1
|
Golshani M, Ghasemian M, Gheibi N, Bouzari S. In silico Design, and In vitro Expression of a Fusion Protein Encoding Brucella abortus L7/L12 and SOmp2b Antigens. Adv Biomed Res 2018. [PMID: 29531919 PMCID: PMC5840964 DOI: 10.4103/abr.abr_10_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: L7/L12 is a protective antigen conserved in main Brucella pathogens and is considered as potential vaccine candidate. Outer membrane protein 2b is an immunogen conserved in all Brucella pathogens. Materials and Methods: The purpose of the current study was to in silico design a L7/L12-SOmp2b fusion protein and in vitro production of the chimera. Two possible fusion forms, L7/L12-SOmp2b and SOmp2b-L7/L12, were subjected to in silico modeling and analysis. Cloning and expression of the fusion protein has been done in the pET28a vector and Escherichia coli Bl21 (DE3), respectively. Results: Analysis and validation of the fusion proteins three-dimensional models showed that both models are in the range of native proteins. However, L7/L12-SOmp2b structure was more valid than the SOmp2b-L7/L12 model and subjected to in vitro production. The major histocompatibility complex II (MHC-II) epitope mapping using Immune Epitope DataBase indicated that the model contained good MHC-II binders. The L7/L12-Omp2b coding sequence was cloned in pET28a vector. The fusion was successfully expressed in E. coli BL21 by induction with isopropyl-β-d-thiogalactopyranoside. The rL7/L12-SOmp2b was purified with Ni-NTA column. The yield of the purified rL7/L12-SOmp2b was estimated by Bradford method to be 240 μg/ml of the culture. Western blot analysis revealed a specific reactivity with purified rL7/L12-SOmp2b produced in E. coli cells and showed the expression in the prokaryotic system. Conclusions: Our data indicates that L7/L12-SOmp2b fusion protein has a potential to induce both B- and T-cell-mediated immune responses and it can be evaluated as a new subunit vaccine candidate against brucellosis.
Collapse
Affiliation(s)
- Maryam Golshani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Melina Ghasemian
- Department of Biotechemistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Department of Biotechemistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Lerner A, Neidhöfer S, Matthias T. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists. Microorganisms 2017; 5:E66. [PMID: 29023380 PMCID: PMC5748575 DOI: 10.3390/microorganisms5040066] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
Objectives: To comprehensively review the scientific knowledge on the gut-brain axis. Methods: Various publications on the gut-brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: "gut-brain axis", "gut-microbiota-brain axis", "nutrition microbiome/microbiota", "enteric nervous system", "enteric glial cells/network", "gut-brain pathways", "microbiome immune system", "microbiome neuroendocrine system" and "intestinal/gut/enteric neuropeptides". Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium-enteric nervous, endocrine and immune systems and the brain. The basis of the gut-brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons), the neuroendocrine-hypothalamic-pituitary-adrenal (HPA) axis (represented by the gut hormones), immune routes (represented by multiple cytokines), microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and therapeutic strategies to combat these disorders. Nutritional approaches, microbiome manipulations, enteric and brain barrier reinforcement and sensing and trafficking modulation might improve physical and mental health outcomes.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 3200003, Israel.
