1
|
Signal peptide recognition in Trypanosoma cruzi GP82 adhesin relies on its localization at protein N-terminus. Sci Rep 2019; 9:7325. [PMID: 31086219 PMCID: PMC6513831 DOI: 10.1038/s41598-019-43743-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/30/2019] [Indexed: 11/09/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, has a dense coat of GPI-anchored virulence factors. T. cruzi GPI-anchored adhesin GP82 is encoded by a repertoire of transcripts containing several in-frame initiation codons located up-stream from that adjacent to the predicted signal peptide (SP). Transfection of T. cruzi epimastigotes with constructs encoding GP82 starting at the SP or from the farthest up-stream methionine confirmed protein expression on the parasite cell surface, comparable to the native GP82. Proteins were fully functional, inducing parasite adhesion to HeLa cells and lysosome mobilization, events required for parasite invasion. Transgenic and native GP82 proteins showed indistinguishable electrophoretic mobility, suggesting similar processing of the SP. Deletion of SP generated a ~72 kDa protein devoid of N-linked oligosaccharides allowing irrefutable identification of GP82 precursor. SP transposition to an internal region of GP82 rendered the signal unrecognizable by the signal peptidase and incapable to direct the nascent protein for ER-membrane association. Altogether our data strongly suggests that GP82 SP fails to function as transmembrane domain and its recognition by the signal peptidase shows strict dependence on the signal localization at protein N-terminus. This report presents the first experimental characterization of the full-length GP82 and its signal peptide.
Collapse
|
2
|
Dos-Santos A, Carvalho-Kelly L, Dick C, Meyer-Fernandes J. Innate immunomodulation to trypanosomatid parasite infections. Exp Parasitol 2016; 167:67-75. [DOI: 10.1016/j.exppara.2016.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 05/13/2016] [Accepted: 05/21/2016] [Indexed: 01/05/2023]
|
3
|
Cortez C, Sobreira TJP, Maeda FY, Yoshida N. The gp82 surface molecule of Trypanosoma cruzi metacyclic forms. Subcell Biochem 2014; 74:137-150. [PMID: 24264244 DOI: 10.1007/978-94-007-7305-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gp82 is a surface glycoprotein expressed in Trypanosoma cruzi metacyclic trypomastigotes, the parasite forms from the insect vector that initiate infection in the mammalian host. Studies with metacyclic forms generated in vitro, as counterparts of insect-borne parasites, have shown that gp82 plays an essential role in host cell invasion and in the establishment of infection by the oral route. Among the gp82 properties relevant for infection are the gastric mucin-binding capacity and the ability to induce the target cell signaling cascades that result in actin cytoskeleton disruption and lysosome exocytosis, events that facilitate parasite internalization. The gp82 sequences from genetically divergent T. cruzi strains are highly conserved, displaying >90 % identity. Both the host cell-binding sites, as well as the gastric mucin-binding sequence of gp82, are localized in the C-terminal domain of the molecule. In the gp82 structure model, the main cell-binding site consists of an α-helix, which connects the N-terminal β-propeller domain to the C-terminal β-sandwich domain, where the second cell binding site is nested. The two cell binding sites are fully exposed on gp82 surface. Downstream and close to the α-helix is the gp82 gastric mucin-binding site, which is partially exposed. All available data support the notion that gp82 is structurally suited for metacyclic trypomastigote invasion of host cells and for initiating infection by the oral route.
Collapse
Affiliation(s)
- Cristian Cortez
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo, 669 - 6º andar, 04039-032, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
4
|
Salgado-Jiménez B, Arce-Fonseca M, Baylón-Pacheco L, Talamás-Rohana P, Rosales-Encina JL. Differential immune response in mice immunized with the A, R or C domain from TcSP protein of Trypanosoma cruzi or with the coding DNAs. Parasite Immunol 2013; 35:32-41. [PMID: 23106492 DOI: 10.1111/pim.12017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/17/2012] [Indexed: 11/26/2022]
Abstract
In a murine model of experimental Trypanosoma cruzi (H8 strain) infection, we investigated the induction of protective immunity against the domains [amino (A), repeats (R) and carboxyl (C)] of the surface protein (SP), a member of the trans-sialidase (TS) superfamily. Recombinant proteins and plasmid DNA coding for the respective proteins were used to immunize BALB/c mice, and the humoral response and cytokine levels were analysed. Immunization with the recombinant proteins induced higher levels of anti-TcSP antibodies than immunization with the corresponding DNAs, and analysis of serum cytokines showed that immunization with both recombinant proteins and naked DNA resulted in a Th1-Th2 mixed T-cell response. Mice immunized with either recombinant proteins or plasmid DNA were infected with blood trypomastigotes. The recombinant protein-immunized mice showed a variable reduction in peak parasitemia, and most died by day 60. Only the pBKTcSPR-immunized mice exhibited a significant reduction in peak parasitemia and survived the lethal challenge. DNA-based immunization with DNA coding for the repeats domain of TcSP is a good candidate for the development of a vaccine against experimental T. cruzi infection.
