1
|
Abdelmaksoud HF, Aboushousha TS, El-Ashkar AM. Deep glance on the antiparasitic anticancer activities of wheat germ oil in chronically infected immunosuppressed mice with cryptosporidiosis. J Parasit Dis 2022; 46:785-794. [PMID: 36091275 PMCID: PMC9458820 DOI: 10.1007/s12639-022-01497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cryptosporidium species are the major cause of water-borne epidemics of diarrhea in both developing and developed countries that vary from self-limited in immunocompetent patients to severe life-threatening in the immunocompromised hosts. There was a proven correlation between cryptosporidiosis and colorectal cancers, although, studies in this field are still limited. Wheat germ oil (WGO) is a natural product with a known antiparasitic effect and potential antiproliferative activities. This study aimed to evaluate the antiparasitic and anticancer activities of WGO in chronically infected immunosuppressed mice compared to Nitazoxanide (NTZ). This experimental case-control study was performed in the period from January till September 2021. Eighty immunosuppressed bred laboratory mice were divided into 4 groups, 20 mice each; GI non-infected; negative control (NC), GII infected non treated; positive control (PC), GII infected, and treated with NTZ, GIV infected, and treated with WGO. Parasitological, histopathological, and immunohistochemical examinations were performed with estimating the rate of maximal survival for the study groups. Parasitological examination revealed a marked reduction in the mean Cryptosporidium spp. oocyst counts in the stool of GIV compared to PC, and GIII (P-value < 0.001). Histopathological and immunohistochemical examinations showed the best results with GIV which revealed restoration of normal villous pattern, with no dysplasia or malignancy could be detected. GIV showed the best survival rate compared to PC and GIII. WGO is an extremely promising agent that has an excellent therapeutic effect against cryptosporidiosis with the ability to control the tumorigenesis process in the chronically infected immunosuppressed hosts.
Collapse
Affiliation(s)
| | | | - Ayman M. El-Ashkar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Science, College of Medicine, University of Bisha, Bisha, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Synthesis and degradation of cAMP in Giardia lamblia: possible role and characterization of a nucleotidyl cyclase with a single cyclase homology domain. Biochem J 2017; 474:4001-4017. [PMID: 29054977 DOI: 10.1042/bcj20170590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/25/2023]
Abstract
Despite its importance in the regulation of growth and differentiation processes of a variety of organisms, the mechanism of synthesis and degradation of cAMP (cyclic AMP) has not yet been described in Giardia lamblia In this work, we measured significant quantities of cAMP in trophozoites of G. lamblia incubated in vitro and later detected how it increases during the first hours of encystation, and how it then returns to basal levels at 24 h. Through an analysis of the genome of G. lamblia, we found sequences of three putative enzymes - one phosphodiesterase (gPDE) and two nucleotidyl cyclases (gNC1 and gNC2) - that should be responsible for the regulation of cAMP in G. lamblia Later, an RT-PCR assay confirmed that these three genes are expressed in trophozoites. The bioinformatic analysis indicated that gPDE is a transmembrane protein of 154 kDa, with a single catalytic domain in the C-terminal end; gNC1 is predicted to be a transmembrane protein of 74 kDa, with only one class III cyclase homology domain (CHD) at the C-terminal end; and gNC2 should be a transmembrane protein of 246 kDa, with two class III CHDs. Finally, we cloned and enriched the catalytic domain of gNC1 (gNC1cd) from bacteria. After that, we confirmed that gNC1cd has adenylyl cyclase (AC) activity. This enzymatic activity depends on the presence of Mn2+ and Ca2+, but no significant activity was displayed in the presence of Mg2+ Additionally, the AC activity of gNC1cd is competitively inhibited with GTP, so it is highly possible that gNC1 has guanylyl cyclase activity as well.
Collapse
|
3
|
Escobedo AA, Lalle M, Hrastnik NI, Rodríguez-Morales AJ, Castro-Sánchez E, Cimerman S, Almirall P, Jones J. Combination therapy in the management of giardiasis: What laboratory and clinical studies tell us, so far. Acta Trop 2016; 162:196-205. [PMID: 27349189 DOI: 10.1016/j.actatropica.2016.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 01/15/2023]
Abstract
Treatment failures in patients suffering from giardiasis are not uncommon feature. The most frequent approach in these cases is to treat these patients with longer repeated courses and/or higher doses of the primary therapy, or using drugs from a different class to avoid potential cross-resistance. However, a higher rate of adverse events may limit this strategy. In this context, combination therapy (CT) is emerging as a valuable option against refractory giardiasis. In the attempt to evaluate the benefits of CT, a number of experimental studies, clinical series, and randomized clinical trials (RCTs), as well as several veterinary studies have been performed, with varying results. Here, we present a critical analysis of the available information regarding CT for the treatment of Giardia infection, as well as the authors' opinion with respect to its use. RCTs of combination therapy are limited and the optimal combinations and administration strategies need yet to be clarified. Analyses of the cost-effectiveness and RCTs of CTs for Giardia infection are required to assess the role of these drugs for the control of giardiasis, mainly in the case of treatment failures linked to suspected drug tolerance are the case.