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Sandra Neidhöfer
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Torsten Matthias
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| |
Collapse
|
3
|
Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice. Mol Immunol 2015; 65:287-92. [DOI: 10.1016/j.molimm.2015.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/20/2022]
|
4
|
Golshani M, Rafati S, Jahanian-Najafabadi A, Nejati-Moheimani M, Siadat SD, Shahcheraghi F, Bouzari S. In silico design, cloning and high level expression of L7/L12-TOmp31 fusion protein of Brucella antigens. Res Pharm Sci 2015; 10:436-45. [PMID: 26752992 PMCID: PMC4691964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Globally, Brucella melitensis and B. abortus are the most common cause of human brucellosis. The outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens which are considered as potential vaccine candidates. We aimed to design the fusion protein from Brucella L7/L12 and truncated Omp31proteins, in silico, clone the fusion in pET28a vector, and express it in Escherichia coli host. Two possible fusion forms, L7/L12-TOmp31 and TOmp31-L7/L12 were subjected to in silico modeling and analysis. Analysis and validation of the fusion proteins with three dimensional (3D) models showed that both models are in the range of native proteins. However, L7/L12-Tomp31 structure was more valid than the TOmp31-L7/L12 model and subjected to in vitro production. The major histocompatibility complex (MHC II) epitope mapping using IEDB database indicated that the model contained good MHC II binders. The L7/L12-TOmp31 coding sequence was cloned in pET28a vector. The integrity of the construct was confirmed by polymerase chain reaction, restriction enzyme mapping, and sequencing. The fusion was successfully expressed in E. coli BL21 (DE3) by induction with isopropyl β-D-thiogalactopyranoside. The rL7/L12-TOmp31 was purified with Ni-NTA column. The yield of the purified rL7/L12-TOmp31 was estimated by Bradford method and found to be 40 mg/L of the culture. Western blotting with anti-His antibody revealed a specific reactivity with purified rL7/L12-TOmp31 produced in E. coli and showed the functional expression in the prokaryotic system. In this study, a new protein vaccine candidate against brucellosis was constructed with the help of bioinformatics tools and the construct was expressed in the bacterial host. Studies evaluating the immunogenicity and cross-protection of this fusion protein against B. melitensis and B. abortus are underway.
Collapse
Affiliation(s)
- Maryam Golshani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Sima Rafati
- Department of Molecular Immunology and Vaccine Research, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | | | - Seyed Davar Siadat
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, I.R. Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, I.R. Iran,Corresponding author: S. Bouzari Tel: 0098 21 66953311-20, Fax: 0098 21 66492619
| |
Collapse
|
5
|
Jang YS, Han MJ, Lee J, Im JA, Lee YH, Papoutsakis ET, Bennett G, Lee SY. Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. Appl Microbiol Biotechnol 2014; 98:5105-15. [PMID: 24743985 DOI: 10.1007/s00253-014-5738-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 01/07/2023]
Abstract
The fermentation carried out by the solvent-producing bacterium, Clostridium acetobutylicum, is characterized by two distinct phases: acidogenic and solventogenic phases. Understanding the cellular physiological changes occurring during the phase transition in clostridial fermentation is important for the enhanced production of solvents. To identify protein changes upon entry to stationary phase where solvents are typically produced, we herein analyzed the proteomic profiles of the parental wild type C. acetobutylicum strains, ATCC 824, the non-solventogenic strain, M5 that has lost the solventogenic megaplasmid pSOL1, and the synthetic simplified alcohol forming strain, M5 (pIMP1E1AB) expressing plasmid-based CoA-transferase (CtfAB) and aldehyde/alcohol dehydrogenase (AdhE1). A total of 68 protein spots, corresponding to 56 unique proteins, were unambiguously identified as being differentially present after the phase transitions in the three C. acetobutylicum strains. In addition to changes in proteins known to be involved in solventogenesis (AdhE1 and CtfB), we identified significant alterations in enzymes involved in sugar transport and metabolism, fermentative pathway, heat shock proteins, translation, and amino acid biosynthesis upon entry into the stationary phase. Of these, four increased proteins (AdhE1, CAC0233, CtfB and phosphocarrier protein HPr) and six decreased proteins (butyrate kinase, ferredoxin:pyruvate oxidoreductase, phenylalanyl-tRNA synthetase, adenylosuccinate synthase, pyruvate kinase and valyl-tRNA synthetase) showed similar patterns in the two strains capable of butanol formation. Interestingly, significant changes of several proteins by post-translational modifications were observed in the solventogenic phase. The proteomic data from this study will improve our understanding on how cell physiology is affected through protein levels patterns in clostridia.
