1
|
Zhang S, Zhao Y, Lalsiamthara J, Peng Y, Qi L, Deng S, Wang Q. Current research progress on Prevotella intermedia and associated diseases. Crit Rev Microbiol 2024:1-18. [PMID: 39140115 DOI: 10.1080/1040841x.2024.2390594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Prevotella intermedia is a Gram-negative anaerobic bacterium that is a common pathogen of periodontitis. Recent studies have revealed that P. intermedia is closely associated with a variety of diseases involving multiple systems. Under the action of its virulence factors such as cysteine protease and adhesins, P. intermedia has the ability to bind and invade various host cells including gingival fibroblasts. It can also copolymerize a variety of pathogenic bacteria, leading to interference with the host's immune inflammatory response and causing various diseases. In this article, we review the progress of research on P. intermedia virulence factors and bacterial pathogenesis, and the correlation between P. intermedia and various diseases.
Collapse
Affiliation(s)
- Shuyang Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Jonathan Lalsiamthara
- Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yan Peng
- Key Laboratory of Green Cleaning Technology& Detergent of Zhejiang Province, Hangzhou, China
| | - Linlong Qi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ye X, Paul B, Mo J, Reynolds EC, Ghosal D, Veith PD. Ultrastructural and glycoproteomic characterization of Prevotella intermedia: Insights into O-glycosylation and outer membrane vesicles. Microbiologyopen 2024; 13:e1401. [PMID: 38409911 PMCID: PMC10897501 DOI: 10.1002/mbo3.1401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Prevotella intermedia, a Gram-negative bacterium from the Bacteroidota phylum, is associated with periodontitis. Other species within this phylum are known to possess the general O-glycosylation system. The O-glycoproteome has been characterized in several species, including Tannerella forsythia, Porphyromonas gingivalis, and Flavobacterium johnsoniae. In our study, we used electron cryotomography (cryoET) and glycoproteomics to reveal the ultrastructure of P. intermedia and characterize its O-glycoproteome. Our cryoET analysis unveiled the ultrastructural details of the cell envelope and outer membrane vesicles (OMVs) of P. intermedia. We observed an electron-dense surface layer surrounding both cells and OMVs. The OMVs were often large (>200 nm) and presented two types, with lumens being either electron-dense or translucent. LC-MS/MS analyses of P. intermedia fractions led to the identification of 1655 proteins, which included 62 predicted T9SS cargo proteins. Within the glycoproteome, we identified 443 unique O-glycosylation sites within 224 glycoproteins. Interestingly, the O-glycosylation motif exhibited a broader range than reported in other species, with O-glycosylation found at D(S/T)(A/I/L/M/T/V/S/C/G/F/N/E/Q/D/P). We identified a single O-glycan with a delta mass of 1531.48 Da. Its sequence was determined by MS2 and MS3 analyses using both collision-induced dissociation and high-energy collisional dissociation fragmentation modes. After partial deglycosylation with trifluoromethanesulfonic acid, the O-glycan sequence was confirmed to be dHex-dHex-HexNAc (HPO3 -C6 H12 O5 )-dHex-Hex-HexA-Hex(dHex). Bioinformatic analyses predicted the localization of O-glycoproteins, with 73 periplasmic proteins, 53 inner membrane proteins, 52 lipoproteins, 26 outer membrane proteins, and 14 proteins secreted by the T9SS.
Collapse
Affiliation(s)
- Xi Ye
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Bindusmita Paul
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Joyce Mo
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneVictoriaAustralia
- ARC Centre for Cryo‐electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Huang X, Xie M, Lu X, Mei F, Song W, Liu Y, Chen L. The Roles of Periodontal Bacteria in Atherosclerosis. Int J Mol Sci 2023; 24:12861. [PMID: 37629042 PMCID: PMC10454115 DOI: 10.3390/ijms241612861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory vascular disease that constitutes a major underlying cause of cardiovascular diseases (CVD) and stroke. Infection is a contributing risk factor for AS. Epidemiological evidence has implicated individuals afflicted by periodontitis displaying an increased susceptibility to AS and CVD. This review concisely outlines several prevalent periodontal pathogens identified within atherosclerotic plaques, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. We review the existing epidemiological evidence elucidating the association between these pathogens and AS-related diseases, and the diverse mechanisms for which these pathogens may engage in AS, such as endothelial barrier disruption, immune system activation, facilitation of monocyte adhesion and aggregation, and promotion of foam cell formation, all of which contribute to the progression and destabilization of atherosclerotic plaques. Notably, the intricate interplay among bacteria underscores the complex impact of periodontitis on AS. In conclusion, advancing our understanding of the relationship between periodontal pathogens and AS will undoubtedly offer invaluable insights and potential therapeutic avenues for the prevention and management of AS.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
4
|
Gerhard N, Thurnheer T, Kreutzer S, Gmür RD, Attin T, Russo G, Karygianni L. Necrotizing Gingivitis: Microbial Diversity and Quantification of Protein Secretion in Necrotizing Gingivitis. Antibiotics (Basel) 2021; 10:antibiotics10101197. [PMID: 34680779 PMCID: PMC8532655 DOI: 10.3390/antibiotics10101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Necrotizing gingivitis (NG) is a necrotizing periodontal disease that differs from chronic gingivitis (CG). To date, both the microbiological causes and the involved host cytokine response of NG still remain unclear. Here, we investigated corresponding interdental plaque and serum samples from two groups of Chinese patients with CG (n = 21) or NG (n = 21). The microbiota were studied by 16S rRNA Illumina MiSeq sequencing of the microbial metagenome and by assessing quantitatively the abundance of the phylum Bacteroidetes, the genus Prevotella and the species T. forsythia, P. endodontalis, and P. gingivalis using fluorescence in situ hybridization (FISH). With respect to the associated host response, the levels of 30 inflammatory mediators were quantified by multiplex immunoassay analysis. Differential microbial abundance analysis of the two disease groups revealed at the phylum level that Proteobacteria accounted for 67% of the differentially abundant organisms, followed by organisms of Firmicutes (21%) and Actinobacteria (9%). At the species level, significant differences in abundance were seen for 75 species of which 58 species were significantly more abundant in CG patients. Notably, the FISH analysis revealed that Bacteroidetes was the most prevalent phylum in NG. The multiplex cytokine assay showed significant quantitative differences between the disease groups for eight analytes (GM–CSF, G–CSF, IFN–α, IL–4, IL–13, TNF–α, MIG, and HGF). The G–CSF was found to be the most significantly increased inflammatory protein marker in NG. The next-generation sequencing (NGS) data supported the understanding of NG as a multi-microbial infection with distinct differences to CG in regard to the microbial composition.