Collapse
Affiliation(s)
- B Salgado-Jiménez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F, México
| | | | | | | | | |
Collapse
|
5
|
Pierimarchi P, Cerni L, Alarcón de Noya B, Nicotera G, Díaz-Bello Z, Angheben A, Scacciatelli D, Zonfrillo M, Recinelli G, Serafino A. Rapid Chagas diagnosis in clinical settings using a multiparametric assay. Diagn Microbiol Infect Dis 2013; 75:381-9. [DOI: 10.1016/j.diagmicrobio.2012.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
6
|
Vázquez-Chagoyán JC, Gupta S, Garg NJ. Vaccine development against Trypanosoma cruzi and Chagas disease. ADVANCES IN PARASITOLOGY 2011; 75:121-46. [PMID: 21820554 DOI: 10.1016/b978-0-12-385863-4.00006-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathology of Chagas disease presents a complicated and diverse picture in humans. The major complications and destructive evolutionary outcomes of chronic infection by Trypanosoma cruzi in humans include ventricular fibrillation, thromboembolism and congestive heart failure. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested to elicit immune protection to T. cruzi in experimental animals. This review summarizes the research efforts in vaccine development against Chagas disease during the past decade.
Collapse
Affiliation(s)
- Juan C Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Estado de México, Toluca, Mexico
| | | | | |
Collapse
|
7
|
Eickhoff CS, Giddings OK, Yoshida N, Hoft DF. Immune responses to gp82 provide protection against mucosal Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2011; 105:687-91. [PMID: 20835618 DOI: 10.1590/s0074-02762010000500015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 05/13/2010] [Indexed: 01/01/2023] Open
Abstract
The potential use of the Trypanosoma cruzi metacyclic trypomastigote (MT) stage-specific molecule glycoprotein-82 (gp82) as a vaccine target has not been fully explored. We show that the opsonization of T. cruzi MT with gp82-specific antibody prior to mucosal challenge significantly reduces parasite infectivity. In addition, we investigated the immune responses as well as the systemic and mucosal protective immunity induced by intranasal CpG-adjuvanted gp82 vaccination. Spleen cells from mice immunized with CpG-gp82 proliferated and secreted IFN-γ in a dose-dependent manner in response to in vitro stimulation with gp82 and parasite lysate. More importantly, these CpG-gp82-immunized mice were significantly protected from a biologically relevant oral parasite challenge.
Collapse
Affiliation(s)
- Christopher S Eickhoff
- Departamento de Microbiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | | | | | | |
Collapse
|
8
|
Eickhoff CS, Vasconcelos JR, Sullivan NL, Blazevic A, Bruna-Romero O, Rodrigues MM, Hoft DF. Co-administration of a plasmid DNA encoding IL-15 improves long-term protection of a genetic vaccine against Trypanosoma cruzi. PLoS Negl Trop Dis 2011; 5:e983. [PMID: 21408124 PMCID: PMC3050911 DOI: 10.1371/journal.pntd.0000983] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/09/2011] [Indexed: 01/13/2023] Open
Abstract
Background Immunization of mice with the Trypanosoma cruzi trans-sialidase (TS) gene using plasmid DNA, adenoviral vector, and CpG-adjuvanted protein delivery has proven highly immunogenic and provides protection against acute lethal challenge. However, long-term protection induced by TS DNA vaccines has not been reported. The goal of the present work was to test whether the co-administration of a plasmid encoding IL-15 (pIL-15) could improve the duration of protection achieved through genetic vaccination with plasmid encoding TS (pTS) alone. Methodology We immunized BALB/c mice with pTS in the presence or absence of pIL-15 and studied immune responses [with TS-specific IFN-γ ELISPOT, serum IgG ELISAs, intracellular cytokine staining (IFN-γ, TNF-α, and IL-2), tetramer staining, and CFSE dilution assays] and protection against lethal systemic challenge at 1 to 6 months post vaccination. Mice receiving pTS alone developed robust TS-specific IFN-γ responses and survived a lethal challenge given within the first 3 months following immunization. The addition of pIL-15 to pTS vaccination did not significantly alter T cell responses or protection during this early post-vaccination period. However, mice vaccinated with both pTS and pIL-15 challenged 6 months post-vaccination were significantly more protected against lethal T. cruzi challenges than mice vaccinated with pTS alone (P<0.05). Improved protection correlated with significantly higher numbers of TS-specific IFN-γ producing total and CD8+ T cells detected>6 months post immunization. Also, these TS-specific T cells were better able to expand after in vitro re-stimulation. Conclusion Addition of pIL-15 during genetic vaccination greatly improved long-term T cell survival, memory T cell expansion, and long-term protection against the important human parasite, T. cruzi.
