1
|
Gallardo RA, da Silva AP. Immune Responses and B Complex Associated Resistance to Infectious Bronchitis Virus in Chickens. Avian Dis 2021; 65:612-618. [DOI: 10.1637/aviandiseases-d-21-00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Rodrigo A. Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - Ana P. da Silva
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| |
Collapse
|
2
|
Rasheed MSA, Tiwari UP, Jespersen JC, Bauer LL, Dilger RN. Effects of methylsulfonylmethane and neutralizing anti-IL-10 antibody supplementation during a mild Eimeria challenge infection in broiler chickens. Poult Sci 2020; 99:6559-6568. [PMID: 33248571 PMCID: PMC7705026 DOI: 10.1016/j.psj.2020.09.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/01/2022] Open
Abstract
A 28-day experiment was conducted in broilers to study the effects of feeding methylsulfonylmethane (MSM) and IL-10-neutralizing antibody from dried egg product (DEP) on the growth performance, immune responsivity, oxidative stress parameters, and gut health outcomes during a mild infection with mixed species of Eimeria. A total of 500 male Ross 308 chicks were allocated to five treatments: sham-inoculated (uninfected) chickens fed control diet (UCON), Eimeria-infected chickens fed control diet (ICON), and Eimeria-infected chickens fed control diet supplemented with 287 U/tonne of DEP (I-DEP), 0.4% MSM, or their combination (I-DEP-MSM), with 10 replicate cages of 10 birds per treatment. All infected groups received 1 mL of an oral inoculum containing Eimeria acervulina (10,000 oocysts), Eimeria maxima (5,000 oocysts), and Eimeria tenella (5,000 oocysts) on study days 7 and 14. Data were analyzed as a two-way ANOVA for all treatments including Eimeria-infected groups, in addition to a single degree of freedom contrast to compare uninfected and infected groups receiving the control diet. Mild Eimeria infection did not influence the growth performance in ICON compared with UCON at any time points. Overall (day 0-28) growth performance parameters were not influenced by either infection or dietary supplementation of MSM or DEP. However, birds in I-DEP-MSM showed improved ADG during study day 7 to 14 (i.e., 7 d after primary inoculation) indicating a beneficial effect immediately after Eimeria infection. Although MSM supplementation reduced thiobarbituric acid reactive substances (day 21 and 28), both MSM and DEP improved the total antioxidant capacity (day 21) in the plasma of infected birds. Histopathological outcomes were not influenced by treatments, and fecal oocyst output was higher in MSM- and DEP-supplemented groups than with ICON, indicating no beneficial effects. Similarly, expression of cecal inflammatory cytokines (IL-10, IL-1β, and interferon-γ) was not affected by MSM, DEP, or their combination. Overall, the current results suggest that both MSM and DEP supplementation may benefit birds during a mild Eimeria infection as indicated by improvements in ADG and oxidative stress outcomes.
Collapse
Affiliation(s)
- M S Abdul Rasheed
- Department of Animal Sciences, University of Illinois, Urbana, USA 61801
| | - U P Tiwari
- Department of Animal Sciences, University of Illinois, Urbana, USA 61801
| | - J C Jespersen
- Department of Animal Sciences, University of Illinois, Urbana, USA 61801
| | - L L Bauer
- Department of Animal Sciences, University of Illinois, Urbana, USA 61801
| | - R N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, USA 61801.