Collapse
Affiliation(s)
- Nicolas Gerhard
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (N.G.); (T.T.); (R.D.G.); (T.A.)
| | - Thomas Thurnheer
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (N.G.); (T.T.); (R.D.G.); (T.A.)
| | - Susanne Kreutzer
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland; (S.K.); (G.R.)
| | - Rudolf Dominik Gmür
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (N.G.); (T.T.); (R.D.G.); (T.A.)
| | - Thomas Attin
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (N.G.); (T.T.); (R.D.G.); (T.A.)
| | - Giancarlo Russo
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, 8057 Zurich, Switzerland; (S.K.); (G.R.)
| | - Lamprini Karygianni
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (N.G.); (T.T.); (R.D.G.); (T.A.)
- Correspondence: ; Tel.: +0041-44-634-3275
| |
Collapse
|
5
|
Kuroishi T, Bando K, Tanaka Y, Shishido K, Kinbara M, Ogawa T, Muramoto K, Endo Y, Sugawara S. CXCL4 is a novel nickel-binding protein and augments nickel allergy. Clin Exp Allergy 2017; 47:1069-1078. [DOI: 10.1111/cea.12926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/17/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Affiliation(s)
- T. Kuroishi
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - K. Bando
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
- Division of Orthodontics and Dentofacial Orthopedics; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - Y. Tanaka
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
- Division of Pediatric Dentistry; Department of Oral Health and Developmental Sciences; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - K. Shishido
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
- Division of Orthodontics and Dentofacial Orthopedics; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - M. Kinbara
- Division of Orthodontics and Dentofacial Orthopedics; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - T. Ogawa
- Department of Biomolecular Sciences; Graduate School of Life Sciences; Tohoku University; Sendai Japan
| | - K. Muramoto
- Department of Biomolecular Sciences; Graduate School of Life Sciences; Tohoku University; Sendai Japan
| | - Y. Endo
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
| | - S. Sugawara
- Division of Oral Immunology; Department of Oral Biology; Tohoku University Graduate School of Dentistry; Sendai Japan
| |
Collapse
|
6
|
Aydin K, Ekinci FY, Korachi M. Expression Profiles of TGF-β and TLR Pathways in Porphyromonas gingivalis and Prevotella intermedia Challenged Osteoblasts. Jundishapur J Microbiol 2015; 8:e17920. [PMID: 26034550 PMCID: PMC4449864 DOI: 10.5812/jjm.8(4)2015.17920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. OBJECTIVES This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. MATERIALS AND METHODS Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. RESULTS Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). CONCLUSIONS P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption.
Collapse
Affiliation(s)
- Kubra Aydin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Fatma Yesim Ekinci
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - May Korachi
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
- Corresponding author: May Korachi, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey. Tel: +90-2165782653, Fax: +90-2165780829, E-mail:
| |
Collapse
|
7
|
Ruan Y, Shen L, Zou Y, Qi Z, Yin J, Jiang J, Guo L, He L, Chen Z, Tang Z, Qin S. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation. BMC Genomics 2015; 16:122. [PMID: 25765460 PMCID: PMC4349605 DOI: 10.1186/s12864-015-1272-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/22/2015] [Indexed: 01/10/2023] Open
Abstract
Background Many species of the genus Prevotella are pathogens that cause oral diseases. Prevotella intermedia is known to cause various oral disorders e.g. periodontal disease, periapical periodontitis and noma as well as colonize in the respiratory tract and be associated with cystic fibrosis and chronic bronchitis. It is of clinical significance to identify the main drive of its various adaptation and pathogenicity. In order to explore the intra-species genetic differences among strains of Prevotella intermedia of different niches, we isolated a strain Prevotella intermedia ZT from the infected root canal of a Chinese patient with periapical periodontitis and gained a draft genome sequence. We annotated the genome and compared it with the genomes of other taxa in the genus Prevotella. Results The raw data set, consisting of approximately 65X-coverage reads, was trimmed and assembled into contigs from which 2165 ORFs were predicted. The comparison of the Prevotella intermedia ZT genome sequence with the published genome sequence of Prevotella intermedia 17 and Prevotella intermedia ATCC25611 revealed that ~14% of the genes were strain-specific. The Preveotella intermedia strains share a set of conserved genes contributing to its adaptation and pathogenic and possess strain-specific genes especially those involved in adhesion and secreting bacteriocin. The Prevotella intermedia ZT shares similar gene content with other taxa of genus Prevotella. The genomes of the genus Prevotella is highly dynamic with relative conserved parts: on average, about half of the genes in one Prevotella genome were not included in another genome of the different Prevotella species. The degree of conservation varied with different pathways: the ability of amino acid biosynthesis varied greatly with species but the pathway of cell wall components biosynthesis were nearly constant. Phylogenetic tree shows that the taxa from different niches are scarcely distributed among clades. Conclusions Prevotella intermedia ZT belongs to a genus marked with highly dynamic genomes. The specific genes of Prevotella intermedia indicate that adhesion, competing with surrounding microbes and horizontal gene transfer are the main drive of the evolution of Prevotella intermedia. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1272-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Yan Zou
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Zhengnan Qi
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jun Yin
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
| | - Liang Guo
- The Fourth Hospital of Jinan City; Taishan Medical College, Jinan, 250031, China.