Collapse
|
4
|
Ethanol and isopropanol in concentrations present in hand sanitizers sharply reduce excystation of Giardia and Entamoeba and eliminate oral infectivity of Giardia cysts in gerbils. Antimicrob Agents Chemother 2015; 59:6749-54. [PMID: 26282413 DOI: 10.1128/aac.01290-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022] Open
Abstract
Enteric protozoan parasites, which are spread by the fecal-oral route, are important causes of diarrhea (Giardia duodenalis) and amebic dysentery (Entamoeba histolytica). Cyst walls of Giardia and Entamoeba have a single layer composed of fibrils of β-1,3-linked GalNAc and β-1,4-linked GlcNAc (chitin), respectively. The goal here was to determine whether hand sanitizers that contain ethanol or isopropanol as the active microbicide might reduce transmission of these parasites. We found that treatment with these alcohols with or without drying in a rotary evaporator (to model rapid evaporation of sanitizers on hands) kills 85 to 100% of cysts of G. duodenalis and 90 to 100% of cysts of Entamoeba invadens (a nonpathogenic model for E. histolytica), as shown by nuclear labeling with propidium iodide and failure to excyst in vitro. Alcohols with or without drying collapsed the cyst walls of Giardia but did not collapse the cyst walls of Entamoeba. To validate the in vitro results, we showed that treatment with alcohols eliminated oral infection of gerbils by 1,000 G. duodenalis cysts, while a commercial hand sanitizer (Purell) killed E. invadens cysts that were directly applied to the hands. These results suggest that expanded use of alcohol-based hand sanitizers might reduce the transmission of Giardia and Entamoeba.
Collapse
|
5
|
Davids BJ, Gilbert MA, Liu Q, Reiner DS, Smith AJ, Lauwaet T, Lee C, McArthur AG, Gillin FD. An atypical proprotein convertase in Giardia lamblia differentiation. Mol Biochem Parasitol 2010; 175:169-80. [PMID: 21075147 DOI: 10.1016/j.molbiopara.2010.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 01/24/2023]
Abstract
Proteolytic activity is important in the lifecycles of parasites and their interactions with hosts. Cysteine proteases have been best studied in Giardia, but other protease classes have been implicated in growth and/or differentiation. In this study, we employed bioinformatics to reveal the complete set of putative proteases in the Giardia genome. We identified 73 peptidase homologs distributed over 5 catalytic classes in the genome. Serial analysis of gene expression of the G. lamblia lifecycle found thirteen protease genes with significant transcriptional variation over the lifecycle, with only one serine protease transcript upregulated late in encystation. The translated gene sequence of this encystation-specific transcript was most similar to eukaryotic subtilisin-like proprotein convertases (SPC), although the typical catalytic triad was not identified. Epitope-tagged gSPC protein expressed in Giardia under its own promoter was upregulated during encystation with highest expression in cysts and it localized to encystation-specific secretory vesicles (ESV). Total gSPC from encysting cells produced proteolysis in gelatin gels that co-migrated with the epitope-tagged protease in immunoblots. Immuno-purified gSPC also had gelatinase activity. To test whether endogenous gSPC activity is involved in differentiation, trophozoites and cysts were exposed to the specific serine proteinase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF). After 21 h encystation, a significant decrease in ESV was observed with 1mM AEBSF and by 42 h the number of cysts was significantly reduced, but trophozoite growth was not inhibited. Concurrently, levels of cyst wall proteins 1 and 2, and AU1-tagged gSPC protein itself were decreased. Excystation of G. muris cysts was also significantly reduced in the presence of AEBSF. These results support the idea that serine protease activity is essential for Giardia encystation and excystation.