| |
Collapse
|
3
|
da Silva AP, Gallardo RA. The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections. Vaccines (Basel) 2020; 8:vaccines8040637. [PMID: 33147703 PMCID: PMC7711580 DOI: 10.3390/vaccines8040637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
Abstract
The chicken immune system has provided an immense contribution to basic immunology knowledge by establishing major landmarks and discoveries that defined concepts widely used today. One of many special features on chickens is the presence of a compact and simple major histocompatibility complex (MHC). Despite its simplicity, the chicken MHC maintains the essential counterpart genes of the mammalian MHC, allowing for a strong association to be detected between the MHC and resistance or susceptibility to infectious diseases. This association has been widely studied for several poultry infectious diseases, including infectious bronchitis. In addition to the MHC and its linked genes, other non-MHC loci may play a role in the mechanisms underlying such resistance. It has been reported that innate immune responses, such as macrophage function and inflammation, might be some of the factors driving resistance or susceptibility, consequently influencing the disease outcome in an individual or a population. Information about innate immunity and genetic resistance can be helpful in developing effective preventative measures for diseases such as infectious bronchitis, to which a systemic antibody response is often not associated with disease protection. In this review, we summarize the importance of the chicken MHC in poultry disease resistance, particularly to infectious bronchitis virus (IBV) infections and the role played by innate immunity and inflammation on disease outcome. We highlight how future studies focusing on the MHC and non-MHC genes can potentially bring clarity to observed resistance in some chicken B haplotype lines.
Collapse
|
4
|
Soutter F, Werling D, Tomley FM, Blake DP. Poultry Coccidiosis: Design and Interpretation of Vaccine Studies. Front Vet Sci 2020; 7:101. [PMID: 32175341 PMCID: PMC7054285 DOI: 10.3389/fvets.2020.00101] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Eimeria infection impacts upon chicken welfare and economic productivity of the poultry sector. Live coccidiosis vaccines for chickens have been available for almost 70 years, but the requirement to formulate blends of oocysts from multiple Eimeria species makes vaccine production costly and logistically demanding. A multivalent vaccine that does not require chickens for its production and can induce protection against multiple Eimeria species is highly desirable. However, despite the identification and testing of many vaccine candidate antigens, no recombinant coccidiosis vaccine has been developed commercially. Currently, assessment of vaccine efficacy against Eimeria, and the disease coccidiosis, can be done only through in vivo vaccination and challenge experiments but the design of such studies has been highly variable. Lack of a "standard" protocol for assessing vaccine efficacy makes comparative evaluations very difficult, complicating vaccine development, and validation. The formulation and schedule of vaccination, the breed of chicken and choice of husbandry system, the species, strain, magnitude, and timing of delivery of the parasite challenge, and the parameters used to assess vaccine efficacy all influence the outcomes of experimental trials. In natural Eimeria infections, the induction of strong cell mediated immune responses are central to the development of protective immunity against coccidiosis. Antibodies are generally regarded to be of lesser importance. Unfortunately, there are no specific immunological assays that can accurately predict how well a vaccine will protect against coccidiosis (i.e., no "correlates of protection"). Thus, experimental vaccine studies rely on assessing a variety of post-challenge parameters, including assessment of pathognomonic lesions, measurements of parasite replication such as oocyst output or quantification of Eimeria genomes, and/or measurements of productivity such as body weight gain and feed conversion rates. Understanding immune responses to primary and secondary infection can inform on the most appropriate immunological assays. The discovery of new antigens for different Eimeria species and the development of new methods of vaccine antigen delivery necessitates a more considered approach to assessment of novel vaccines with robust, repeatable study design. Careful consideration of performance and welfare factors that are genuinely relevant to chicken producers and vaccine manufacturers is essential.
Collapse
Affiliation(s)
| | | | | | - Damer P. Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire, United Kingdom
| |
Collapse
|
5
|
da Silva AP, Hauck R, Zhou H, Gallardo RA. Understanding Immune Resistance to Infectious Bronchitis Using Major Histocompatibility Complex Chicken Lines. Avian Dis 2018; 61:358-365. [PMID: 28956996 DOI: 10.1637/11666-050117-regr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic resistance or susceptibility to infectious diseases has been largely associated with the avian major histocompatibility complex (MHC) genes. Our goal was to determine resistance and susceptibility of MHC B haplotype in congenic and inbred chicken lines in order to establish a resistant-susceptible model. Eight congenic lines (253/B18, 254/B15, 330/B21, 312/B24, 331/B2, 335/B19, 336/B21, and 342/BO), two inbred lines (003/B17 and 077/B19), and three commercial lines (white leghorn, brown layers, and broilers) were used in two experiments. We analyzed and compared immunologic responses and the effect of challenge by measuring viral load, IgG and IgA humoral responses, histopathology and histomorphometry, clinical signs, and immune cell populations in the different MHC B haplotype lines. We found that respiratory signs, tracheal deciliation and inflammation, airsacculitis, viral shedding in tears, and local humoral responses were good parameters to determine resistance or susceptibility. Based on these results, we identified 331/B2 as the most resistant and 335/B19 as the most susceptible congenic chicken lines. These two lines will be used as an animal model in subsequent experiments to understand the mechanisms by which the immune system in chickens generates resistance to infectious bronchitis virus.