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Zijiang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| | - Zisheng Tang
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China. .,Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| |
Collapse
|
8
|
The elicitation step of nickel allergy is promoted in mice by microbe-related substances, including some from oral bacteria. Int Immunopharmacol 2011; 11:1916-24. [PMID: 21839857 DOI: 10.1016/j.intimp.2011.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/22/2011] [Accepted: 07/29/2011] [Indexed: 11/21/2022]
Abstract
Microbial components activate the host's innate immunity via interactions with molecules including TLRs and NODs. We previously reported that in mice (i) Escherichia coli lipopolysaccharide (LPS; TLR4 agonist) promotes Ni-allergy even in T-cell-deficient mice, (ii) E. coli LPS reduces the minimum allergy-inducing concentrations of Ni at both the sensitization and elicitation steps, and (iii) various microbe-related substances promote sensitization to Ni. Here, we examined the effects of microbe-related substances at the elicitation step. Mice (except for TLR4-mutated C3H/HeJ mice) were sensitized to Ni by intraperitoneal injection of NiCl(2) + E. coli LPS. Ten days later their ear-pinnas were challenged with 1 μM NiCl(2) with or without a test substance. Although NiCl(2) alone at this concentration does not induce Ni-allergy, its combination with the following substances induced Ni-allergy in BALB/c mice: LPS preparations from oral gram-negative bacteria (Prevotella intermedia and Porphyromonas gingivalis), a mannan preparation from a fungus (Saccharomyces cerevisiae), and synthetic NOD2 and TLR2 agonists. The effect of the mannan preparation was small in C3H/HeJ mice (sensitized with NiCl(2) + the P. intermedia preparation). The P. intermedia preparation promoted Ni-allergy in C3H/HeJ and nude mice, but not in mice deficient in either TLR2 or histidine decarboxylase. Intragingival injection of the P. intermedia preparation and later challenge with NiCl(2) alone to ear-pinnas also promoted Ni-allergy. These results indicate that (i) in Ni-allergy, a microbial milieu or innate immunity is important at the elicitation step, too, and (ii) some oral bacteria may promote Ni-allergy via TLR2-stimulant(s) production.
Collapse
|
9
|
Takahashi H, Kinbara M, Sato N, Sasaki K, Sugawara S, Endo Y. Nickel allergy-promoting effects of microbial or inflammatory substances at the sensitization step in mice. Int Immunopharmacol 2011; 11:1534-40. [PMID: 21621645 DOI: 10.1016/j.intimp.2011.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/22/2011] [Accepted: 05/12/2011] [Indexed: 11/15/2022]
Abstract
Microbial components stimulate innate immunity via Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and/or IL-1. We recently reported that in mice, Escherichia coli lipopolysaccharide (LPS, TLR4-ligand) promotes allergic responses to nickel (Ni) at both the sensitization and elicitation steps. Here, we examined in mice the effects of administering other microbial or inflammatory materials at the Ni-sensitization step. A mixture of 1mM NiCl(2) and a test solution was injected into BALB/c mice intraperitoneally (0.1 ml/10 g body weight), and 10 days later 5mM NiCl(2) was challenged intradermally into the ear pinnas of the mice (20 μl/ear). The following preparations or substances exhibited adjuvant activities: Prevotella intermedia LPS, Saccharomyces cerevisiae mannan, a synthetic muramyl dipeptide (NOD2-stimulating cell-wall component of bacteria), Pam(3)Cys-SKKKK (TLR2-stimulating synthetic peptide), poly I:C (TLR3-stimulating double-stranded RNA), concanavalin A (a typical T-cell mitogen and T-cell-mediated hepatitis-inducer), heat-killed Propionibacterium acnes (Gram-positive bacterium that causes pimples and induces macrophage-mediated experimental hepatitis), and nitrogen-containing bisphosphonates (chemicals stimulating IL-1 production). Unexpectedly, P. intermedia LPS, which displayed the most potent adjuvant activity among the tested preparations, was effective in TLR4-dysfunctional mutant mice, but not in TLR2-deficient mice, whereas the reverse was true for S. cerevisiae mannan. These results suggest that (i) for the establishment of Ni-allergy in mice, stimulation of innate immunity (including TLRs, NLRs, IL-1 production, and/or other factors) may be important at the sensitization step, and (ii) P. intermedia may produce a substance(s) that potently promotes Ni-allergy via stimulation of TLR2.
Collapse
Affiliation(s)
- Harue Takahashi
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Alauzet C, Marchandin H, Lozniewski A. New insights into Prevotella diversity and medical microbiology. Future Microbiol 2011; 5:1695-718. [PMID: 21133690 DOI: 10.2217/fmb.10.126] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In light of recent studies based on cultivation-independent methods, it appears that the diversity of Prevotella in human microbiota is greater than was previously assumed from cultivation-based studies, and that the implication of these bacteria in several human diseases was unrecognized. While some Prevotella taxa were found during opportunistic infections, changes in Prevotella abundance and diversity were discovered during dysbiosis-associated diseases. As member of the microbiota, Prevotella may also be considered as a reservoir for resistance genes. Greater knowledge on Prevotella diversity, as well as new insights into its pathogenic potential and implication in dysbiosis are expected from the use of human microbe identification microarrays, from whole-genome sequence analyse, and from the NIH Human Microbiome Project data. New approaches, including molecular-based methods, could contribute to improve the diagnosis of Prevotella infections.
Collapse
Affiliation(s)
- Corentine Alauzet
- Laboratoire de Bactériologie, EA 4369, Faculté de Médecine, Nancy Université, Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|
11
|
Guan SM, Zhang M, He JJ, Wu JZ. Mitogen-activated protein kinases and phosphatidylinositol 3-kinase are involved in Prevotella intermedia-induced proinflammatory cytokines expression in human periodontal ligament cells. Biochem Biophys Res Commun 2009; 386:471-6. [PMID: 19538937 DOI: 10.1016/j.bbrc.2009.06.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 06/10/2009] [Indexed: 11/20/2022]
Abstract
Chronic periodontitis is an inflammatory disease affecting periodontal connective tissues and alveolar bone. Proinflammatory mediators induced by periodontal pathogens play vital roles in the initiation and progression of the disease. In this study, we examined whether Prevotella intermedia induces proinflammatory cytokines expression in human periodontal ligament cells (hPDLs). The mRNA expression and protein production were determined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbant assay (ELISA) respectively. P. intermedia treatment dose- and time-dependently increased IL-6, IL-8 and M-CSF, but not IL-1beta and TNF-alpha mRNA expression and protein secretion. Preincubation of hPDLs with extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 kinase and phosphatidylinositol 3-kinase (PI3K) inhibitors PD98059, SP600125, SB203580 and LY294002 resulted in significant reduction in P. intermedia-induced IL-6, IL-8 and M-CSF expression. Blocking the synthesis of prostaglandin E(2) (PGE(2)) by indomethacin also abolished the stimulatory effects of P. intermedia on cytokines expression. Our results indicate that P. intermedia induces proinflammatory cytokines through MAPKs and PI3K signaling pathways, and PGE(2) is involved in the P. intermedia-induced proinflammatory cytokines upregulation.