Collapse
Affiliation(s)
- B J Davids
- Department of Pathology, University of California, San Diego, CA 92103-8416, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chatterjee A, Carpentieri A, Ratner DM, Bullitt E, Costello CE, Robbins PW, Samuelson J. Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. PLoS Pathog 2010; 6:e1001059. [PMID: 20808847 PMCID: PMC2924369 DOI: 10.1371/journal.ppat.1001059] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique beta-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWP(LRR)) and a C-terminal conserved Cys-rich region (CWP(CRR)). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (approximately 400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (approximately 1.2 microm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1(LRR). In contrast, neither MBP alone nor MBP fused to CWP1(CRR) bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Andrea Carpentieri
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Daniel M. Ratner
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Esther Bullitt
- Department of Biophysics and Physiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Phillips W. Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lalle M, Bavassano C, Fratini F, Cecchetti S, Boisguerin P, Crescenzi M, Pozio E. Involvement of 14-3-3 protein post-translational modifications in Giardia duodenalis encystation. Int J Parasitol 2010; 40:201-13. [DOI: 10.1016/j.ijpara.2009.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 11/28/2022]
|
8
|
Changes in the N-glycome, glycoproteins with Asn-linked glycans, of Giardia lamblia with differentiation from trophozoites to cysts. EUKARYOTIC CELL 2008; 7:1930-40. [PMID: 18820077 DOI: 10.1128/ec.00268-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Giardia lamblia is present in the intestinal lumen as a binucleate, flagellated trophozoite or a quadranucleate, immotile cyst. Here we used the plant lectin wheat germ agglutinin (WGA), which binds to the disaccharide di-N-acetyl-chitobiose (GlcNAc(2)), which is the truncated Asn-linked glycan (N-glycan) of Giardia, to affinity purify the N-glycomes (glycoproteins with N-glycans) of trophozoites and cysts. Fluorescent WGA bound to the perinuclear membranes, peripheral acidified vesicles, and plasma membranes of trophozoites. In contrast, WGA bound strongly to membranes adjacent to the wall of Giardia cysts and less strongly to the endoplasmic reticulum and acidified vesicles. WGA lectin-affinity chromatography dramatically enriched secreted and membrane proteins of Giardia, including proteases and acid phosphatases that retain their activities. With mass spectroscopy, we identified 91 glycopeptides with N-glycans and 194 trophozoite-secreted and membrane proteins, including 42 unique proteins. The Giardia oligosaccharyltransferase, which contains a single catalytic subunit, preferred N glycosylation sites with Thr to those with Ser in vivo but had no preference for flanking amino acids. The most-abundant glycoproteins in the N-glycome of trophozoites were lysosomal enzymes, folding-associated proteins, and unique transmembrane proteins with Cys-, Leu-, or Gly-rich repeats. We identified 157 secreted and membrane proteins in the Giardia cysts, including 20 unique proteins. Compared to trophozoites, cysts were enriched in Gly-rich repeat transmembrane proteins, cyst wall proteins, and unique membrane proteins but had relatively fewer Leu-rich repeat proteins, folding-associated proteins, and unique secreted proteins. In summary, there are major changes in the Giardia N-glycome with the differentiation from trophozoites to cysts.
Collapse
|
9
|
Müller J, Ley S, Felger I, Hemphill A, Müller N. Identification of differentially expressed genes in a Giardia lamblia WB C6 clone resistant to nitazoxanide and metronidazole. J Antimicrob Chemother 2008; 62:72-82. [PMID: 18408240 DOI: 10.1093/jac/dkn142] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The characterization of differential gene expression in Giardia lamblia WB C6 strain C4 resistant to metronidazole and nitazoxanide using microarray technology and quantitative real-time PCR. METHODS In a previous study, we created and characterized the G. lamblia WB C6 clone C4 resistant to nitazoxanide and metronidazole. In this study, using a microarray-based approach, we have identified open-reading frames (ORFs) that were differentially expressed in C4 when compared with its wild-type WB C6. Using quantitative real-time PCR, we have validated the expression patterns of some of those ORFs, focusing on chaperones such as heat-shock proteins in wild-type and C4 trophozoites. In order to induce an antigenic shift, trophozoites of both strains were subjected to a cycle of en- and excystation. Expression of selected genes and resistance to nitazoxanide and metronidazole were investigated after this cycle. RESULTS Forty of a total of 9115 ORFs were found to be up-regulated and 46 to be down-regulated in C4 when compared with wild-type. After a cycle of en- and excystation, resistance of C4 to nitazoxanide and metronidazole was lost. Resistance formation and en-/excystation were correlated with changes in expression of ORFs encoding for major surface antigens such as the variant surface protein TSA417 or AS7 ('antigenic shift'). Moreover, expression patterns of the cytosolic heat-shock protein HSP70 B2, HSP40, and of the previously identified nitazoxanide-binding proteins nitroreductase and protein disulphide isomerase PDI4 were correlated with resistance and loss of resistance after en-/excystation. C4 trophozoites had a higher thermotolerance level than wild-type trophozoites. After en-/excystation, this tolerance was lost. CONCLUSIONS These results suggest that resistance formation in Giardia to nitazoxanide and metronidazole is correlated with altered expression of genes involved in stress response such as heat-shock proteins.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | | | | | | | | |
Collapse
|
10
|
Hausen MA, Freitas JCM, Monteiro-Leal LH. The effects of metronidazole and furazolidone during Giardia differentiation into cysts. Exp Parasitol 2006; 113:135-41. [PMID: 16473351 DOI: 10.1016/j.exppara.2005.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
The protozoon Giardia lamblia infects millions of people worldwide, most of them in underdeveloped countries, where it is frequently a hyperendemic disease. The search for an effective anti-Giardia treatment has been intense, but recurrent infections, virulence factors, and drug resistance imposed obstacles in the achievement of an efficient medication. Most papers about drug effects in Giardia are related to the trophozoite form, although viable cysts, the infective forms, are continuously eliminated in the stools during the treatment. Supported by this knowledge, we analyzed the inhibitory effects of metronidazole (MZ) and furazolidone (FZ) on the differentiation of Giardia into cysts and its viability. The presence of cavities, lamellar bodies and thread-like structures were the most frequent morphological alterations. The results showed also that FZ was more effective by 50% than MZ in inhibiting in vitro cyst differentiation.