Collapse
Affiliation(s)
- Christopher S. Eickhoff
- Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Jose R. Vasconcelos
- Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
- Centro de Terapia Celular e Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nicole L. Sullivan
- Department of Molecular Microbiology, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Azra Blazevic
- Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Oscar Bruna-Romero
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauricio M. Rodrigues
- Centro de Terapia Celular e Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniel F. Hoft
- Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Saint Louis University, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
9
|
In vivo infection by Trypanosoma cruzi: the conserved FLY domain of the gp85/trans-sialidase family potentiates host infection. Parasitology 2010; 138:481-92. [PMID: 21040619 DOI: 10.1017/s0031182010001411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trypanosoma cruzi is a protozoan parasite that infects vertebrates, causing in humans a pathological condition known as Chagas' disease. The infection of host cells by T. cruzi involves a vast collection of molecules, including a family of 85 kDa GPI-anchored glycoproteins belonging to the gp85/trans-sialidase superfamily, which contains a conserved cell-binding sequence (VTVXNVFLYNR) known as FLY, for short. Herein, it is shown that BALB/c mice administered with a single dose (1 μg/animal, intraperitoneally) of FLY-synthetic peptide are more susceptible to infection by T. cruzi, with increased systemic parasitaemia (2-fold) and mortality. Higher tissue parasitism was observed in bladder (7·6-fold), heart (3-fold) and small intestine (3·6-fold). Moreover, an intense inflammatory response and increment of CD4+ T cells (1·7-fold) were detected in the heart of FLY-primed and infected animals, with a 5-fold relative increase of CD4+CD25+FoxP3+ T (Treg) cells. Mice treated with anti-CD25 antibodies prior to infection, showed a decrease in parasitaemia in the FLY model employed. In conclusion, the results suggest that FLY facilitates in vivo infection by T. cruzi and concurs with other factors to improve parasite survival to such an extent that might influence the progression of pathology in Chagas' disease.
Collapse
|
10
|
Gupta S, Garg NJ. Prophylactic efficacy of TcVac2 against Trypanosoma cruzi in mice. PLoS Negl Trop Dis 2010; 4:e797. [PMID: 20706586 PMCID: PMC2919396 DOI: 10.1371/journal.pntd.0000797] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chagas disease is a major health problem in Latin America, and an emerging infectious disease in the US. Previously, we have screened the Trypanosoma cruzi sequence database by a computational/bioinformatics approach, and identified antigens that exhibited the characteristics of vaccine candidates. METHODOLOGY We investigated the protective efficacy of a multi-component DNA-prime/protein-boost vaccine (TcVac2) constituted of the selected candidates and cytokine (IL-12 and GM-CSF) expression plasmids in a murine model. C57BL/6 mice were immunized with antigen-encoding plasmids plus cytokine adjuvants, followed by recombinant proteins; and two-weeks later, challenged with T. cruzi trypomastigotes. ELISA and flow cytometry were employed to measure humoral (antibody isotypes) and cellular (lymphocyte proliferation, CD4(+) and CD8(+) T cell phenotype and cytokines) responses. Myocardial pathology was evaluated by H&E and Masson's trichrome staining. PRINCIPAL FINDINGS TcVac2 induced a strong antigen-specific antibody response (IgG2b>IgG1) and a moderate level of lymphocyte proliferation in mice. Upon challenge infection, TcVac2-vaccinated mice expanded the IgG2b/IgG1 antibodies and elicited a substantial CD8(+) T cell response associated with type 1 cytokines (IFN-gamma and TNF-alpha) that resulted in control of acute parasite burden. During chronic phase, antibody response persisted, splenic activation of CD8(+) T cells and IFN-gamma/TNF-alpha cytokines subsided, and IL-4/IL-10 cytokines became dominant in vaccinated mice. The tissue parasitism, inflammation, and fibrosis in heart and skeletal muscle of TcVac2-vaccinated chronic mice were undetectable by histological techniques. In comparison, mice injected with vector or cytokines only responded to T. cruzi by elicitation of a mixed (type 1/type 2) antibody, T cell and cytokine response, and exhibited persistent parasite burden and immunopathology in the myocardium. CONCLUSION TcVac2-induced activation of type 1 antibody and lymphocyte responses provided resistance to acute T. cruzi infection, and consequently, prevented the evolution of chronic immunopathology associated with parasite persistence in chagasic hearts.