Collapse
Affiliation(s)
- Su-Min Guan
- Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | |
Collapse
|
12
|
Ikeda Y, Adachi Y, Ishibashi KI, Miura N, Ohno N. Activation of Toll-Like Receptor-Mediated NF-κβ by Zymosan-Derived Water-Soluble Fraction: Possible Contribution of Endotoxin-Like Substances. Immunopharmacol Immunotoxicol 2008; 27:285-98. [PMID: 16114511 DOI: 10.1081/iph-200067943] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Zymosan is a well-known reagent for the examination of inflammatory response and is prepared from yeast, Saccharomyces cerevisiae. In the activation process, Toll-like receptor (TLR) 2 and TLR6 act as functional receptors for NF-kappaB activation. Although zymosan is primarily composed of beta-glucans, little is known about the active component of zymosan-mediated biological activities. The active moiety of zymosan was fractionated by its solubility in water, and its biological activity on macrophages and TLRs-transfectants examined. The macrophage cell line, RAW264.7, was treated with zymosan-derived preparations, and tumor necrosis factor alpha (TNF-alpha) produced in the culture supernatant was measured by ELISA. Increased TNF-alpha production was observed by stimulation with water-soluble (ZWS) or water-insoluble fraction (ZWIS). ZWS showed higher activity in TNF-alpha production. NF-kappaB activation via TLR2, TLR1/ TLR2, TLR2/TLR6, and TLR4/MD-2/CD14 also was enhanced by stimulation with ZWS and ZWIS. In particular, ZWS showed higher activity via TLR1/TLR2, TLR2/TLR6, and TLR4/MD-2/CD14 than other preparations. ZWS activity was decreased by treatment with polymyxin B, but not with lysozyme and zymolyase. Furthermore, ZWS contained significant more endotoxin than any other preparations. Therefore, we suggest that the active moiety of ZWS for the NF-kappaB activation has an endotoxin-like substance, that is abundantly observed in Gram-negative bacteria. These results imply that the inflammatory activity of zymosan is induced not only by beta-glucans, but also by other endotoxin-like water-soluble substances.
Collapse
Affiliation(s)
- Yoshihiko Ikeda
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | | | | | | | | |
Collapse
|
13
|
Nagaraja C, Pradeep AR. Hepatocyte growth factor levels in gingival crevicular fluid in health, disease, and after treatment. J Periodontol 2007; 78:742-7. [PMID: 17397324 DOI: 10.1902/jop.2007.060249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is a broad-spectrum multifunctional cytokine with mitogenic, motogenic, morphogenic, and antiapoptotic functions in various types of cells. It is secreted by mesenchymal cells, including gingival fibroblasts, and its expression is induced by inflammatory cytokines, such as interleukin-1 and tumor necrosis factor-alpha, which play a potential role in periodontal destruction. Hence, the present study was carried out to assess HGF's concentration in gingival crevicular fluid (GCF) and to determine its association with periodontal disease progression. METHODS Sixty subjects (aged 29 to 39 years) were divided into three groups based on gingival index, probing depth, clinical attachment loss, and radiographic evidence of bone loss: healthy (group I), gingivitis (group II), and chronic periodontitis (group III). The fourth group consisted of the 20 subjects in group III, from whom GCF samples were collected 6 to 8 weeks after scaling and root planing (SRP). The levels of HGF were estimated using enzyme-linked immunosorbent assay. Further, the correlation between HGF levels and clinical parameters in all groups and before and after treatment in periodontitis patients was analyzed. RESULTS The highest mean HGF concentration was observed for group III (26.28 +/- 14.77 pg/microl), and the lowest mean concentration was observed for group I (13.99 +/- 11.24 pg/microl). Following SRP, the mean HGF concentration decreased from 26.28 +/- 14.77 pg/microl to 14.35 +/- 13.96 pg/microl, which was statistically significant. CONCLUSIONS HGF concentration increased proportionally with the progression of periodontal disease, and HGF concentrations showed a positive correlation with the clinical parameters, suggesting that HGF plays a key role in periodontal disease progression. Also, following non-surgical periodontal therapy, the levels of HGF decrease significantly suggesting that HGF could be useful for monitoring the response to periodontal therapy.
Collapse
Affiliation(s)
- Chaitra Nagaraja
- Department of Periodontics, Government Dental College, Bangalore, India
| | | |
Collapse
|
14
|
Yoshida A, Deng X, Sasano T, Takada H, Sugawara S, Endo Y. Oral bacterial lipopolysaccharide acts in mice to promote sensitisation to ovalbumin and to augment anaphylaxis via platelets. Arch Oral Biol 2007; 52:990-4. [PMID: 17559797 DOI: 10.1016/j.archoralbio.2007.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/04/2007] [Accepted: 04/06/2007] [Indexed: 11/17/2022]
Abstract
Microbial infection is thought to modulate allergic disorders, and we previously demonstrated that not only mast cells (which release histamine), but also platelets are involved in the anaphylaxis induced in mice sensitised to ovalbumin (OVA). Here, we examined the effects of a lipopolysaccharide (LPS) from the oral bacterium Prevotella intermedia (Pi) on OVA-induced anaphylaxis. Upon intraperitoneal co-injection of Pi-LPS plus OVA into BALB/c mice, the Pi-LPS displayed a potent adjuvant effect comparable to that of alum (a standard adjuvant) in terms of its abilities to induce both anaphylactic shock and histamine-release following an antigen (OVA)-challenge. Moreover, an injection of Pi-LPS given to OVA+alum-sensitised mice shortly before an OVA-challenge augmented the shock-response. This LPS-pretreatment did not affect histamine-release, but did augment pulmonary platelet accumulation. Histamine was not by itself causal for shock-induction in sensitised mice. These results suggest that oral bacteria and/or their constituents (such as LPS) may help to sensitise the host to an antigen or exacerbate the host's allergic reactions ("aggravation effect"), probably by enhancing the platelet response to the antigen OVA.
Collapse
Affiliation(s)
- Atsushi Yoshida
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Nakajima Y, Furuichi Y, Biswas KK, Hashiguchi T, Kawahara KI, Yamaji K, Uchimura T, Izumi Y, Maruyama I. Endocannabinoid, anandamide in gingival tissue regulates the periodontal inflammation through NF-kappaB pathway inhibition. FEBS Lett 2006; 580:613-9. [PMID: 16406050 DOI: 10.1016/j.febslet.2005.12.079] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/16/2005] [Accepted: 12/20/2005] [Indexed: 11/28/2022]
Abstract
Anandamide (AEA) exhibits anti-inflammatory effects. However, its role in the periodontal field remains unknown. Here, we found that gingival crevicular fluid contained a detectable level of AEA. The cannabinoid receptors CB1 and CB2 were expressed by human gingival fibroblasts (HGFs), and markedly upregulated under pathological conditions. AEA significantly reduced the production of pro-inflammatory mediators (IL-6, IL-8 and MCP-1) induced by Porphyromonas gingivalis LPS in HGFs, and this effect was attenuated by AM251 and SR144528, selective antagonists of CB1 and CB2, respectively. Moreover, AEA completely blocked LPS-triggered NF-kappaB activation, implying that AEA may regulate hyperinflammatory reactions in periodontitis.