Collapse
Affiliation(s)
- Moema A Hausen
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia, Departamento de Histologia e Embriologia, Lab. de Microscopia e Processamento de Imagens, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
11
|
Smith HV, Nichols RAB, Grimason AM. Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends Parasitol 2005; 21:133-42. [PMID: 15734661 DOI: 10.1016/j.pt.2005.01.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cryptosporidium parvum excystation and host cell invasion have been characterized in some detail ultrastructurally. However, until recently, the biochemical and molecular basis of host-parasite interactions and parasite- and host-specific molecules involved in excystation, motility and host cell invasion have been poorly understood. This article describes our understanding of Cryptosporidium excystation and the events leading to host cell invasion, and draws from information available about these processes in other apicomplexans. Many questions remain but, once the specific mechanisms are identified, they could prove to be novel targets for drug delivery.
Collapse
Affiliation(s)
- Huw V Smith
- Scottish Parasite Diagnostic Laboratory, Stobhill Hospital, Glasgow G21 3UW, Scotland, UK.
| | | | | |
Collapse
|
12
|
|
13
|
Davids BJ, Mehta K, Fesus L, McCaffery JM, Gillin FD. Dependence of Giardia lamblia encystation on novel transglutaminase activity. Mol Biochem Parasitol 2004; 136:173-80. [PMID: 15478797 DOI: 10.1016/j.molbiopara.2004.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Earlier, we found that three protein disulfide isomerases (PDI) from Giardia lamblia (gPDI) also have transglutaminase (TGase) activity in vitro. We now show that differentiating Giardia cells contain isopeptide bonds (epsilon(gamma-glutamyl)lysine), the biological product of TGase activity that results in irreversible crosslinking of proteins in vivo. HPLC analyses showed the highest isopeptide bond content in cells encysting for 21 h, indicating an important role for TGase early in encystation. We were not able to detect isopeptide bonds in water-resistant cysts, possibly because they could not be extracted. One of the hallmarks of early encystation is the formation of encystation secretory vesicles (ESV) that transport nascent cyst wall proteins (CWPs) to the outer cell surface. ImmunoEM and live-cell immunofluorescence assays of encysting parasites revealed that gPDIs 1-3 are located in ESV and that gPDI-2 is also novel in that it is localized on the cell surface. Cystamine, a widely used TGase inhibitor, caused a dose-dependent inhibition of ESV formation by 21 h, thereby preventing development of trophozoites into cysts. Since cystamine (0.5-1 mM) inhibited the TGase activity of recombinant gPDIs 1-3 in vitro, PDIs appear to be the physiologic targets of cystamine. We found that when parasites were treated with cystamine, CWPs were not processed normally. These data suggest that TGase-catalyzed reactions may be needed for either the machinery that processes CWP precursors or their recruitment to ESV.