Collapse
Affiliation(s)
- Shivali Gupta
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Member of the Institute for Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Staquicini DI, Martins RM, Macedo S, Sasso GRS, Atayde VD, Juliano MA, Yoshida N. Role of GP82 in the selective binding to gastric mucin during oral infection with Trypanosoma cruzi. PLoS Negl Trop Dis 2010; 4:e613. [PMID: 20209152 PMCID: PMC2830468 DOI: 10.1371/journal.pntd.0000613] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/31/2009] [Indexed: 12/04/2022] Open
Abstract
Oral infection by Trypanosoma cruzi has been the primary cause of recent outbreaks of acute Chagas' diseases. This route of infection may involve selective binding of the metacyclic trypomastigote surface molecule gp82 to gastric mucin as a first step towards invasion of the gastric mucosal epithelium and subsequent systemic infection. Here we addressed that question by performing in vitro and in vivo experiments. A recombinant protein containing the complete gp82 sequence (J18), a construct lacking the gp82 central domain (J18*), and 20-mer synthetic peptides based on the gp82 central domain, were used for gastric mucin binding and HeLa cell invasion assays, or for in vivo experiments. Metacyclic trypomastigotes and J18 bound to gastric mucin whereas J18* failed to bind. Parasite or J18 binding to submaxillary mucin was negligible. HeLa cell invasion by metacyclic forms was not affected by gastric mucin but was inhibited in the presence of submaxillary mucin. Of peptides tested for inhibition of J18 binding to gastric mucin, the inhibitory peptide p7 markedly reduced parasite invasion of HeLa cells in the presence of gastric mucin. Peptide p7*, with the same composition as p7 but with a scrambled sequence, had no effect. Mice fed with peptide p7 before oral infection with metacyclic forms developed lower parasitemias than mice fed with peptide p7*. Our results indicate that selective binding of gp82 to gastric mucin may direct T. cruzi metacyclic trypomastigotes to stomach mucosal epithelium in oral infection. Frequent outbreaks of acute Chagas' disease by food contamination with T. cruzi, characterized by high mortality, have been reported in recent years. In Brazil, oral infection is currently the most important mechanism of T. cruzi transmission. Studies on oral T. cruzi infection in mice have shown that insect-stage metacyclic trypomastigotes invade only the gastric mucosal epithelium and not other areas of mucosal epithelia prior to establishing systemic infection. Here we have shown that metacyclic trypomastigotes bind selectively to gastric mucin, a property also displayed by gp82, a metacyclic stage-specific surface protein implicated in cell adhesion/invasion process. It is also shown that the gastric mucin-binding property of gp82 resides in the central domain of the molecule and that the synthetic peptide p7, based on a gastric mucin-binding sequence of gp82, markedly reduces parasite invasion of cultured human epithelial cells in the presence of gastric mucin. These results, plus the finding that mice that received peptide p7 before oral infection with metacyclic trypomastigotes had fewer parasites replicating in the gastric mucosa and developed lower parasitemias than control mice, lead us to suggest that gp82-mediated interaction with gastric mucin may direct T. cruzi to stomach mucosal epithelium in oral infection.
Collapse
Affiliation(s)
- Daniela I. Staquicini
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Rafael M. Martins
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Silene Macedo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Gisela R. S. Sasso
- Departamento de Morfologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Vanessa D. Atayde
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
- Department of Internal Medicine and Cell Biology, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Maria A. Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
12
|
Previously unrecognized vaccine candidates control Trypanosoma cruzi infection and immunopathology in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1158-64. [PMID: 18550728 DOI: 10.1128/cvi.00144-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease, a major health problem in Latin America and an emerging infectious disease in the United States. Previously, we screened a T. cruzi sequence database by a computational-bioinformatic approach and identified antigens that exhibited the characteristics of good vaccine candidates. In this study, we tested the vaccine efficacy of three of the putative candidate antigens against T. cruzi infection and disease in a mouse model. C57BL/6 mice vaccinated with T. cruzi G1 (TcG1)-, TcG2-, or TcG4-encoding plasmids and cytokine (interleukin-12 and granulocyte-macrophage colony-stimulating factor) expression plasmids elicited a strong Th1-type antibody response dominated by immunoglobulin G2b (IgG2b)/IgG1 isotypes. The dominant IgG2b/IgG1 antibody response was maintained after a challenge infection and was associated with 50 to 90% control of the acute-phase tissue parasite burden and an almost undetectable level of tissue parasites during the chronic phase, as determined by a sensitive T. cruzi 18S rRNA gene-specific real-time PCR approach. Splenocytes from vaccinated-and-infected mice, compared to unvaccinated-and-infected mice, exhibited decreased (approximately 50% lower) proliferation and gamma interferon (IFN-gamma) production when stimulated in vitro with T. cruzi antigens, thus suggesting that protection from challenge infection was not provided by an active T-cell response. Subsequently, the serum and cardiac levels of IFN-gamma and tumor necrosis factor alpha and infiltration of inflammatory infiltrate in the heart were decreased in vaccinated mice during the course of infection and chronic disease development. Taken together, these results demonstrate the identification of novel vaccine candidates that provided protection from T. cruzi-induced immunopathology in experimental mice.
