicate that PrtP is required for cleavage of PrcA and suggest that this cleavage may be required for formation or stability of outer membrane complexes.
Collapse
Affiliation(s)
- Si Young Lee
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | | | | | | | |
Collapse
|
12
|
Sela MN. Role of Treponema denticola in periodontal diseases. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:399-413. [PMID: 12002822 DOI: 10.1177/10454411010120050301] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among periodontal anaerobic pathogens, the oral spirochetes, and especially Treponema denticola, have been associated with periodontal diseases such as early-onset periodontitis, necrotizing ulcerative gingivitis, and acute pericoronitis. Basic research as well as clinical evidence suggest that the prevalence of T denticola, together with other proteolytic gram-negative bacteria in high numbers in periodontal pockets, may play an important role in the progression of periodontal disease. The accumulation of these bacteria and their products in the pocket may render the surface lining periodontal cells highly susceptible to lysis and damage. T. denticola has been shown to adhere to fibroblasts and epithelial cells, as well as to extracellular matrix components present in periodontal tissues, and to produce several deleterious factors that may contribute to the virulence of the bacteria. These bacterial components include outer-sheath-associated peptidases, chymotrypsin-like and trypsin-like proteinases, hemolytic and hemagglutinating activities, adhesins that bind to matrix proteins and cells, and an outer-sheath protein with pore-forming properties. The effects of T. denticola whole cells and their products on a variety of host mucosal and immunological cells has been studied extensively (Fig. 1). The clinical data regarding the presence of T. denticola in periodontal health and disease, together with the basic research results involving the role of T. denticola factors and products in relation to periodontal diseases, are reviewed and discussed in this article.
Collapse
Affiliation(s)
- M N Sela
- Deportment of Oral Biology, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
13
|
Wang Q, Ko KS, Kapus A, McCulloch CA, Ellen RP. A spirochete surface protein uncouples store-operated calcium channels in fibroblasts: a novel cytotoxic mechanism. J Biol Chem 2001; 276:23056-64. [PMID: 11312269 DOI: 10.1074/jbc.m011735200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytotoxicity of infectious agents can be mediated by disruption of calcium signaling in target cells. Outer membrane proteins of the spirochete Treponema denticola, a periodontal pathogen, inhibit agonist-induced Ca(2+) release from internal stores in gingival fibroblasts, but the mechanism is not defined. We determined here that the major surface protein (Msp) of T. denticola perturbs calcium signaling in human fibroblasts by uncoupling store-operated channels. Msp localized in complexes on the cell surface. Ratio fluorimetry showed that in cells loaded with fura-2 or fura-C18, Msp induced cytoplasmic and near-plasma membrane Ca(2+) transients, respectively. Increased conductance was confirmed by fluorescence quenching of fura-2-loaded cells with Mn(2+) after Msp treatment. Calcium entry was blocked with anti-Msp antibodies and inhibited by chelating external Ca(2+) with EGTA. Msp pretreatment reduced the amplitude of [Ca(2+)](i) transients upon challenge with ATP or thapsigargin. In experiments using cells loaded with mag-fura-2 to report endoplasmic reticulum Ca(2+), Msp reduced Ca(2+) efflux from endoplasmic reticulum stores when ATP was used as an agonist. Msp alone did not induce Ca(2+) release from these stores. Msp inhibited store-operated influx of extracellular calcium following intracellular Ca(2+) depletion by thapsigargin and also promoted the assembly of subcortical actin filaments. This actin assembly was blocked by chelating intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester. The reduced amplitude of agonist-induced transients and inhibition of store-operated Ca(2+) entry due to Msp were reversed by latrunculin B, an inhibitor of actin filament assembly. Thus, Msp retards Ca(2+) release from endoplasmic reticulum stores, and it inhibits subsequent Ca(2+) influx by uncoupling store-operated channels. Actin filament rearrangement coincident with conformational uncoupling of store-operated calcium fluxes is a novel mechanism by which surface proteins and toxins of pathogenic microorganisms may damage host cells.