Collapse
Affiliation(s)
- B J Davids
- Department of Pathology, Division of Infectious Diseases, UCSD Medical Center, University of California, CTF-C 403, 214 Dickinson Street, San Diego, CA 92103-8416, USA.
| | | | | | | | | |
Collapse
|
14
|
Bramucci MG, Nagarajan V. Inhibition of Vorticella microstoma stalk formation by wheat germ agglutinin. J Eukaryot Microbiol 2004; 51:425-7. [PMID: 15352324 DOI: 10.1111/j.1550-7408.2004.tb00389.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescently labeled conjugates of wheat germ agglutinin and concanavalin A stained the contractile stalk but not the cell body of Vorticella microstoma trophonts. Binding of the fluorescent conjugants did not noticeably alter the activity of the trophonts. However, unconjugated wheat germ agglutinin prevented free swimming telotrochs from adhering to a glass surface and deploying a contractile stalk during differentiation into trophonts. These observations indicated that the stalk, the material that binds the stalk to surfaces, and the precursors for these components have saccharide residues in common.
Collapse
Affiliation(s)
- Michael G Bramucci
- Central Research and Development, DuPont Company, P.O. Box 80328, Wilmington, Delaware 19880-0328, USA.
| | | |
Collapse
|
15
|
Reiner DS, McCaffery JM, Gillin FD. Reversible interruption of Giardia lamblia cyst wall protein transport in a novel regulated secretory pathway. Cell Microbiol 2001; 3:459-72. [PMID: 11437832 DOI: 10.1046/j.1462-5822.2001.00129.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To survive in the environment and infect a new host, Giardia lamblia secretes an extracellular cyst wall using a poorly understood pathway. The two cyst wall proteins (CWPs) form disulphide-bonded heterodimers and are exported via novel encystation-specific secretory vesicles (ESVs). Exposure of eukaryotic cells to dithiothreitol (DTT) blocks the formation of disulphide bonds in nascent proteins that accumulate in the endoplasmic reticulum (ER) and induces an unfolded protein response (UPR). Proteins that have exited the ER are not susceptible. Exposure to DTT inhibits ESV formation by > 85%. Addition of DTT to encysting cells causes rapid (t1/2 < 10 min), reversible disappearance of ESVs, correlated with reduction of CWPs to monomers and reformation of CWP oligomers upon removal of DTT. Neither CWPs nor ESVs are affected by mercaptoethanesulphonic acid, a strong reducing agent that does not penetrate cells. DTT does not inhibit the overall protein secretory pathway, and recovery does not require new protein synthesis. We found evidence of protein disulphide isomerases in the ESV and the surface of encysting cells, in which they may catalyse initial CWP folding and recovery from DTT. This is the first suggestion of non-CWP proteins in ESVs and of enzymes on the giardial surface. DTT treatment did not stimulate a UPR, suggesting that Giardia may have diverged before the advent of this conserved form of ER quality control.
Collapse
Affiliation(s)
- D S Reiner
- Department of Pathology, Division of Infectious Diseases, University of California San Diego, School of Medicine, San Diego, CA 92103-8416, USA
| | | | | |
Collapse
|
16
|
Abstract
Giardia lamblia is a common cause of diarrhea in humans and other mammals throughout the world. It can be distinguished from other Giardia species by light or electron microscopy. The two major genotypes of G. lamblia that infect humans are so different genetically and biologically that they may warrant separate species or subspecies designations. Trophozoites have nuclei and a well-developed cytoskeleton but lack mitochondria, peroxisomes, and the components of oxidative phosphorylation. They have an endomembrane system with at least some characteristics of the Golgi complex and encoplasmic reticulum, which becomes more extensive in encysting organisms. The primitive nature of the organelles and metabolism, as well as small-subunit rRNA phylogeny, has led to the proposal that Giardia spp. are among the most primitive eukaryotes. G. lamblia probably has a ploidy of 4 and a genome size of approximately 10 to 12 Mb divided among five chromosomes. Most genes have short 5' and 3' untranslated regions and promoter regions that are near the initiation codon. Trophozoites exhibit antigenic variation of an extensive repertoire of cysteine-rich variant-specific surface proteins. Expression is allele specific, and changes in expression from one vsp gene to another have not been associated with sequence alterations or gene rearrangements. The Giardia genome project promises to greatly increase our understanding of this interesting and enigmatic organism.
Collapse
Affiliation(s)
- R D Adam
- Department of Medicine, University of Arizona College of Medicine, 1501N. Campbell, Tucson, AZ 85724-5049, USA.