Collapse
|
13
|
Garg N, Bhatia V. Current status and future prospects for a vaccine against American trypanosomiasis. Expert Rev Vaccines 2007; 4:867-80. [PMID: 16372882 DOI: 10.1586/14760584.4.6.867] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinically relevant pathognomonic consequences of human infection by Trypanosoma cruzi are dilation and hypertrophy of the left ventricle walls and thinning of the apex. The major complications and debilitating evolutionary outcomes of chronic infection include ventricular fibrillation, thromboembolism and congestive heart failure. American trypanosomiasis (Chagas disease) poses serious public healthcare and budgetary concerns. The currently available drugs, although effective against acute infection, are highly toxic and ineffective in arresting or attenuating clinical disease symptoms in chronic patients. The development of an efficacious prophylactic vaccine faces many challenges, and progress is slow, despite several years of effort. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested in animal models, and some efforts have been successful in controlling infection and disease. This review will summarize the accumulated knowledge about the parasite and disease, as well as pathogenesis and protective immunity. The authors will discuss the efforts to date, and the challenges faced in achieving an efficient prophylactic vaccine against human American trypanosomiasis, and present the future perspectives.
Collapse
Affiliation(s)
- Nisha Garg
- Sealy Center for Vaccine Development, Department of Microbiology, Immunology and Pathology, University of Texas Medical Branch, Galveston TX 77555, USA.
| | | |
Collapse
|
14
|
Sanchez-Burgos G, Mezquita-Vega RG, Escobedo-Ortegon J, Ramirez-Sierra MJ, Arjona-Torres A, Ouaissi A, Rodrigues MM, Dumonteil E. Comparative evaluation of therapeutic DNA vaccines against Trypanosoma cruzi in mice. ACTA ACUST UNITED AC 2007; 50:333-41. [PMID: 17521394 DOI: 10.1111/j.1574-695x.2007.00251.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major public health problem in most of Latin America. A key priority is the development of new treatments, due to the poor efficacy of current ones. We report here the comparative evaluation of therapeutic DNA vaccines encoding various T. cruzi antigens. ICR mice infected with 500 parasites intraperitoneally were treated at 5 and 12 days postinfection with 20 microg of plasmid DNA encoding T. cruzi antigens TSA-1, TS, ASP-2-like, Tc52 or Tc24. Treatment with plasmid encoding TS and/or ASP-2-like antigens had no significant effect on parasitemia or survival. Treatment with Tc52 DNA significantly reduced parasitemia, as well as cardiac parasite burden, and improved survival, although myocarditis was not significantly affected. Finally, treatment with plasmids encoding Tc24 and TSA-1 induced the most complete control of disease as evidenced by significant reductions in parasitemia, mortality, myocarditis and heart parasite burden. These data demonstrate that therapeutic vaccine efficacy is dependent on the antigen and suggest that DNA vaccines encoding Tc24, TSA-1, and Tc52 represent the best candidates for further studies of a therapeutic vaccine against Chagas disease.
Collapse
Affiliation(s)
- Gilma Sanchez-Burgos
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pereira VRA, Lorena VMB, Nakazawa M, Luna CF, Silva ED, Ferreira AGP, Krieger MA, Goldenberg S, Soares MBP, Coutinho EM, Correa-Oliveira R, Gomes YM. Humoral and cellular immune responses in BALB/c and C57BL/6 mice immunized with cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens, in acute experimental Trypanosoma cruzi infection. Parasitol Res 2005; 96:154-61. [PMID: 15856302 DOI: 10.1007/s00436-005-1336-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 02/24/2005] [Indexed: 01/23/2023]
Abstract
In previous studies, cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins induced specific humoral and cellular immune responses in susceptible and resistant mice in the absence of Trypanosoma cruzi infection with a significant induction of the Interferon-gamma (IFN-gamma) production in those animals. In this follow-up paper, the immunostimulatory and protective effects of these proteins were evaluated by immunizing with CRA or FRA antigens, BALB/c and C57BL/6 mice and challenging with a T. cruzi (Y strain). Both proteins induced humoral response with high levels of IgG isotypes as well as cellular immunity with high levels of IFN-gamma when compared to controls. However, the lymphocyte proliferative response was minimal. The survival rate at 30 days post-infection was significant in CRA (60%) or FRA (50%)--immunized BALB/c mice and CRA (83.3%)--immunized C57BL/6 mice. Taken as a whole these findings indicate that CRA and FRA are immunogenic and potentially important for protective immunity.