Collapse
Affiliation(s)
- Yumiko Nakajima
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ohba M, Shibazaki M, Sasano T, Inoue M, Takada H, Endo Y. Platelet responses and anaphylaxis-like shock induced in mice by intravenous injection of whole cells of oral streptococci. ACTA ACUST UNITED AC 2004; 19:26-30. [PMID: 14678471 DOI: 10.1046/j.0902-0055.2002.00107.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intravenous injection of lyophilized whole cells of various oral streptococcal strains into muramyldipeptide (MDP)-primed C3H/HeN mice induces rapid anaphylactoid shock. Here we examined the mechanism underlying this shock. In non-primed mice, Streptococcus intermedius K-213K (SiK213) and Streptococcus constellatus T21 (ScT21) produced little or no sign of shock. In MDP-primed mice, SiK213 caused lethal shock, while ScT21 only had a weak effect. SiK213 induced decreases in blood platelets and 5-hydroxytryptamine (5HT) preceding the shock, while the effects of ScT21 were weak. The SiK213-induced 5HT decrease and shock were reduced by a complement-C5 inhibitor. These results suggest that (i). streptococcal bacterial cells can induce rapid platelet responses, (ii). complement-dependent degradation of platelets may be involved in streptococcus-induced shock, (iii). the streptococcus-induced platelet degradation or degranulation may occur largely in the systemic circulation, and (iv). platelets may play a role not only in infectious diseases caused by gram-negative bacteria, but also in diseases caused by gram-positive bacteria.
Collapse
Affiliation(s)
- M Ohba
- Department of Immunology, Graduate School of Dentistry, Tohoku University, Aoba-ku Sendai, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Messner P, Schäffer C. Prokaryotic glycoproteins. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2003; 85:51-124. [PMID: 12602037 DOI: 10.1007/978-3-7091-6051-0_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Ludwig-Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Austria
| | | |
Collapse
|
18
|
Hatakeyama J, Tamai R, Sugiyama A, Akashi S, Sugawara S, Takada H. Contrasting responses of human gingival and periodontal ligament fibroblasts to bacterial cell-surface components through the CD14/Toll-like receptor system. ORAL MICROBIOLOGY AND IMMUNOLOGY 2003; 18:14-23. [PMID: 12588454 DOI: 10.1034/j.1399-302x.2003.180103.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We compared human periodontal ligament fibroblasts with human gingival fibroblasts isolated from the same donor to examine interleukin-8 (IL-8) responses of the cells to Salmonella lipopolysaccharide, a water-soluble peptidoglycan from Staphylococcus epidermidis and the synthetic muramyldipeptide, with special reference to the possible involvement of the CD14/Toll-like receptor (TLR) system of the cells in the responses. Human gingival fibroblasts expressed CD14 on their surfaces and strongly expressed CD14 mRNA, while human periodontal ligament fibroblasts showed considerably lower levels of expression in both respects. Both cells expressed mRNA of TLR-related molecules, i.e. TLR2, TLR4, MD-2 and MyD88, although human periodontal ligament fibroblasts expressed TLR2 more strongly than human gingival fibroblasts. Human gingival fibroblasts exhibited a stronger IL-8 response than human periodontal ligament fibroblasts to lipopolysaccharide, while human periodontal ligament fibroblasts exhibited a response comparable to, or slightly stronger than, that of human gingival fibroblasts to S. epidermidis peptidoglycan and muramyldipeptide. The IL-8 responses of both cells to lipopolysaccharide and S. epidermidis peptidoglycan were completely inhibited by antihuman CD14 monoclonal antibody (MAb). The responses of both cells to lipopolysaccaride were significantly inhibited by antihuman TLR4 MAb, while those to S. epidermidis peptidoglycan were inhibited by antihuman TLR2 MAb. In contrast, muramyldipeptide activated both types of cells in a TLR2- and TLR4-independent manner, although the activities of muramyldipeptide on human gingival fibroblasts, but not human periodontal ligament fibroblasts, were significantly inhibited by anti-CD14 MAb.
Collapse
Affiliation(s)
- J Hatakeyama
- Department of Microbiology and Immunology,Tohoku University School of Dentistry, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Oguri S, Motegi K, Endo Y. Augmented lipopolysaccharide-induction of the histamine-forming enzyme in streptozotocin-induced diabetic mice. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1637:83-90. [PMID: 12527411 DOI: 10.1016/s0925-4439(02)00217-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Disorders of the microcirculation and reduced resistance to infection are major complications in diabetes. Histamine enhances capillary permeability, and may also reduce cellular immunity. Here we demonstrate that streptozotocin (STZ)-induced diabetes in mice not only enhances the activity of the histamine-forming enzyme, histidine decarboxylase (HDC), but also augments the lipopolysaccharide (LPS)-induced elevation of HDC activity in various tissues, resulting in a production of histamine. The augmentation of HDC activity occurred as early as 2 days after STZ injection, but was not seen in nondiabetic mice. When given to STZ-treated mice, nicotinamide, an inhibitor of poly(ADP-ribose) synthetase, reduced both the elevation of blood glucose and the elevations of HDC activity and histamine production. These results suggest that hyperglycemia may initiate a sequence of events leading not only to an enhancement of basal HDC activity, but also to a sensitization of mice to the HDC-inducing action of LPS. We hypothesize that bacterial infections and diabetic complications may mutually exacerbate one another because both involved an induction of HDC.