| |
Collapse
|
17
|
Morrison HG, Roger AJ, Nystul TG, Gillin FD, Sogin ML. Giardia lamblia expresses a proteobacterial-like DnaK homolog. Mol Biol Evol 2001; 18:530-41. [PMID: 11264404 DOI: 10.1093/oxfordjournals.molbev.a003832] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We identified a novel gene encoding molecular chaperone HSP70 in the amitochondriate parasite Giardia lamblia. The predicted protein is similar to bacterial DnaK and mitochondrial HSP70s. The gene is transcribed and translated at a constant level during trophozoite growth and encystation. Alignment of the sequence with a data set of cytosolic, endoplasmic reticulum (ER), mitochondrial, and DnaK HSP70 homologs indicated that the sequence was extremely divergent and contained insertions unique to giardial HSP70s. Phylogenetic analyses demonstrated that this sequence was distinct from the cytosolic and ER forms and was most similar to proteobacterial and mitochondrial DnaKs. However, a specific relationship with the alpha proteobacterial and mitochondrial sequences was not strongly supported by phylogenetic analyses of this data set, in contrast to similar analyses of cpn60. These data neither confirm nor reject the possibility that this gene is a relic of secondary mitochondrial loss; they leave open the possibility that it was acquired in a separate endosymbiotic event.
Collapse
Affiliation(s)
- H G Morrison
- The Josephine Bay Paul Center of Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543-1015, USA
| | | | | | | | | |
Collapse
|
18
|
Abel ES, Davids BJ, Robles LD, Loflin CE, Gillin FD, Chakrabarti R. Possible roles of protein kinase A in cell motility and excystation of the early diverging eukaryote Giardia lamblia. J Biol Chem 2001; 276:10320-9. [PMID: 11104758 DOI: 10.1074/jbc.m006589200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since little is known of how the primitive protozoan parasite, Giardia lamblia, senses and responds to its changing environment, we characterized a giardial protein kinase A (gPKA) catalytic subunit with unusual subcellular localization. Sequence analysis of the 1080-base pair open reading frame shows 48% amino acid identity with the cyclic AMP-dependent kinase from Euglena gracilis. Northern analysis indicated a 1.28- kilobase pair transcript at relatively constant concentrations during growth and encystation. gPKA is autophosphorylated, although amino acid residues corresponding to Thr-197 and Ser-338 of human protein kinase A (PKA) that are important for autophosphorylation are absent. Kinetic analysis of the recombinant PKA showed that ATP and magnesium are preferred over GTP and manganese. Kinase activity of the native PKA has also been detected in crude extracts using kemptide as a substrate. A myristoylated PKA inhibitor, amide 14-22, inhibited excystation with an IC(50) of 3 microm, suggesting an important role of gPKA during differentiation from the dormant cyst form into the active trophozoite. gPKA localizes independently of cell density to the eight flagellar basal bodies between the two nuclei together with centrin, a basal body/centrosome-specific protein. However, localization of gPKA to marginal plates along the intracellular portions of the anterior and caudal pairs of flagella was evident only at low cell density and higher endogenous cAMP concentrations or after refeeding with fresh medium. These data suggest an important role of PKA in trophozoite motility during vegetative growth and the cellular activation of excystation.
Collapse
Affiliation(s)
- E S Abel
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32826, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquitous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen.
Collapse
|
20
|
Eckmann L, Laurent F, Langford TD, Hetsko ML, Smith JR, Kagnoff MF, Gillin FD. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen Giardia lamblia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1478-87. [PMID: 10640765 DOI: 10.4049/jimmunol.164.3.1478] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Giardia lamblia infection of the human small intestine is a common protozoan cause of diarrheal disease worldwide. Although infection is luminal and generally self-limiting, and secretory Abs are thought to be important in host defense, other defense mechanisms probably affect the duration of infection and the severity of symptoms. Because intestinal epithelial cells produce NO, and its stable end products, nitrite and nitrate, are detectable mainly on the apical side, we tested the hypothesis that NO production may constitute a host defense against G. lamblia. Several NO donors, but not their control compounds, inhibited giardial growth without affecting viability, suggesting that NO is cytostatic rather than cytotoxic for G. lamblia. NO donors also inhibited giardial differentiation induced by modeling crucial environmental factors, i. e., encystation induced by bile and alkaline pH, and excystation in response to gastric pH followed by alkaline pH and protease. Despite the potent antigiardial activity of NO, G. lamblia is not simply a passive target for host-produced NO, but has strategies to evade this potential host defense. Thus, in models of human intestinal epithelium, G. lamblia inhibited epithelial NO production by consuming arginine, the crucial substrate used by epithelial NO synthase to form NO. These studies define NO and arginine as central components in a novel cross-talk between a luminal pathogen and host intestinal epithelium.
Collapse
Affiliation(s)
- L Eckmann
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquitous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen.