Collapse
Affiliation(s)
- A P da Silva
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| | - R Hauck
- B Department of Pathobiology and Department of Poultry Science, Auburn University, 302J Poultry Science Building, 260 Lem Morrison Drive, Auburn, AL 36849
| | - H Zhou
- C Department of Animal Sciences, College of Agriculture, University of California, Davis. One Shields Avenue, Davis, CA, 95616
| | - R A Gallardo
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| |
Collapse
|
6
|
Schares G, Herrmann D, Maksimov P, Matzkeit B, Conraths F, Moré G, Preisinger R, Weigend S. Chicken line-dependent mortality after experimental infection with three type IIxIII recombinant Toxoplasma gondii clones. Exp Parasitol 2017; 180:101-111. [DOI: 10.1016/j.exppara.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/11/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022]
|
7
|
Lee SH, Dong X, Lillehoj HS, Lamont SJ, Suo X, Kim DK, Lee KW, Hong YH. Comparing the immune responses of two genetically B-complex disparate Fayoumi chicken lines to Eimeria tenella. Br Poult Sci 2017; 57:165-71. [PMID: 26942865 DOI: 10.1080/00071668.2016.1141172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study was conducted to compare the susceptibility of congenic Fayoumi lines to Eimeria tenella infection and to assess genetic differences in Eimeria egression. Chickens were orally inoculated with 5 × 10(4) sporulated E. tenella oocysts and challenged with 5 × 10(6) oocysts on the 10th day after the primary infection. The Fayoumi M5.1 line exhibited higher levels of body weight gain, less oocyst shedding and higher percentages of B and CD4(+)/CD8(+) T cells than the M15.2 chickens. These results demonstrate that M5.1 line is more resistant to E. tenella infection than M15.2 line. Furthermore, the percentage of sporozoite egress from peripheral blood mononuclear cells (PBMCs) was higher in the M5.1 line. The results of this study suggest that enhanced resistance of Fayoumi M5.1 to E. tenella infection may involve heightened cell-mediated and adaptive immunity, resulting in reduced intracellular development of Eimeria parasites.
Collapse
Affiliation(s)
- S-H Lee
- a United States Department of Agriculture , Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center , Beltsville , MD , USA.,b National Academy of Agricultural Science , Rural Development Administration , Jeollabuk-do , Republic of Korea
| | - X Dong
- a United States Department of Agriculture , Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center , Beltsville , MD , USA.,c National Animal Protozoa Laboratory & College of Veterinary Medicine , China Agricultural University , Beijing , China
| | - H S Lillehoj
- a United States Department of Agriculture , Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center , Beltsville , MD , USA
| | - S J Lamont
- d Department of Animal Science , Iowa State University , Ames , IA , USA
| | - X Suo
- d Department of Animal Science , Iowa State University , Ames , IA , USA
| | - D K Kim
- e C&K Genomics Inc ., Seoul , Republic of Korea
| | - K-W Lee
- f Department of Animal Science and Technology , Konkuk University , Seoul , Republic of Korea
| | - Y H Hong
- g Department of Animal Science and Technology , Chung-Ang University , Anseong , Republic of Korea
| |
Collapse
|
8
|
Dalgaard TS, Skovgaard K, Norup LR, Pleidrup J, Permin A, Schou TW, Vadekær DF, Jungersen G, Juul-Madsen HR. Immune gene expression in the spleen of chickens experimentally infected with Ascaridia galli. Vet Immunol Immunopathol 2015; 164:79-86. [PMID: 25649508 DOI: 10.1016/j.vetimm.2015.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/02/2014] [Accepted: 01/06/2015] [Indexed: 01/05/2023]
Abstract
Ascaridia galli is a gastrointestinal nematode infecting chickens. Chickens kept in alternative rearing systems or at free-range experience increased risk for infection with resulting high prevalences. A. galli infection causes reduced weight gain, decreased egg production and in severe cases increased mortality. More importantly, the parasitised chickens are more susceptible to secondary infections and their ability to develop vaccine-induced protective immunity against other diseases may be compromised. Detailed information about the immune response to the natural infection may be exploited to enable future vaccine development. In the present study, expression of immune genes in the chicken spleen during an experimental infection with A. galli was investigated using the Fluidigm(®) BioMark™ microfluidic qPCR platform which combines automatic high-throughput with attractive low sample and