Collapse
Affiliation(s)
- Senri Oguri
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, 980-8575, Sendai, Japan
| | | | | |
Collapse
|
20
|
Tamai R, Sakuta T, Matsushita K, Torii M, Takeuchi O, Akira S, Akashi S, Espevik T, Sugawara S, Takada H. Human gingival CD14(+) fibroblasts primed with gamma interferon increase production of interleukin-8 in response to lipopolysaccharide through up-regulation of membrane CD14 and MyD88 mRNA expression. Infect Immun 2002; 70:1272-8. [PMID: 11854210 PMCID: PMC127773 DOI: 10.1128/iai.70.3.1272-1278.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma interferon (IFN-gamma)-primed human gingival fibroblasts (HGF) have been shown to produce higher levels of interleukin-8 (IL-8) upon stimulation with bacterial products and inflammatory cytokines than nonprimed controls. In this study, we examined whether priming of HGF with IFN-gamma up-regulates IL-8 production by the cells in response to purified lipopolysaccharide (LPS). The priming effect of IFN-gamma was clearly observed in the high-CD14-expressing (CD14(high)) HGF but not in the low-CD14-expressing (CD14(low)) HGF. The CD14(high) HGF were most effectively primed with IFN-gamma (1,000 IU/ml) for 72 h. To elucidate the mechanism of the priming effects of IFN-gamma for the LPS response by HGF, we examined whether IFN-gamma regulated expression of CD14, Toll-like receptor 2 (TLR2), TLR4, MD-2, and MyD88, all of which are molecules suggested to be associated with LPS signaling. In CD14(high) HGF, IFN-gamma markedly up-regulated CD14 and MyD88 but not TLR4 protein and MD-2 mRNA expression, while in CD14(low) HGF, IFN-gamma slightly increased MyD88 and scarcely affected CD14, TLR4 protein, and MD-2 mRNA levels. LPS-induced IL-8 production by IFN-gamma-primed CD14(high) HGF was significantly inhibited by monoclonal antibodies (MAbs) against CD14 and TLR4, but not by an anti-TLR2 MAb. These findings suggested that IFN-gamma primed CD14(high) HGF to enhance production of IL-8 in response to LPS through augmentation of the CD14-TLR system, where the presence of membrane CD14 was indispensable for the response of HGF to LPS.
Collapse
Affiliation(s)
- Riyoko Tamai
- Department of Microbiology and Immunology, Tohoku University School of Dentistry, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sugawara S, Yang S, Iki K, Hatakeyama J, Tamai R, Takeuchi O, Akashi S, Espevik T, Akira S, Takada H. Monocytic cell activation by Nonendotoxic glycoprotein from Prevotella intermedia ATCC 25611 is mediated by toll-like receptor 2. Infect Immun 2001; 69:4951-7. [PMID: 11447173 PMCID: PMC98587 DOI: 10.1128/iai.69.8.4951-4957.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS) preparations from gram-negative black-pigmented bacteria such as Porphyromonas gingivalis and Prevotella intermedia activate cells from non-LPS-responsive C3H/HeJ mice, but it is still unclear whether this activity is due to the unique structure of LPS or to a minor component(s) responsible for the activity in the preparation. A nonendotoxic glycoprotein with bioactivity against cells from C3H/HeJ mice was purified from a hot phenol-water extract of P. intermedia ATCC 25611 and designated Prevotella glycoprotein (PGP). Treatment of human monocytic THP-1 cells with 22-oxyacalcitriol (OCT) induced maturation and marked expression of CD14 on the cells, but the cells constitutively expressed Toll-like receptor 2 (TLR2) and TLR4 on the cells irrespective of the treatment. PGP induced a high level of interleukin-8 production at doses of 100 ng/ml and higher in OCT-treated THP-1 cells compared with Salmonella LPS, and the production was significantly inhibited by anti-CD14 and anti-TLR2 but not anti-TLR4 antibodies. Consistent with this, TLR2-deficient murine macrophages did not respond to PGP. It was also shown that PGP activity on the THP-1 cells was LPS-binding protein dependent and was inhibited by a synthetic lipid A precursor IV(A). These results indicate that PGP activates monocytic cells in a CD14- and TLR2-dependent manner.
Collapse
Affiliation(s)
- S Sugawara
- Department of Microbiology and Immunology, Tohoku University School of Dentistry, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Funayama H, Mayanagi H, Takada H, Endo Y. Elevation of histidine decarboxylase activity in the mandible of mice by Prevotella intermedia lipopolysaccharide and its augmentation by an aminobisphosphonate. Arch Oral Biol 2000; 45:787-95. [PMID: 10869492 DOI: 10.1016/s0003-9969(00)00039-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Lipopolysaccharide (LPS) produced by Gram-negative bacteria is an important cause of inflammation. Aminobisphosphonates are potent inhibitors of bone resorption but have inflammatory side-effects. Here, the effects of LPS from Prevotella intermedia (a prevalent Gram-negative bacterium both in periodontitis and endodontal infections) and alendronate (an aminobisphosphonate) on the activity of the histamine-forming enzyme, histidine decarboxylase (HDC), were examined in mouse mandible. Intravenous injection of P. intermedia LPS increased HDC activity in the mandible, maximal activity being induced within 3-6 h of the injection. The elevation of HDC activity was dependent on the dose of LPS, 10 microg/kg (0.25 microg/mouse) producing a significant elevation in enzyme activity. Intraperitoneal injection of alendronate (40 micromol/kg) also produced an increase in HDC activity. Moreover, the elevation of HDC activity induced by P. intermedia LPS was markedly augmented in mice given alendronate 3 days before the LPS injection. These results (i) suggest that P. intermedia LPS may stimulate the synthesis of histamine in the mandible and that the newly formed histamine may make at least some contribution to the development of inflammation (apical periodontitis and/or osteomyelitis); (ii) should encourage the clinical testing of antihistaminergic agents against inflammation; and (iii) confirm that care needs to be taken when administering aminobisphosphonates to patients.
Collapse
Affiliation(s)
- H Funayama
- Department of Pediatric Dentistry, School of Dentistry, Tohoku University, Seiryo-machi, Aoba-ku Sendai 980, Japan
| | | | | | | |
Collapse
|
23
|
Abstract
Recent evidence suggests that certain periodontal pathogens preferentially stimulate T cells expressing specific variable regions on the beta chain (Vbeta) of the T-cell receptor, which may indicate the presence of a superantigen. Superantigens are microbial proteins that activate large numbers of CD4(+) T cells in a Vbeta-specific manner. The purpose of this study was to determine whether Prevotella intermedia, a putative periodontal pathogen, activates populations of specific Vbeta on CD4(+) T cells. Among the bacterial strains tested, P. intermedia strain 17, a clinical isolate, induced the strongest proliferative response in peripheral blood mononuclear cells. Antibodies raised against whole cells of this organism blocked the proliferative activity. P. intermedia-induced proliferation was T-cell specific and required the presence of antigen-presenting cells. Flow cytometric analysis showed that CD4(+) T-cell subsets expressing Vbeta8, Vbeta12, and Vbeta17 expanded in response to P. intermedia strain 17. The ability of P. intermedia to stimulate CD4(+)-T-cell proliferation was further supported by the production profiles of key T-cell cytokines, gamma interferon and interleukin-2. The data collectively suggest that certain strains of P. intermedia can activate Vbeta-specific T cells in a manner similar to that of other known microbial superantigens.