Collapse
Affiliation(s)
- G Faubert
- Institute of Parasitology, Macdonald Campus of McGill University, Ste. Anne-de-Bellevue, Qu¿ebec, Canada H9X 3V9.
| |
Collapse
|
22
|
Boone JH, Wilkins TD, Nash TE, Brandon JE, Macias EA, Jerris RC, Lyerly DM. TechLab and alexon Giardia enzyme-linked immunosorbent assay kits detect cyst wall protein 1. J Clin Microbiol 1999; 37:611-4. [PMID: 9986821 PMCID: PMC84490 DOI: 10.1128/jcm.37.3.611-614.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Giardia lamblia antigen detected by the TechLab Giardia Test (TechLab, Inc., Blacksburg, Va.) and the Alexon ProSpecT Giardia microplate assay (Alexon, Inc., Sunnyvale, Calif.) was purified by immunoaffinity chromatography from supernatant fluids of encystment cultures. Two major proteins (Mr 22,000 and 26,000) were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie staining that did not resemble the GSA65 antigen reportedly detected by the Alexon test. These proteins reacted intensely with the monoclonal antibodies used in both commercial enzyme-linked immunosorbent assays (ELISAs). Both proteins had identical N-terminal amino acid sequences and were identified as cyst wall protein 1 (CWP1). The 26-kDa form appeared early during encystment followed by the appearance of the 22-kDa form. Recombinant CWP1 (Mr 26,000) was strongly positive in both commercial tests. CWP1 was stable in human stool specimens, resistant to degradation by proteases and N- and O-glycanases, and unaffected by oxidation with sodium periodate. Two minor proteins with Mrs of 32,000 and 39,000 were detected in CWP1 preparations by using a sensitive fluorescent protein stain. Both were identified as CWP2, and neither reacted with the monoclonal antibodies from the commercial tests. We analyzed 535 stool specimens for CWP1 by using both commercial ELISAs and resolved discrepant results by using routine ova and parasite examination (O&P) and on immunofluorescence antibody assay. The presence of CWP1 correlated well between both ELISAs (98.7% correlation). Our results demonstrate that both commercial ELISAs detect CWP1, which is a useful diagnostic marker because it is highly stable, is secreted in large amounts by encysting trophozoites, and correlates well with O&P.
Collapse
Affiliation(s)
- J H Boone
- TechLab, Inc., Corporate Research Center, Blacksburg, Virginia 24060-6364, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Svärd SG, Rafferty C, McCaffery JM, Smith MW, Reiner DS, Gillin FD. A signal recognition particle receptor gene from the early-diverging eukaryote, Giardia lamblia. Mol Biochem Parasitol 1999; 98:253-64. [PMID: 10080393 DOI: 10.1016/s0166-6851(98)00174-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The molecular mechanisms for targeting and translocation of secreted proteins are highly conserved from bacteria to mammalian cells, although the machinery is more complex in higher eukaryotes. To investigate protein transport in the early-diverging eukaryote, Giardia lamblia, we cloned the gene encoding the alpha subunit (SRalpha) of the signal recognition particle (SRP) receptor. SRalpha is a small GTPase that functions in SRP-ribosome targeting to the ER. Sequence and phylogenetic analyses showed that SRalpha from G. lamblia is most homologous to SRalpha proteins from higher eukaryotes, although it lacks some conserved motifs. Specifically, giardial SRalpha has an N-terminal extension that enables SRalpha of higher eukaryotes to interact with a beta subunit that anchors it in the ER membrane. While the C-terminal regions are similar, giardial SRalpha lacks a prominent 13 amino acid regulatory loop that is characteristic of higher eukaryotic versions. Thus, giardial SRalpha resembles that of higher eukaryotes, but likely diverged before the advent of the regulatory loop. The 1.8 kb SRalpha transcript has extremely short untranslated regions (UTRs): a 1-2 nt 5'- and a 9 nt 3' UTR with the polyadenylation signal overlapping with the stop codon. RT-PCR, Northern and Western analyses showed that SRalpha is present at relatively constant levels during vegetative growth and encystation, even though there are extensive changes in endomembrane structures and secretory activity during encystation. Imnuno-EM showed that SRalpha localizes to ER-like structures, strengthening the observation of a typical ER in G. lamlia. Unexpectedly, SRalpha was also found in the lysosome-like peripheral vacuoles, suggesting unusual protein traffic in this early eukaryote. Our results indicate that the eukaryotic type of cotranslational transport appeared early in the evolution of the eukaryotic cell.