Collapse
Affiliation(s)
- Q Wang
- Dental Research Institute, University of Toronto and the Division of Surgery, Toronto General Hospital, Toronto, Ontario M5G 1G6, Canada
| | | | | | | | | |
Collapse
|
14
|
Abstract
All oral spirochetes are classified in the genus Treponema. This genus is in the family Spirochaetaceae as in Bergey's manual of systematic bacteriology. Other generic members of the family include Spirochaeta, Cristispira and Borrelia. This conventional classification is in accord with phylogenetic analysis of the spirochetes based on 16S rRNA cataloguing. The oral spirochetes fall naturally within the grouping of Treponema. Only four species of Treponema have been cultivated and maintained reliably: Treponema denticola, Treponema pectinovorum, Treponema socranskii and Treponema vincentii. These species have valid names according to the rules of nomenclature except for Treponema vincentii, which only has had effective publication. The virulence factors of the oral spirochetes updated in this mini-review have been discussed within the following broad confines: adherence, cytotoxic effects, iron sequestration and locomotion. T. denticola has been shown to attach to human gingival fibroblasts, basement membrane proteins, as well as other substrates by specific attachment mechanisms. The binding of the spirochete to human gingival fibroblasts resulted in cytotoxicity and cell death due to enzymes and other proteins. Binding of the spirochete to erythrocytes was accompanied by agglutination and lysis. Hemolysis releases hemin, which is sequestered by an outer membrane sheath receptor protein of the spirochete. The ability to locomote through viscous environments enables spirochetes to migrate within gingival crevicular fluid and to penetrate sulcular epithelial linings and gingival connective tissue. The virulence factors of the oral spirochetes proven in vitro underscore the important role they play in the periodontal disease process. This role has been evaluated in vivo by use of a murine model.
Collapse
Affiliation(s)
- E C Chan
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| | | |
Collapse
|
15
|
Abstract
Some periodontal pathogens disrupt epithelial barriers and cellular adhesion to the extracellular matrix, which affects the cytoskeleton. Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans exploit the cytoskeleton during their uptake by epithelial cells. Treponema denticola perturbs actin and actin-regulating pathways in host cells. Cytoskeletal dysfunction due to pathogenic bacteria may impair physiologic remodeling and wound repair in the periodontium.
Collapse
Affiliation(s)
- R P Ellen
- University of Toronto, Faculty of Dentistry, 124 Edward Street, Toronto M5G 1G6, Canada
| |
Collapse
|
16
|
Walker SG, Ebersole JL, Holt SC. Studies on the binding of Treponema pectinovorum to HEp-2 epithelial cells. ORAL MICROBIOLOGY AND IMMUNOLOGY 1999; 14:165-71. [PMID: 10495710 DOI: 10.1034/j.1399-302x.1999.140304.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We developed a radioassay to assess the adherence of the oral treponemes Treponema denticola and Treponema pectinovorum to live HEp-2 epithelial cells. T. pectinovorum bound firmly to the epithelial cell monolayer in a concentration-dependent manner. The results indicated that a subpopulation of T. pectinovorum appeared to bind and that the binding could be influenced by environmental factors. Increasing concentrations of fetal bovine serum inhibited binding, whereas T. pectinovorum membrane vesicles and co-incubation with T. denticola ATCC 35404 increased the number of cells bound to the monolayer. Treatment of T. pectinovorum with periodic acid, but not trypsin or proteinase K, decreased the binding suggesting that a cell surface carbohydrate, such as the O-antigenic component of the lipopolysaccharide, mediates attachment of the bacteria to the epithelial cells. Co-infection of the HEp-2 cells with both T. denticola and T. pectinovorum did not interfere with each other in attachment to the epithelial cell suggesting that they do not compete for the same cellular receptor on the host cell surface. This study demonstrates that T. pectinovorum is capable, in vitro, of forming a tight association with host cells and that this binding could represent an initial step in the pathogenesis of T. pectinovorum.