reagent consumption. Spleenic transcription of immunological genes was compared between infected chickens and non-infected controls at week 2, 6, and 9 p.i. corresponding to different stages of parasite development/maturation. At week 2 p.i. increased expression of IL-13 was observed in infected chickens. Increased expression of MBL, CRP, IFN-α, IL-1β, IL-8, IL-12β and IL-18 followed at week 6 p.i. and at both week 6 and 9 p.i. expression of DEFβ1 was highly increased in infected chickens. In summary, apart from also earlier reported increased expression of the Th2 signature cytokine IL-13 we observed only few differentially expressed genes at week 2 p.i. which corresponds to the larvae histotrophic phase. In contrast, we observed increased expression of pro-inflammatory cytokines and acute phase proteins in infected chickens, by week 6 p.i. where the larvae re-enter the intestinal lumen. Increased expression of DEFβ1 was observed in infected chickens at week 6 p.i. but also at week 9 p.i. which corresponds to a matured stage where adult worms are present in the intestinal lumen.
Collapse
Affiliation(s)
- Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark.
| | - Kerstin Skovgaard
- National Veterinary Institute, Division of Veterinary Diagnostics and Research, Technical University of Denmark, Bülowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - Liselotte R Norup
- Department of Animal Science, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Janne Pleidrup
- Department of Animal Science, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| | - Anders Permin
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - Torben W Schou
- Department of Environment and Toxicology, DHI, Agern Allé 5, DK-2970 Hørsholm, Denmark
| | - Dorte F Vadekær
- National Veterinary Institute, Division of Veterinary Diagnostics and Research, Technical University of Denmark, Bülowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - Gregers Jungersen
- National Veterinary Institute, Division of Veterinary Diagnostics and Research, Technical University of Denmark, Bülowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - Helle R Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Alle 20, DK-8830 Tjele, Denmark
| |
Collapse
|
9
|
Annamalai T, Selvaraj R. Effects of in ovo interleukin-4-plasmid injection on anticoccidia immune response in a coccidia infection model of chickens. Poult Sci 2012; 91:1326-34. [DOI: 10.3382/ps.2011-02026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Immunogenicity of recombinant attenuated Salmonella enterica serovar Typhimurium vaccine strains carrying a gene that encodes Eimeria tenella antigen SO7. Infect Immun 2008; 76:5745-53. [PMID: 18809658 DOI: 10.1128/iai.00897-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recombinant attenuated Salmonella vaccines against avian coccidiosis were developed to deliver Eimeria species antigens to the lymphoid tissues of chickens via the type 3 secretion system (T3SS) and the type 2 secretion system (T2SS) of Salmonella. For antigen delivery via the T3SS, the Eimeria tenella gene encoding sporozoite antigen SO7 was cloned downstream of the translocation domain of the Salmonella enterica serovar Typhimurium sopE gene in the parental pYA3868 and pYA3870 vectors to generate pYA4156 and pYA4157. Newly constructed T3SS vectors were introduced into host strain chi8879 (Delta phoP233 Delta sptP1033::xylE Delta asdA16), an attenuated derivative of the highly virulent UK-1 strain. The SopE-SO7 fusion protein was secreted by the T3SS of Salmonella. The vector pYA4184 was constructed for delivery of the SO7 antigen via the T2SS. The SO7 protein was toxic to Salmonella when larger amounts were synthesized; thus, the synthesis of this protein was placed under the control of the lacI repressor gene, whose expression in turn was dependent on the amount of available arabinose in the medium. The pYA4184 vector was introduced into host strain chi9242 (Delta phoP233 Delta asdA16 Delta araBAD23 Delta relA198::araC P(BAD) lacI TT [TT is the T4ipIII transcription terminator]). In addition to SO7, for immunization and challenge studies we used the EAMZ250 antigen of Eimeria acervulina, which was previously shown to confer partial protection against E. acervulina challenge when it was delivered via the T3SS. Immunization of chickens with a combination of the SO7 and EAMZ250 antigens delivered via the T3SS induced superior protection against challenge by E. acervulina. In contrast, chickens immunized with SO7 that was delivered via the T2SS of Salmonella were better protected from challenge by E. tenella.