Collapse
|
16
|
Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra MJ. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect Immun 2004; 72:46-53. [PMID: 14688079 PMCID: PMC343959 DOI: 10.1128/iai.72.1.46-53.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 07/26/2003] [Accepted: 09/26/2003] [Indexed: 11/20/2022] Open
Abstract
The mechanisms involved in the pathology of chronic chagasic cardiomyopathy are still debated, and the controversy has interfered with the development of new treatments and vaccines. Because of the potential of DNA vaccines for immunotherapy of chronic and infectious diseases, we tested if DNA vaccines could control an ongoing Trypanosoma cruzi infection. BALB/c mice were infected with a lethal dose (5 x 10(4) parasites) as a model of acute infection, and then they were treated with two injections of 100 microg of plasmid DNA 1 week apart, beginning on day 5 postinfection. Control mice had high levels of parasitemia and mortality and severe cardiac inflammation, while mice treated with plasmid DNA encoding trypomastigote surface antigen 1 or Tc24 had reduced parasitemia and mild cardiac inflammation and >70% survived the infection. The efficacy of the immunotherapy also was significant when it was delayed until days 10 and 15 after infection. Parasitological analysis of cardiac tissue of surviving mice indicated that most mice still contained detectable parasite kinetoplast DNA but fewer mice contained live parasites, suggesting that there was efficient but not complete parasite elimination. DNA vaccine immunotherapy was also evaluated in CD1 mice infected with a low dose (5 x 10(2) parasites) as a model of chronic infection. Immunotherapy was initiated on day 70 postinfection and resulted in improved survival and reduced cardiac tissue inflammation. These results suggest that DNA vaccines have strong potential for the immunotherapy of T. cruzi infection and may provide new alternatives for the control of Chagas' disease.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Chagas Cardiomyopathy/mortality
- Chagas Cardiomyopathy/parasitology
- Chagas Cardiomyopathy/therapy
- Chagas Disease/mortality
- Chagas Disease/parasitology
- Chagas Disease/therapy
- Chronic Disease
- Humans
- Immunotherapy/methods
- Mice
- Mice, Inbred BALB C
- Myocardium/pathology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Treatment Outcome
- Trypanosoma cruzi/genetics
- Trypanosoma cruzi/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Variant Surface Glycoproteins, Trypanosoma/administration & dosage
- Variant Surface Glycoproteins, Trypanosoma/genetics
- Variant Surface Glycoproteins, Trypanosoma/immunology
Collapse
Affiliation(s)
- Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico.
| | | | | | | | | |
Collapse
|
17
|
Pereira VRA, de Lorena VMB, Nakazawa M, da Silva APG, Montarroyos U, Correa-Oliveira R, Gomes YDM. Evaluation of the immune response to CRA and FRA recombinant antigens of Trypanosoma cruzi in C57BL/6 mice. Rev Soc Bras Med Trop 2003; 36:435-40. [PMID: 12937718 DOI: 10.1590/s0037-86822003000400001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Humoral and cellular immune responses were evaluated in 44 C57BL/6 mice immunized with the Trypanosoma cruzi recombinant antigens CRA and FRA. Both antigens induced cutaneous immediate-type hypersensitivity response. The levels of IgG1, IgG2a, IgG2b and IgG3 were high in CRA immunized mice. IgG3 was the predominant isotype. Although no difference in antibody levels was observed in FRA-immunized mice when compared to control mice, both antigens were able to induce lymphoproliferation in immunized mice. Significant differences were observed between incorporation of [ H]- thymidine by spleen cell stimulated in vitro with CRA or FRA and the control group. These results suggest that CRA and FRA could be involved in mechanisms of resistance to Trypanosoma cruzi infection.
Collapse
|
18
|
Neira I, Silva FA, Cortez M, Yoshida N. Involvement of Trypanosoma cruzi metacyclic trypomastigote surface molecule gp82 in adhesion to gastric mucin and invasion of epithelial cells. Infect Immun 2003; 71:557-61. [PMID: 12496211 PMCID: PMC143373 DOI: 10.1128/iai.71.1.557-561.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon oral infection, Trypanosoma cruzi metacyclic trypomastigotes invade and replicate in the gastric mucosal epithelium, being apparently uniquely specialized for adhesion to mucin and mucosal invasion. Here we investigated the involvement of gp82, the metacyclic-stage-specific surface glycoprotein implicated in host cell entry, in both adhesion to gastric mucin and invasion of the mucosal epithelium upon oral challenge. Metacyclic forms, preincubated with a control monoclonal antibody (MAb) or with MAb 3F6 directed to gp82, were administered orally to BALB/c mice, and parasitemia was monitored. Mice that received parasites treated with MAb 3F6 had greatly reduced parasitemia, displaying at the peak a mean number of blood parasites more than 100-fold lower than that of the control group. MAbs directed to other T. cruzi surface glycoproteins had no such effect. gp82, as either a native or a recombinant molecule, but not the metacyclic trypomastigote surface molecule gp90 or gp35/50, bound to gastric mucin in enzyme-linked immunosorbent assays. MAb 3F6 significantly inhibited the penetration of cultured epithelial HeLa cells by metacyclic forms in the absence or in the presence of gastric mucin. Mucin alone did not affect parasite internalization. Parasite infectivity was not altered by treatment of metacyclic forms with pepsin, to which gp82 was resistant, or with proteinase K, which removed the N-terminal portion of gp82 but preserved its host cell binding site. Taken together, these findings suggest that gp82 mediates the interaction of metacyclic trypomastigotes with gastric mucin and the subsequent penetration of underlying epithelial cells.