Collapse
Affiliation(s)
- Yu-Sin Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Vermout S, Baldo A, Tabart J, Losson B, Mignon B. Secreted dipeptidyl peptidases as potential virulence factors for Microsporum canis. ACTA ACUST UNITED AC 2009; 54:299-308. [PMID: 19049642 DOI: 10.1111/j.1574-695x.2008.00479.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dermatophytoses caused by Microsporum canis are frequently encountered in cats and dogs; they are highly contagious and readily transmissible to humans. In this study, two single genes, respectively coding for dipeptidyl peptidases IV and V (DppIV and DppV), were isolated and characterized. Both proteins share homology with serine proteases of the S9 family, some of which display properties compatible with implication in pathogenic processes. Both genes are expressed in vivo in experimentally infected guinea-pigs and in naturally infected cats, and when the fungus is grown on extracellular matrix proteins as the sole nitrogen and carbon source. DppIV and V were produced as active recombinant proteases in the yeast Pichia pastoris; the apparent molecular weight of rDppV is 83 kDa, whereas rDppIV appears as a doublet of 95 and 98 kDa. Like other members of its enzymatic subfamily, rDppIV has an unusual ability to cleave Pro-X bonds. This activity does not enhance the solubilization of keratin by fungal secreted endoproteases, and the protease probably acts solely on small soluble peptides. RDppV showed no ability to induce delayed-type hypersensitivity (DTH) skin reactions in guinea-pigs, despite the known immunogenic properties of homologous proteins.
Collapse
Affiliation(s)
- Sandy Vermout
- Department of Infectious and Parasitic Diseases, Parasitology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Hovav AH, Davidovitch L, Nussbaum G, Mullerad J, Fishman Y, Bercovier H. Mitogenicity of the recombinant mycobacterial 27-kilodalton lipoprotein is not connected to its antiprotective effect. Infect Immun 2004; 72:3383-90. [PMID: 15155644 PMCID: PMC415711 DOI: 10.1128/iai.72.6.3383-3390.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reported previously that even though immunization with the recombinant mycobacterial 27-kDa lipoprotein (r27) induced a Th1-type response in mice, the vaccinated mice became more susceptible to challenge with Mycobacterium tuberculosis. In this study we show that r27 stimulates naive splenocytes to proliferate. Acylation of r27 was crucial for this effect, since a nonacylated mutant of r27, termed r27DeltaSP, failed to stimulate splenocytes either in vitro or in vivo. Depletion experiments indicated that only B cells were proliferating in a T-cell-independent manner. We also found that r27 is recognized by TLR2, which is involved in mitogenic stimulation. Interestingly, r27 but not r27DeltaSP induced high gamma interferon levels in splenocyte supernatants, whereas no significant interleukin-2 levels were detected. Since B-cell polyclonal activation might aggravate pathogen infection, we asked whether the antiprotective effect of the r27 lipoprotein is associated with its mitogenicity. We showed that, as in the case of r27, immunization of mice with the nonmitogenic r27DeltaSP lipoprotein resulted in increased M. tuberculosis multiplication. We conclude that the antiprotective effect of the r27 lipoprotein must be linked to properties of the polypeptide portion of the lipoprotein rather than to its lipid moiety and its mitogenicity.
Collapse
Affiliation(s)
- Avi-Hai Hovav
- Department of Clinical Microbiology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Saxena S, Madan T, Muralidhar K, Sarma PU. cDNA cloning, expression and characterization of an allergenic L3 ribosomal protein of Aspergillus fumigatus. Clin Exp Immunol 2003; 134:86-91. [PMID: 12974759 PMCID: PMC1808839 DOI: 10.1046/j.1365-2249.2003.02257.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus (Afu) is an important fungal pathogen causing allergic and invasive respiratory disorders. A plethora of multi-functional allergens/antigens secreted by Afu have been implicated in pathogenesis. The present study was undertaken to identify and characterize novel Afu allergen/antigen by cDNA library approach. cDNA library of Afu was immunoscreened with pooled sera of allergic bronchopulmonary aspergillosis (ABPA) patients. The cDNA clone, TS1, reacting significantly with specific IgG antibodies, was selected. cDNA was subcloned and expressed in Escherichia coli. Sequencing of the cDNA revealed an open reading frame (ORF) of 1179 bases coding for a protein with an approximate molecular weight of 44 kDa. Immunoreactivity of the recombinant TS1 protein (rTS1) was evaluated by ELISA and Western blot analysis using pooled sera of ABPA patients. The rTS1 exhibited binding to specific IgG and IgE antibodies present in sera of ABPA patients. The deduced amino acid sequence showed homology to 60S ribosomal protein L3 (RpL3) of Aspergillus nidulans, Saccharomyces cerevisiae and Homo sapiens. The RpL3 of S. cerevesiae, tcm1, to which TS1 sequence shows significant homology (72% identity), is known to be responsible for conferring resistance against trichodermin (antibiotic, inhibiting protein synthesis). The present study has led to identification, cloning and expression of a 44-kDa novel allergen/antigen of Afu with sequence homology to L3 ribosomal protein with a probable role in resistance of Afu to antifungal drugs. Sixty-four per cent sequence identity of Afu RpL3 with human RpL3 and common regions in their predicted epitopes suggest a possibility of involvement of Afu RpL3 in autoimmune reactions due to molecular mimicry.