Collapse
|
11
|
Kim DK, Lillehoj HS, Hong YH, Park DW, Lamont SJ, Han JY, Lillehoj EP. Immune-related gene expression in two B-complex disparate genetically inbred Fayoumi chicken lines following Eimeria maxima infection. Poult Sci 2008; 87:433-43. [PMID: 18281568 DOI: 10.3382/ps.2007-00383] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the influence of genetic differences in the MHC on susceptibility to avian coccidiosis, M5.1 and M15.2 B-haplotype-disparate Fayoumi chickens were orally infected with live Eimeria maxima oocysts, and BW gain, fecal oocyst production, and expression of 14 immune-related genes were determined as parameters of protective immunity. Weight loss was reduced and fecal parasite numbers were lower in birds of the M5.1 line compared with M15.2 line birds. Intestinal intraepithelial lymphocytes from M5.1 chickens expressed greater levels of transcripts encoding interferon-gamma (IFN-gamma), interleukin-1beta (IL-1beta), IL-6, IL-8, IL-12, IL-15, IL-17A, inducible nitric oxide synthase, and lipopolysaccharide-induced tumor necrosis factor-alpha factor and lower levels of mRNA for IFN-alpha, IL-10, IL-17D, NK-lysin, and tumor necrosis factor superfamily 15 compared with the M15.2 line. In the spleen, E. maxima infection was associated with greater expression levels of IFN-gamma, IL-15, and IL-8 and lower levels of IL-6, IL-17D, and IL-12 in M5.1 vs. M15.2 birds. These results suggest that genetic determinants within the chicken MHC influence resistance to E. maxima infection by controlling the local and systemic expression of immune-related cytokine and chemokine genes.
Collapse
Affiliation(s)
- D K Kim
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, USDA, Beltsville, MD 20705, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The past 10 years of research aimed at developing subunit vaccines against a number of apicomplexans, including Eimeria, Plasmodium and Toxoplasma, have, if anything, revealed the complex nature of parasite-host interactions. The Knowledge gained from this research has shown why developing a subunit vaccine based on a single recombinant antigen from one developmental stage of the parasite was an overly optimistic approach. Many apicomplexan parasites have acquired unique strategies to evade host immunity. The variable expression of genes encoding erythrocyte membrane protein 1 of Plasmodium falciparum [1] (Berendt et al. Parasitology 1994;108:S19-S28) exemplifies one such strategy. The particular mechanism for evading immune destruction depends on a number of interrelated factors, not least of which is the parasite life-cycle and the availability of susceptible hosts. The goal of any vaccine, be it an attenuated organism or a recombinant antigen, is to break the cycle of infection. The development of a recombinant vaccine against apicomplexan parasites will depend on identifying those antigens and intracellular processes that are vital to the parasite survival and those which exist merely as a way of evading immunity. The information that follows is a review of both molecular biology/biochemistry of eimerian parasites and factors that influence host immune responses to coccidia.
Collapse
Affiliation(s)
- M C Jenkins
- Immunology and Disease Resistance Laboratory, USDA, BARC-EAST, Beltsville, MD 20705, USA
| |
Collapse
|