Collapse
Affiliation(s)
- Ivan Neira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
19
|
Carmo MS, Santos MR, Cummings LM, Araya JE, Yamauchi LM, Yoshida N, Mortara RA, Franco da Silveira J. Isolation and characterisation of genomic and cDNA clones coding for a serine-, alanine-, and proline-rich protein of Trypanosoma cruzi. Int J Parasitol 2001; 31:259-64. [PMID: 11226452 DOI: 10.1016/s0020-7519(00)00170-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report here the isolation and characterisation of genomic and cDNA clones encoding a Serine-, Alanine-, and Proline-rich protein (SAP) of Trypanosoma cruzi metacyclic trypomastigotes. The deduced peptides translated from these clones were characterised by a high content of residues of alanine, proline, serine, glycine, valine, and threonine distributed in several repeats: P(2-4), S(2-3), A(2-3), AS, SA, PA, AP, SP, PS, and TP. The repeats are partially homologous to the serine-, alanine-, and proline-containing motifs of Leishmania major and Leishmania mexicana proteophosphoglycans. Genes coding for SAP are part of a polymorphic family whose members are linked to members of gp85/sialidase and mucin-like gene families. This is consistent with the hypothesis that this genetic organisation could be a means by which T. cruzi co-ordinates the expression of major surface proteins.
Collapse
Affiliation(s)
- M S Carmo
- Escola Paulista de Medicina, UNIFESP, Departamento de Microbiologia, Imunologia e Parasitologia, R. Botucatu, 862, CEP 04023-062, S. Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Málaga S, Yoshida N. Targeted reduction in expression of Trypanosoma cruzi surface glycoprotein gp90 increases parasite infectivity. Infect Immun 2001; 69:353-9. [PMID: 11119524 PMCID: PMC97890 DOI: 10.1128/iai.69.1.353-359.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previous study had shown that the expression of gp90, a stage-specific surface glycoprotein of Trypanosoma cruzi metacyclic trypomastigotes, is inversely correlated with the parasite's ability to invade mammalian cells. By using antisense oligonucleotides complementary to a region of the gp90 gene implicated in host cell adhesion, we investigated whether the selective inhibition of gp90 synthesis affected the capacity of metacyclic forms to enter target cells. Parasites were incubated for 24 h with 20 microM PS1, a phosphorothioate oligonucleotide based on a sequence of the gp90 coding strand; PS2, the antisense counterpart of PS1; or PO2, the unmodified version of PS2 containing phosphodiester linkages, and the expression of surface molecules was analyzed by flow cytometry and immunoblotting using specific monoclonal antibodies. PS2 but not PS1 or PO2 inhibited the expression of gp90. Inhibition by PS2 was dose dependent. Northern blot analysis revealed that steady-state gp90 mRNA levels were diminished in PS2-treated parasites compared to untreated controls. Treatment with PS2 did not affect the expression of other metacyclic stage surface glycoproteins involved in parasite-host cell interaction, such as gp82 and the mucin-like gp35/50. Expression of gp90 was also inhibited by other phosphorothioate oligonucleotides targeted to the gp90 gene (PS4, PS5, PS6, and PS7) but not by PS3, with the same base composition as PS2 but a mismatched sequence. Parasites treated with PS2, PS4, or PS5 entered HeLa cells in significantly higher numbers than untreated controls, whereas the invasive capacity of PS1- and PS3-treated parasites was unchanged, confirming the inverse association between infectivity and gp90 expression.
Collapse
Affiliation(s)
- S Málaga
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
21
|
Carmo MS, Araya JE, Ramirez MI, Boscardin S, Cano MI, Baida RP, Ruiz RC, Santos MR, Chiurillo MA, Ramirez JL, Yoshida N, Silveira JF. Organization and expression of a multigene family encoding the surface glycoproteins of Trypanosoma cruzi metacyclic trypomastigotes involved in the cell invasion. Mem Inst Oswaldo Cruz 2000; 94 Suppl 1:169-71. [PMID: 10677708 DOI: 10.1590/s0074-02761999000700022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- M S Carmo
- Departamento de Micro, Imuno e Parasitologia, Escola Paulista de Medicina, Unifesp, São Paulo, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ramirez MI, Boscardin SB, Han SW, Paranhos-Baccala G, Yoshida N, Kelly JM, Mortara RA, Da Silveira JF. Heterologous expression of a Trypanosoma cruzi surface glycoprotein (gp82) in mammalian cells indicates the existence of different signal sequence requirements and processing. J Eukaryot Microbiol 1999; 46:557-65. [PMID: 10568029 DOI: 10.1111/j.1550-7408.1999.tb05131.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metacyclic trypomastigotes of Trypanosoma cruzi express a developmentally regulated 82 kDa surface glycoprotein (gp82) that has been implicated in the mammalian cell invasion. When the non-infective epimastigote stage of the parasite was transfected with a vector containing the gp82 gene, an 82 kDa surface glycoprotein, which was indistinguishable from the metacyclic stage protein, was expressed. In contrast, when the same gene was expressed in transfected mammalian cells, although a large amount of protein was produced, it was not imported into the endoplasmic reticulum and glycosylated. This blockage in targeting and processing could be partially compensated for by the addition of a virus haemagglutinin signal peptide to the amino terminus of gp82. Thus, the requirements for membrane protein processing are distinct in mammals and T. cruzi, and an intrinsic feature of the gp82 prevents subsequent sorting to the mammalian cell surface. These results could be useful in the development of new DNA vaccines against T. cruzi employing parasite genes encoding immunodominant surface glycoproteins.