Collapse
Affiliation(s)
- S G Walker
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758, USA
| | | | | |
Collapse
|
17
|
Battikhi T, Lee W, McCulloch CA, Ellen RP. Treponema denticola outer membrane enhances the phagocytosis of collagen-coated beads by gingival fibroblasts. Infect Immun 1999; 67:1220-6. [PMID: 10024564 PMCID: PMC96450 DOI: 10.1128/iai.67.3.1220-1226.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human gingival fibroblasts (HGFs) degrade collagen fibrils in physiological processes by phagocytosis. Since Treponema denticola outer membrane (OM) extract perturbs actin filaments, important structures in phagocytosis, we determined whether the OM affects collagen phagocytosis in vitro by HGFs. Phagocytosis was measured by flow cytometric assessment of internalized collagen-coated fluorescent latex beads. Confluent HGFs pretreated with T. denticola ATCC 35405 OM exhibited an increase in the percentage of collagen phagocytic cells (phagocytosis index [PI]) and in the number of beads per phagocytosing cell (phagocytic capacity [PC]) compared with untreated controls. The enhancement was swift (within 15 min) and was still evident after 1 day. PI and PC of HGFs for bovine serum albumin (BSA)-coated beads were also increased, indicating a global increase in phagocytic processes. These results contrasted those for control OM from Veillonella atypica ATCC 17744, which decreased phagocytosis. The T. denticola OM-induced increase in bead uptake was eliminated by heating the OM and by depolymerization of actin filaments by cytochalasin D treatment of HGFs. Fluid-phase accumulation of lucifer yellow was enhanced in a saturable, concentration-dependent, transient manner by the T. denticola OM. Our findings were not due to HGF detachment or cytotoxicity in response to the T. denticola OM treatment since the HGFs exhibited minimal detachment from the substratum; they did not take up propidium iodide; and there was no change in their size, granularity, or content of sub-G1 DNA. We conclude that a heat-sensitive component(s) in T. denticola OM extract stimulates collagen phagocytosis and other endocytic processes such as nonspecific phagocytosis and pinocytosis by HGFs.
Collapse
Affiliation(s)
- T Battikhi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada M5G 1G6
| | | | | | | |
Collapse
|
18
|
Ko KSC, Lo CM, Ferrier J, Hannam P, Tamura M, McBride BC, Ellen RP. Cell–substrate impedance analysis of epithelial cell shape and micromotion upon challenge with bacterial proteins that perturb extracellular matrix and cytoskeleton. J Microbiol Methods 1998. [DOI: 10.1016/s0167-7012(98)00083-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Fenno JC, Hannam PM, Leung WK, Tamura M, Uitto VJ, McBride BC. Cytopathic effects of the major surface protein and the chymotrypsinlike protease of Treponema denticola. Infect Immun 1998; 66:1869-77. [PMID: 9573063 PMCID: PMC108137 DOI: 10.1128/iai.66.5.1869-1877.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prominent antigens of Treponema denticola have been suggested to be mediators of the cytopathic effects typically seen in periodontal disease. In the present study of the T. denticola major surface protein (Msp) and the surface-expressed chymotrypsinlike protease complex (CTLP), we characterized the ability of these proteins to adhere to and lyse epithelial cells. Msp and CTLP were closely associated in spirochete outer membranes. Purified Msp, both native and recombinant, and CTLP bound to glutaraldehyde-fixed periodontal ligament epithelial cells. Adherence of Msp was partially blocked by specific antibodies. Adherence of CTLP was partially blocked by serine protease inhibitors and was further inhibited by specific antibodies. Both native Msp and CTLP were cytotoxic toward periodontal ligament epithelial cells, and their cytotoxicity was inhibited by the same treatments that inhibited adherence. Msp, but not CTLP, lysed erythrocytes. Msp complex (partially purified outer membranes free of protease activity) was cytotoxic toward a variety of different cell types. Pore-forming activities of recombinant Msp in black lipid model membrane assays and in HeLa cell membranes were similar to those reported for the native protein, supporting the hypothesis that Msp cytotoxicity was due to its pore-forming activity.