Collapse
Affiliation(s)
- S Saxena
- Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | |
Collapse
|
10
|
Mullerad J, Hovav AH, Fishman Y, Barletta RG, Bercovier H. Antigenicity of Mycobacterium paratuberculosis superoxide dismutase in mice. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 34:81-8. [PMID: 12208610 DOI: 10.1111/j.1574-695x.2002.tb00606.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium paratuberculosis (MPT) is the etiologic agent of paratuberculosis. The disease is prevalent in cattle worldwide, and exacts a heavy financial toll. Effective control requires the development of acellular vaccines offering a better protection than the current available vaccines without side effects and allowing the discrimination between infected and vaccinated animals. We studied the immune response of mice to the MPT superoxide dismutase (SOD) alone or adjuvanted by Ribi. We cloned, overexpressed and purified this antigen in Escherichia coli. Spleen cells from immunized mice, after exposure to recombinant MPT SOD (MPT rSOD), produced significant levels of IFNgamma, TNFalpha and IL-6. IFNgamma and TNFalpha production was increased by the addition of Ribi. In contrast, low levels of NO, IL-4 and IL-10 were secreted by spleen cells culture from immunized mice. The immunoglobulin isotype distribution analysis showed that Ribi adjuvant clearly induced a significantly higher anti-MPT rSOD antibody production of all classes tested and decreased the IgG1/IgG2a ratio thus improving the Th1 response. Delayed-type hypersensitivity responses in mice footpads were observed only in mice immunized with MPT rSOD emulsified in Ribi. Vaccination of MPT rSOD emulsified with Ribi induced both a Th2 and Th1 type of immune response with the later slightly more pronounced. The results presented here on the immunogenicity of MPT SOD suggest that this antigen should be further tested as a candidate antigen for a future acellular vaccine against paratuberculosis.
Collapse
Affiliation(s)
- Jacob Mullerad
- Department of Clinical Microbiology, The Hebrew University, Hadassah Medical School, P.O.B. 12272, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
11
|
Abstract
Previous studies led to the development of a model of contact-induced enhanced gonococcal invasion of human reproductive cells that utilizes the lutropin receptor (LHr) as both the induction signal for conversion to this enhanced-gonococcal-invasion phenotype (Inv(+) GC) and as the specific Inv(+) GC uptake mechanism. This model proposes that gonococci express a surface feature that mimics human chorionic gonadotropin (hCG), the cognate ligand for LHr, and that this structure is responsible for the specific and productive interaction of GC with LHr. In this report, we identify a 13-kDa gonococcal protein with immunological similarities to hCG. The antiserum reactivity is specific since interaction with the 13-kDa gonococcal protein can be blocked by the addition of highly purified hCG. This gonococcal "hCG-like" protein, purified from two-dimensional gels and by immunoprecipitation, was determined by N-terminal sequencing to be the ribosomal protein L12. We present evidence that gonococcal L12 is membrane associated and surface exposed in gonococci, as shown by immunoblot analysis of soluble and insoluble gonococcal protein and antibody adsorption studies with fixed GC. Using highly purified recombinant gonococcal L12, we show that preincubation of Inv(-) GC with micromolar amounts of rL12 leads to a subsequent five- to eightfold increase in invasion of the human endometrial cell line, Hec1B. In addition, nanomolar concentrations of exogenous L12 inhibits gonococcal invasion to approximately 70% of the level in controls. Thus, we propose a novel cellular location for the gonococcal ribosomal protein L12 and concomitant function in LHr-mediated gonococcal invasion of human reproductive cells.