Collapse
Affiliation(s)
- M I Ramirez
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chiurillo MA, Cano I, Da Silveira JF, Ramirez JL. Organization of telomeric and sub-telomeric regions of chromosomes from the protozoan parasite Trypanosoma cruzi. Mol Biochem Parasitol 1999; 100:173-83. [PMID: 10391379 DOI: 10.1016/s0166-6851(99)00047-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present here a characterization of the telomeric and subtelomeric regions of Trypanosoma cruzi chromosomes, using three types of recombinants: cosmids from a genomic library, clones obtained by a vector-adaptor protocol, and a recombinant fragment cloned by a Bal31 trimming protocol. The last nine nucleotides of the T. cruzi overhang are 5'-GGGTTAGGG-3', and there are from 9 to 50 copies of the hexameric repeat 5'-TTAGGG-3', followed by a 189-bp junction sequence common to all recombinants. The subtelomeric region is made of sequences associated with the gp85/sialidase gene family, and/or sequences derived from SIRE, a retrotransposon-like sequence, and also the retrotransposon L1Tc. We discuss the possible implications of this genome organization.
Collapse
Affiliation(s)
- M A Chiurillo
- Instituto de Biologia Experimental, Universidad Central de Venezuela, Caracas
| | | | | | | |
Collapse
|
24
|
Håkansson S, Schesser K, Persson C, Galyov EE, Rosqvist R, Homblé F, Wolf-Watz H. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J 1996; 15:5812-23. [PMID: 8918459 PMCID: PMC452329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During infection of cultured epithelial cells, surface-located Yersinia pseudotuberculosis deliver Yop (Yersinia outer protein) virulence factors into the cytoplasm of the target cell. A non-polar yopB mutant strain displays a wild-type phenotype with respect to in vitro Yop regulation and secretion but fails to elicit a cytotoxic response in cultured HeLa cells and is unable to inhibit phagocytosis by macrophage-like J774 cells. Additionally, the yopB mutant strain was avirulent in the mouse model. No YopE or YopH protein were observed within HeLa cells infected with the yopB mutant strain, suggesting that the loss of virulence of the mutant strain was due to its inability to translocate Yop effector proteins through the target cell plasma membrane. Expression of YopB is necessary for Yersinia-induced lysis of sheep erythrocytes. Purified YopB was shown to have membrane disruptive activity in vitro. YopB-dependent haemolytic activity required cell contact between the bacteria and the erythrocytes and could be inhibited by high, but not low, molecular weight carbohydrates. Similarly, expression of YopE reduced haemolytic activity. Therefore, we propose that YopB is essential for the formation of a pore in the target cell membrane that is required for the cell-to-cell transfer of Yop effector proteins.
Collapse
Affiliation(s)
- S Håkansson
- Department of Cell and Molecular Biology, Umeå University, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Santori FR, Dorta ML, Juliano L, Juliano MA, da Silveira JF, Ruiz RC, Yoshida N. Identification of a domain of Trypanosoma cruzi metacyclic trypomastigote surface molecule gp82 required for attachment and invasion of mammalian cells. Mol Biochem Parasitol 1996; 78:209-16. [PMID: 8813690 DOI: 10.1016/s0166-6851(96)02626-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recombinant proteins and synthetic peptides representing various sequences of gp82, a surface glycoprotein of Trypanosoma cruzi metacyclic trypomastigotes implicated in mammalian cell invasion, were used in this study aiming at the identification of the domain(s) of this molecule required for interaction with target cells. Invasion of cultured HeLa cells by metacyclic trypomastigotes was inhibited by about 80% in the presence of native gp82 or the corresponding recombinant construct J18. Inhibition by recombinant proteins J18a and J18b, containing respectively the N-terminal and the C-terminal portions of gp82, was on the order of 30% and 65%. As compared to J18b (amino acids 224-516), the truncated gp82 fragments J18b1 (amino acids 303-516) and J18b2 (amino acids 357-516) displayed lower inhibitory effect (approximately 40% and approximately 15%, respectively). Compatible with these observations, we found that the recombinant protein J18b, but not J18a or J18b2, binds to HeLa cells in a dose-dependent and saturable fashion. Experiments with ten overlapping synthetic peptides, representing the gp82 portion spanning amino acids 224-333, showed that peptides 4 (amino acids 254-273) and 8 (amino acids 294-313) have significant inhibitory activity on HeLa cell invasion by metacyclic forms. All these results indicate that the portion of gp82 required for mammalian cell attachment and invasion is located in the central domain of the molecule.
Collapse
Affiliation(s)
- F R Santori
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|