Collapse
Affiliation(s)
- J C Fenno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Fenno JC, McBride BC. Virulence Factors of Oral Treponemes. Anaerobe 1998; 4:1-17. [PMID: 16887619 DOI: 10.1006/anae.1997.0131] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/1997] [Accepted: 10/20/1997] [Indexed: 11/22/2022]
Affiliation(s)
- J C Fenno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
21
|
Yang PF, Song M, Grove DA, Ellen RP. Filamentous actin disruption and diminished inositol phosphate response in gingival fibroblasts caused by Treponema denticola. Infect Immun 1998; 66:696-702. [PMID: 9453629 PMCID: PMC107959 DOI: 10.1128/iai.66.2.696-702.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous reports have shown that Treponema denticola causes rearrangement of filamentous actin (F-actin) in human gingival fibroblasts (HGF). The purpose of this investigation was to determine the effect of T. denticola on the generation of inositol phosphates (IPs) in relation to a time course for F-actin disruption in HGF. Cultured HGF were exposed to washed cells of T. denticola ATCC 35405 for 140 min. Changes in the fluorescence intensity of rhodamine-phalloidin-labeled F-actin in serial optical sections of single HGF were quantified by confocal microscopy image analysis. The percentage of cells with stress fiber disruption was also determined by fluorescence microscopy. Challenge with T. denticola caused a significant reduction in F-actin within the first hour, especially at the expense of F-actin in the ventral third of the cells, and a significant increase in the percentage of HGF with altered stress fiber patterns. Significant concentration-dependent disruption of stress fibers was also caused by HGF exposure to a Triton X-100 extract of T. denticola outer membrane (OM). IPs were measured by a radiotracer assay based on the incorporation of myo-[3H]inositol into IPs in HGF incubated with LiCl to inhibit endogenous phosphatases. HGF challenge with several strains of T. denticola and the OM extract of T. denticola ATCC 35405 resulted in a diminished accumulation of radiolabeled IPs relative to both 15 and 1% fetal bovine serum, which served as strongly positive and background control agonists, respectively. The significantly diminished IP response to T. denticola ATCC 35405 occurred within 60 min, concomitant with significant reduction of total F-actin and disruption of stress fibers. Pretreatment with the proteinase inhibitor phenylmethylsulfonyl fluoride, which had previously been found to block T. denticola's degradation of endogenous fibronectin and detachment of HGF from the extracellular matrix, had little effect on F-actin stress fiber disruption and the IP response. Therefore, in addition to its major surface chymotrypsin-like properties, T. denticola expresses cytopathogenic activities that diminish the generation of IPs during the time course associated with significant cytoskeletal disruption in fibroblasts.
Collapse
Affiliation(s)
- P F Yang
- Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Ko KS, Glogauer M, McCulloch CA, Ellen RP. Treponema denticola outer membrane inhibits calcium flux in gingival fibroblasts. Infect Immun 1998; 66:703-9. [PMID: 9453630 PMCID: PMC107960 DOI: 10.1128/iai.66.2.703-709.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treponema denticola is a cultivable oral spirochete which perturbs the cytoskeleton in cultured cells of oral origin, but intracellular signalling pathways by which it affects actin assembly are largely unknown. As the outer membrane (OM) of Treponema denticola disrupts actin-dependent processes that normally require precise control of intracellular calcium, we studied the effects of an OM extract on internal calcium release, ligand-gated and calcium release-activated calcium channels, and related mechanosensitive cation fluxes in human gingival fibroblasts (HGF). Single-cell ratio fluorimetry demonstrated that in resting cells loaded with Fura-2, baseline intracellular Ca2+ concentration ([Ca2+]i) was not affected by treatment with OM extract, but normal spontaneous [Ca2+]i oscillations were dramatically increased in frequency for 20 to 30 min followed by complete blockade. OM extract inhibited ATP-induced and thapsigargin-induced release of calcium from intracellular stores by 40 and 30%, respectively. Addition of Ca2+ to the extracellular pool following depletion of intracellular Ca2+ by thapsigargin and extracellular Ca2+ by EGTA yielded 59% less replenishment of [Ca2+]i in OM extract-treated than in control HGF. In cells loaded with collagen-coated ferric oxide beads to stimulate integrin-dependent calcium release, baseline [Ca2+]i was nearly doubled but was not significantly different in control and OM extract-treated cells. Magnetically generated tensile forces on the beads induced >300% increases of [Ca2+]i above baseline. Cells preincubated with OM extract exhibited dose-dependent and time-dependent reductions in stretch-induced [Ca2+]i transients, which were due to neither loss of beads from the cells nor cell death. The T. denticola OM inhibitory activity was eliminated by heating the OM extract to 60 degrees C and by boiling but not by phenylmethylsulfonyl fluoride treatment. Thus nonlipopolysaccharide, nonchymotrypsin, heat-sensitive protein(s) in T. denticola OM can evidently inhibit both release of calcium from internal stores and uptake of calcium through the plasma membrane, possibly by interference with calcium release-activated channels.