Collapse
Affiliation(s)
- K P Leung
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
24
|
Kato T, Honma K, Yamanaka A, Miura T, Okuda K. Heterogeneity in the immune response to serotype b LPS of Actinobacillus actinomycetemcomitans in inbred strains of mice. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2000; 28:67-70. [PMID: 10767609 DOI: 10.1111/j.1574-695x.2000.tb01458.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the heterogeneity of the humoral immune responses to whole cells and lipopolysaccharide (LPS) of Actinobacillus actinomycetemcomitans serotype b and production of cytokines in inbred strains of mice. Nine such strains were tested: A/J (H-2(a)), C57BL/6 (H-2(b)), BALB/c (H-2(d)), DBA/2 (H-2(d)), B10.BR (H-2(k)), C3H/He (H-2(k)), C3H/HeJ (H-2(k)), DBA/1 (H-2(q)) and B10.S (H-2(s)). Mice were immunized intraperitoneally with whole cells of A. actinomycetemcomitans ATCC 43718 (serotype b) in phosphate buffered saline (PBS; pH 7.2) emulsified with an equal volume of Freund's incomplete adjuvant. Serum immunoglobulin G (IgG), immunoglobulin A (IgA) and immunoglobulin M (IgM) levels against A. actinomycetemcomitans were measured by an ELISA system. ELISA analysis, using LPS fractions from serotype a, b or c strains of A. actinomycetemcomitans as the coating antigens, revealed that mice strains C3H/He, C3H/HeJ, B10.BR and B10.S had an extremely high-IgM response against serotype b LPS. High-IgM titer sera contain also elevated levels of IgA antibodies to the antigen. To compare the cytokine production among inbred mice, the amounts of interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-6 (IL-6) released from mouse splenocytes were measured using ELISA systems specific for these cytokines. A. actinomycetemcomitans serotype b LPS stimulation induced IL-6 release from murine splenocytes of all tested strains. However, IL-4 and IL-5 were detected only in high-IgM/IgA responders to A. actinomycetemcomitans serotype b LPS, not in low-IgM/IgA responders. Thus, we found a relationship between the humoral immune response to LPS of A. actinomycetemcomitans serotype b and production of type 2 cytokines by splenocytes.
Collapse
Affiliation(s)
- T Kato
- Oral Health Science Center, Department of Microbiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba, Japan
| | | | | | | | | |
Collapse
|
25
|
Takahashi N, Yamada T. Pathways for amino acid metabolism by Prevotella intermedia and Prevotella nigrescens. ORAL MICROBIOLOGY AND IMMUNOLOGY 2000; 15:96-102. [PMID: 11155172 DOI: 10.1034/j.1399-302x.2000.150205.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathways for amino acid metabolism by Prevotella intermedia and Prevotella nigrescens were investigated. Prevotella strains grew anaerobically in tryptone-based medium and their growth increased upon the addition of aspartate to the medium. Washed cells of tryptone-grown strains metabolized aspartate to succinate, acetate, fumarate, malate, formate and ammonia, while from tryptone they produced isobutyrate and isovalerate in addition to the end products from aspartate. Cell extracts obtained from the tryptone-grown cells had aspartate ammonia-lyase for the conversion of aspartate to fumarate. Methylviologen-dependent fumarate reductase was found to reduce fumarate to succinate. A series of enzymatic activities, including fumarase, NAD-dependent malate dehydrogenase, oxaloacetate decarboxylase, methylviologen-dependent pyruvate oxidoreductase, phosphotransacetylase and acetate kinase, was detected for the oxidative conversion of fumarate to acetate. Pyruvate formate-lyase and NAD-dependent formate dehydrogenase were also found for the production and consumption of formate, respectively. Methylviologen: NAD(P) oxidoreductase was found to be responsible for linkage between these reductive and oxidative pathways. Furthermore, the cell extracts had branched-chain amino acid aminotransferase and methylviologen-dependent branched-chain 2-oxoacid oxidoreductase, concomitantly with NAD-dependent glutamate dehydrogenase. Valine and leucine could be converted to isobutyryl CoA and isovaleryl CoA, respectively, through the sequential catalyses of these enzymes, and consequently to isobutyrate and isovalerate, respectively.
Collapse
Affiliation(s)
- N Takahashi
- Department of Oral Biochemistry, Tohoku University School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | | |
Collapse
|
26
|
Matsushita K, Tajima T, Tomita K, Takada H, Nagaoka S, Torii M. Inflammatory cytokine production and specific antibody responses to lipopolysaccharide from endodontopathic black-pigmented bacteria in patients with multilesional periapical periodontitis. J Endod 1999; 25:795-9. [PMID: 10726523 DOI: 10.1016/s0099-2399(99)80299-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We examined the induction of the cytokines interleukin (IL)-1 beta, IL-6, and IL-8 by lipopolysaccharides (LPSs) from several species of possible endodontopathic black-pigmented bacteria. Studies were conducted in human whole blood cultures from six patients (two from each group) with differing numbers of periapical periodontitis lesions (i.e. patients with radiographically clear periapical lesions in 10 or more teeth (high-lesion group, n = 4), in one or two teeth (low-lesion group, n = 6), and six healthy volunteers with no periapical lesions (no lesion group)). LPS from Prevotella intermedia ATCC 25611, Porphyromonas gingivalis 381, and Prophyromonas endodontalis ATCC 27067 induced a higher IL-8 response in the subjects of the high-lesion group, compared with the subjects of the other two groups. To ascertain the degree of sensitization by test bacteria, we examined the reactivities of antibodies in serum and saliva from the subjects to different bacterial species. LPS from P. gingivalis reacted strongly with sera from the high-lesion group. Thus, LPS from black-pigmented bacteria may be involved in multilesional periapical periodontitis by inducing particular cytokines and/or humoral immune responses.