Collapse
Affiliation(s)
- S G Svärd
- Department of Pathology, University of California, San Diego, 92103-8416, USA
| | | | | | | | | | | |
Collapse
|
24
|
Svärd SG, Meng TC, Hetsko ML, McCaffery JM, Gillin FD. Differentiation-associated surface antigen variation in the ancient eukaryote Giardia lamblia. Mol Microbiol 1998; 30:979-89. [PMID: 9988475 DOI: 10.1046/j.1365-2958.1998.01125.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Encystation of Giardia lamblia is required for survival outside the host, whereas excystation initiates infection. The dormant cyst was considered an adaptation to external survival and passage through the stomach. However, we found previously that trophozoites which had recovered after completion of the life cycle had switched their major variant surface protein (VSP), called TSA 417, but neither the timing nor the molecular mechanism of switching had been elucidated. Here we demonstrate that TSA 417 predominates in cysts, but is downregulated during the stage of excystation that models cyst arrival in the small intestine. Transcripts of new VSPs appear late in encystation, and during and after excystation. Trophozoites appear to prepare for switching during encystation, when the major VSP on the cell surface diminishes and is internalized in lysosome-like vacuoles. As short-range DNA rearrangements were not detected, giardial VSP switching during differentiation appears to resemble the in situ switching of surface glycoproteins in African trypanosomes. We also report a unique extended 15 nucleotide polyadenylation signal in all VSP transcripts, but not in other known giardial genes. Antigenic variation during encystation-excystation may be a novel form of immune evasion that could help explain the common occurrence of reinfection by Giardia and other parasites with similar life cycles.
Collapse
Affiliation(s)
- S G Svärd
- Department of Pathology, University of California at San Diego, 92103-8416, USA
| | | | | | | | | |
Collapse
|
25
|
Hetsko ML, McCaffery JM, Svärd SG, Meng TC, Que X, Gillin FD. Cellular and transcriptional changes during excystation of Giardia lamblia in vitro. Exp Parasitol 1998; 88:172-83. [PMID: 9562420 DOI: 10.1006/expr.1998.4246] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excystation of Giardia lamblia entails differentiation of dormant cysts into parasitic trophozoites. Despite its importance for infection, this transformation is not understood at the cellular or molecular levels. In these studies, we report that excystation entails detection of environmental stimuli across the tough extracellular cyst wall leading to highly coordinated physiological, structural, and molecular responses. We found that novel cytoplasmic rearrangements and changes in individual species of mRNA and in cytoplasmic pH occur within the cyst wall in the earliest stage of excystation, in response to conditions modeling cyst ingestion and passage into the human stomach. This suggests that cysts do not contain all the mRNA needed for excystation and emergence and supports our hypothesis that external stimuli, including hydrogen ions, may penetrate or be perceived across the cyst wall. In contrast, changes in cyst wall structure or proteins were detected only later in excystation, in the stage that models passage into the human small intestine, where trophozoites can emerge and survive. These findings show that excystation of G. lamblia is a highly complex and active process and provide important insights into its cellular and molecular components.
Collapse
Affiliation(s)
- M L Hetsko
- Department of Pathology, University of California at San Diego, 92103-8416, USA
| | | | | | | | | | | |
Collapse
|
26
|
Roger AJ, Svärd SG, Tovar J, Clark CG, Smith MW, Gillin FD, Sogin ML. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A 1998; 95:229-34. [PMID: 9419358 PMCID: PMC18184 DOI: 10.1073/pnas.95.1.229] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1997] [Indexed: 02/05/2023] Open
Abstract
Diplomonads, parabasalids, as represented by trichomonads, and microsporidia are three protist lineages lacking mitochondria that branch earlier than all other eukaryotes in small subunit rRNA and elongation factor phylogenies. The absence of mitochondria and plastids in these organisms suggested that they diverged before the origin of these organelles. However, recent discoveries of mitochondrial-like heat shock protein 70 and/or chaperonin 60 (cpn60) genes in trichomonads and microsporidia imply that the ancestors of these two groups once harbored mitochondria or their endosymbiotic progenitors. In this report, we describe a mitochondrial-like cpn60 homolog from the diplomonad parasite Giardia lamblia. Northern and Western blots reveal that the expression of cpn60 is independent of cellular stress and, except during excystation, occurs throughout the G. lamblia life cycle. Phylogenetic analyses position the G. lamblia cpn60 in a clade that includes mitochondrial and hydrogenosomal cpn60 proteins. The most parsimonious interpretation of these data is that the cpn60 gene was transferred from the endosymbiotic ancestors of mitochondria to the nucleus early in eukaryotic evolution, before the divergence of the diplomonads and trichomonads from other extant eukaryotic lineages. A more complicated explanation requires that these genes originated from distinct alpha-proteobacterial endosymbioses that formed transiently within these protist lineages.
Collapse
Affiliation(s)
- A J Roger
- The Josephine Bay-Paul Center of Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543-1015, USA
| | | | | | | | | | | | | |
Collapse
|