Collapse
Affiliation(s)
- K S Ko
- Department of Periodontics, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Kinder Haake S, Lindemann RA. Fusobacterium nucleatum T18 aggregates human mononuclear cells and inhibits their PHA-stimulated proliferation. J Periodontol 1997; 68:39-44. [PMID: 9029450 DOI: 10.1902/jop.1997.68.1.39] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In previous studies Fusobacterium nucleatum has been shown to induce either stimulatory or inhibitory effects on human mononuclear cells. We examined the interaction of human mononuclear cells with human and cynomolgus monkey strains of F. nucleatum. Peripheral blood mononuclear cells (PBMCs) isolated from normal donors were aggregated in the presence of cells of F. nucleatum but not control bacteria. The aggregation of PBMCs and F. nucleatum T18 was inhibited by either L-arginine, L-lysine, or pretreatment of the bacterial cells with heat, but was unaffected by the presence of sugars or normal human serum. Strain T18 aggregated purified T-cells and monocytes at approximately equal concentrations. When F. nucleatum T18 was incubated with PHA-stimulated PBMCs, DNA synthesis in the PBMCs was significantly inhibited and detection of IL-2R alpha on the PBMCs was reduced. These studies indicate that F. nucleatum aggregates PBMCs, and that this interaction is associated with both an inhibition of PBMC proliferation and a decrease in IL-2 receptor expression. The ability of F. nucleatum to inhibit mononuclear cell proliferation may be significant in the pathogenesis of periodontal diseases.
Collapse
Affiliation(s)
- S Kinder Haake
- Section of Periodontics Biology, UCLA School of Dentistry, USA
| | | |
Collapse
|
24
|
Abstract
Recently, Riviere et al. reported as yet uncultivable invasive oral spirochetes that cross-reacted with monoclonal antibodies (MAbs) specific for Treponema pallidum (G. R. Riviere, K. S. Elliot, D. F. Adams, L. G. Simonson, L. B. Forgas, A. M. Nilius, and S. A. Lukehart, J. Periodontol. 63:131-136, 1992; G. R. Riviere, M. A. Wagoner, S. A. Baker-Zander, K. S. Weisz, D. F. Adams, L. Simonson, and S. A. Lukehart, N. Engl. J. Med. 325:539-543, 1991; G. R. Riviere, K. S. Weisz, D. F. Adams, and D. D. Thomas, Infect. Immun. 59:3377-3380, 1991; G. R. Riviere, K. S. Weisz, L. G. Simonson, and S. A. Lukehart, Infect. Immun. 59:2653-2657, 1991). In an attempt to phylogenetically analyze these pathogen-related oral spirochetes, we used immunomagnetic separation, combined with comparative sequence analysis of 16S rRNA genes amplified in vitro by the PCR. The bacteria were immunomagnetically enriched from subgingival plaque samples of patients with rapidly progressive periodontitis by using MAb H9-2 specific for the 37-kDa endoflagellum sheath protein of T. pallidum. After PCR amplification with universal eubacterial primers 16S rRNA gene fragments were cloned into Escherichia coli. A total of 20 randomly selected recombinants were analyzed by sequencing about 200 to 300 bases of the 500-bp inserts. All the spirochetal 16S rRNA sequences clustered to previously described, as yet uncultivable cluster 7 treponemes of group I (B. K. Choi, B. J. Paster, F. E. Dewhirst, and U. B. Göbel, Infect. Immun. 62:1889-1895, 1994). With a sequence similarity of 96.4% the most closely related cultivable treponeme was Treponema vincentii, which also belongs to the group I treponemes. Subsequent immunological analysis of cultured treponemes with MAb H9-2 revealed that only T. vincentii strains showed specific immunofluorescence or a characteristic 37-kDa band in immunoblots. We therefore conclude that pathogen-related oral spirochetes constitute a heterogeneous population of treponemes comprising T. vincentii and T. vincentii-related organisms that have common epitopes cross-reacting with MAb H9-2.