Collapse
Affiliation(s)
- K Matsushita
- Department of Operative Dentistry and Endodontology, Kagoshima University Dental School, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Nemoto E, Sugawara S, Takada H, Shoji S, Horiuch H. Increase of CD26/dipeptidyl peptidase IV expression on human gingival fibroblasts upon stimulation with cytokines and bacterial components. Infect Immun 1999; 67:6225-33. [PMID: 10569731 PMCID: PMC97023 DOI: 10.1128/iai.67.12.6225-6233.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD26/dipeptidyl peptidase IV (DPPIV) is a cell surface ectoenzyme which participates in immune and inflammatory reactions. We found that CD26 was only partially expressed on human fibroblasts from periodontal tissues, whereas fibroblasts from lung and skin expressed CD26 constitutively as revealed by flow cytometry. We examined the possible upregulation of CD26 expression on human gingival fibroblasts in response to various stimulants. Interleukin-1alpha (IL-1alpha); tumor necrosis factor alpha; gamma interferon; lipopolysaccharide from Porphyromonas gingivalis, Prevotella intermedia, and Escherichia coli; and Prevotella glycoprotein augmented CD26 expression on gingival fibroblasts. Among the stimulants, IL-1alpha exhibited the most potent activity. Enzymatic activity of CD26 induced by IL-1alpha on fibroblasts was determined colorimetrically in terms of Gly-Pro hydrolysis of a synthetic chromogenic substrate, Gly-Pro p-nitroanilide. Among various inhibitors tested, diprotin A and phenylmethylsulfonyl fluoride inhibited the enzymatic activity, suggesting that the enzyme induced by IL-1alpha was DPPIV. The upregulation of CD26 mRNA expression upon stimulation with IL-1alpha was also revealed by a quantitative reverse transcription-PCR assay. In the kinetic experiment, 48 h and several days were required for maximum CD26 mRNA accumulation and CD26 molecule expression on the cell surface, respectively. The addition of cycloheximide at 2 h before IL-1alpha stimulation almost completely inhibited the accumulation of CD26 mRNA. These results suggested that induction of CD26 on human gingival fibroblasts is regulated at the transcriptional level and is also dependent on a de novo-synthesized protein factor(s).
Collapse
Affiliation(s)
- E Nemoto
- Department of Endodontics and Periodontics, Tohoku University School of Dentistry, Sendai, 980-8575, Japan.
| | | | | | | | | |
Collapse
|
28
|
Shibazaki M, Kawabata Y, Yokochi T, Nishida A, Takada H, Endo Y. Complement-dependent accumulation and degradation of platelets in the lung and liver induced by injection of lipopolysaccharides. Infect Immun 1999; 67:5186-91. [PMID: 10496894 PMCID: PMC96869 DOI: 10.1128/iai.67.10.5186-5191.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1999] [Accepted: 07/16/1999] [Indexed: 11/20/2022] Open
Abstract
We found unique behaviors among platelets within a few minutes of the intravenous injection of lipopolysaccharide (LPS) into mice. Platelets accumulated primarily in the liver at lower doses of LPS, but at higher doses they accumulated largely in the lungs. When the platelets accumulated in these organs were degraded, there was a rapid anaphylactoid shock. The platelet response depended on the strain of mouse and on the source of LPS. Of various LPSs tested, the LPS from the smooth type of Klebsiella O3 (KO3-S LPS) was the most potent at inducing the platelet response and shock. K-76 monocarboxylic acid, an inhibitor of complement C5, effectively prevented the KO3-S LPS-induced degradation (but not accumulation) of platelets and the ensuing rapid shock in BALB/c mice. Moreover, in DBA/2 mice (which are deficient in complement C5), platelets accumulated in the lungs and liver in response to KO3-S LPS but soon returned to the circulation without degradation, and there was no rapid shock. The LPS from the rough type of KO3 induced an accumulation of platelets in the liver and lungs but not a degradation of platelets. On the basis of these results and those reported by other investigators, we propose that in the platelet response to LPS, the lectin pathway to form C3 convertase from C4 and C2 is involved in the rapid accumulation of platelets in the liver and lungs and that the pathway from C5 to C9 is involved in the destruction of platelets and the consequent anaphylactoid shock.
Collapse
Affiliation(s)
- M Shibazaki
- Department of Pharmacology, School of Dentistry, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Matsushita K, Motani R, Sakuta T, Nagaoka S, Matsuyama T, Abeyama K, Maruyama I, Takada H, Torii M. Lipopolysaccharide enhances the production of vascular endothelial growth factor by human pulp cells in culture. Infect Immun 1999; 67:1633-9. [PMID: 10084996 PMCID: PMC96506 DOI: 10.1128/iai.67.4.1633-1639.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Accepted: 01/19/1999] [Indexed: 11/20/2022] Open
Abstract
We investigated whether vascular endothelial growth factor (VEGF) production by human pulp cells (HPC) is regulated by lipopolysaccharide (LPS) in relation to the pathogenesis of pulpitis. Although HPC incubated with medium alone only marginally expressed VEGF mRNA and produced a low level of VEGF as detected by enzyme-linked immunosorbent assay, the VEGF mRNA expression and VEGF production were markedly enhanced upon stimulation with LPS from Escherichia coli. Prevotella intermedia LPS, phorbol 12-myristate 13-acetate, and interleukin-6 also induced VEGF mRNA expression in HPC. A simian virus 40-infected HPC line also exhibited increased VEGF mRNA expression in response to E. coli LPS, but lung and skin fibroblasts did not. Fetal bovine serum (FBS) increased the sensitivity of HPC to LPS in a dose-dependent manner. HPC did not express membrane CD14 on their surfaces. However, the anti-CD14 monoclonal antibody MY4 inhibited VEGF induction upon stimulation with LPS in HPC cultures in the presence of 10% FBS but not in the absence of FBS. LPS augmented the VEGF production in HPC cultures in the presence of recombinant human soluble CD14 (sCD14). To clarify the mechanisms of VEGF induction by LPS, we examined the possible activation of the transcription factor AP-1 in HPC stimulated with LPS, by a gel mobility shift assay. AP-1 activation in HPC was clearly observed, whereas that in skin fibroblasts was not. The AP-1 inhibitor curcumin strongly inhibited LPS-induced VEGF production in HPC cultures. In addition, a protein synthesis inhibitor, cycloheximide, inhibited VEGF mRNA accumulation in response to LPS. These results suggest that the enhanced production of VEGF in HPC induced by LPS takes place via an sCD14-dependent pathway which requires new protein synthesis and is mediated in part through AP-1 activation.
Collapse
Affiliation(s)
- K Matsushita
- Department of Operative Dentistry and Endodontology, Kagoshima University Dental School, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|