Collapse
Affiliation(s)
- J M Spence
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
12
|
Rosenkrands I, Weldingh K, Ravn P, Brandt L, Højrup P, Rasmussen PB, Coates AR, Singh M, Mascagni P, Andersen P. Differential T-cell recognition of native and recombinant Mycobacterium tuberculosis GroES. Infect Immun 1999; 67:5552-8. [PMID: 10531199 PMCID: PMC96925 DOI: 10.1128/iai.67.11.5552-5558.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis GroES was purified from culture filtrate, and its identity was confirmed by immunoblot analysis and N-terminal sequencing. Comparing the immunological recognition of native and recombinant GroES, we found that whereas native GroES elicited a strong proliferative response and release of gamma interferon-gamma by peripheral blood mononuclear cells from healthy tuberculin reactors, the recombinant protein failed to do so. The same difference in immunological recognition was observed in a mouse model of TB infection. Both the native and recombinant preparations were recognized by mice immunized with the recombinant protein. Biochemical characterization including sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two-dimensional electrophoresis, and mass spectrometry analysis of both proteins demonstrated no differences between the native and recombinant forms of GroES except for the eight additional N-terminal amino acids derived from the fusion partner in recombinant GroES. The recombinant fusion protein, still tagged with the maltose binding protein, was recognized by T cells isolated from TB-infected mice if mixed with culture filtrate before affinity purification on an amylose column. The maltose binding protein treated in the same manner as a control preparation was not recognized. Based on the data presented, we suggest that the association of biologically active molecules from culture filtrate with the chaperone GroES may be responsible for the observed T-cell recognition of the native preparation.
Collapse
Affiliation(s)
- I Rosenkrands
- Department of TB Immunology, Statens Serum Institut, Copenhagen, Odense, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Energy, structure, conformation, and heart failure. Bull Exp Biol Med 1999. [DOI: 10.1007/bf02433812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills TA. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity. Sequence homology to two families of serine proteinases. J Biol Chem 1998; 273:29489-96. [PMID: 9792655 DOI: 10.1074/jbc.273.45.29489] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dermatophyte fungus Trichophyton exhibits unique immunologic properties by its ability to cause both immediate and delayed type hypersensitivity. An 83-kDa Trichophyton tonsurans allergen (Tri t 4) was previously shown to elicit distinct T lymphocyte cytokine profiles in vitro. The homologous protein, Tri r 4, was cloned from a Trichophyton rubrum cDNA library, and the recombinant protein was expressed in Pichia pastoris. This 726-amino acid protein contained an arrangement of catalytic triad residues characteristic of the prolyl oligopeptidase family of serine proteinases (Ser-Asp-His). In addition, a novel Trichophyton allergen, encoding 412 amino acids, was identified by its human IgE antibody-binding activity. Sequence similarity searches showed that this allergen, designated Tri r 2, contained all of the conserved residues characteristic of the class D subtilase subfamily (41-58% overall sequence identity). Forty-two percent of subjects with immediate hypersensitivity skin test reactions to a Trichophyton extract exhibited IgE antibody binding to a recombinant glutathione S-transferase fusion protein containing the carboxyl-terminal 289 amino acids of Tri r 2. Furthermore, this antigen was capable of inducing delayed type hypersensitivity skin test reactions. Our results define two distinct antigens derived from the dermatophyte Trichophyton that serve as targets for diverse immune responses in humans.
Collapse
Affiliation(s)
- J A Woodfolk
- Department of Internal Medicine, Asthma and Allergic Diseases Center, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | |
Collapse
|