Collapse
Affiliation(s)
- B K Choi
- Universitätsklinikum Charité, Institut für Mikrobiologie und Hygiene, Berlin, Germany
| | | | | |
Collapse
|
25
|
Rosen G, Naor R, Rahamim E, Yishai R, Sela MN. Proteases of Treponema denticola outer sheath and extracellular vesicles. Infect Immun 1995; 63:3973-9. [PMID: 7558307 PMCID: PMC173558 DOI: 10.1128/iai.63.10.3973-3979.1995] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Electron microscopical observations of the oral periodontopathogen Treponema denticola show the presence of extracellular vesicles bound to the bacterial surface or free in the surrounding medium. Extracellular vesicles from T. denticola ATCC 35404, 50 to 100 nm in diameter, were isolated and further characterized. Protein and proteolytic patterns of the vesicles were found to be very similar to those of isolated T. denticola outer sheaths. They were enriched with the major outer sheath polypeptides (molecular sizes, 113 to 234 kDa) and with outer sheath proteases of 91, 153, 173, and 228 kDa. These findings indicate that treponemal outer sheath vesicles contain the necessary adhesins and proteolytic arsenal for adherence to and damage of eucaryotic cells and mammalian matrix proteins. The major outer sheath- and vesicle-associated protease of T. denticola ATCC 35404 was purified and characterized. The purified enzyme had a molecular size of 91 kDa, and it dissociated into three polypeptides of 72, 38, and 35 kDa upon heating in the presence of sodium dodecyl sulfate with or without a reducing agent. The activity of the enzyme could be inhibited by diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, and phenylboronic acid. The value of the second-order rate constant of the protease inactivation by phenylmethylsulfonyl fluoride was 0.48 x 10(4) M(-1) min-1. Inhibition of the enzyme by phenylboronic acid was rapid (< 1 min) and pH dependent. These data strongly suggest that this major surface proteolytic activity belongs to a family of serine proteases.
Collapse
Affiliation(s)
- G Rosen
- Department of Oral Biology, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
26
|
De Filippo AB, Ellen RP, McCulloch CA. Induction of cytoskeletal rearrangements and loss of volume regulation in epithelial cells by Treponema denticola. Arch Oral Biol 1995; 40:199-207. [PMID: 7541623 DOI: 10.1016/0003-9969(95)98809-d] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The early responses of oral epithelial cells to the adhesion of the oral spirochaete Treponema denticola were studied as a model of microbial perturbation of the plasma membrane. KB cell (ATCC CCL 17) monolayers were incubated with T. denticola (ATCC 35405) in alpha-MEM (minimal essential medium) for periods of 1-4 h at 37 degrees C without serum. Control cultures were exposed to bacteria-conditioned alpha-MEM without serum or bacteria or to alpha-MEM alone. At the end of each incubation, detached and attached epithelial cells were harvested and analysed separately. Compared with controls, T. denticola induced in 25% of cells a two-fold, time-dependent increase of detachment by 4 h. Detached cells in both T. denticola-exposed and control cultures exhibited 25% reductions in modal diameter, did not exclude propidium iodide, did not readhere, and did not form colonies. In T. denticola-exposed cultures, a larger subset (75%) of cells remained attached to the substratum, demonstrated no significant reduction of colony-forming efficiency and excluded propidium iodide. However, these cells exhibited a 21% reduction in diameter (p < 0.05), a 60% decrease of F-actin (p < 0.001), and a 74% reduction in the proportion expressing desmoplakin II (p < 0.01) after exposure to T. denticola. Flow cytometry showed a small (14%) but significant (p < 0.001) reduction in mean fluorescence intensity due to keratin expression in T. denticola-treated cultures. Exposure of cells to anisosmotic media demonstrated that, in contrast to controls, cultures challenged by bacteria failed to undergo compensatory volume regulation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A B De Filippo
- Department of Periodontics, University of Toronto, Faculty of Dentistry, Ontario, Canada
| | | | | |
Collapse
|