1
|
Zhang M, Wang Y, Shen HM, Chen SB, Wang TY, Kassegne K, Chen JH. Genetic Diversity and Natural Selection of Plasmodium vivax Merozoite Surface Protein 8 in Global Populations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105605. [PMID: 38759940 DOI: 10.1016/j.meegid.2024.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) is a promising candidate target for the development of multi-component vaccines. Therefore, determining the genetic variation pattern of Pvmsp8 is essential in providing a reference for the rational design of the P. vivax malaria vaccines. This study delves into the genetic characteristics of the Pvmsp8 gene, specifically focusing on samples from the China-Myanmar border (CMB) region, and contrasts these findings with broader global patterns. The study uncovers that Pvmsp8 exhibits a notable level of conservation across different populations, with limited polymorphisms and relatively low nucleotide diversity (0.00023-0.00120). This conservation contrasts starkly with the high polymorphisms found in other P. vivax antigens such as Pvmsp1. A total of 25 haplotypes and 14 amino acid mutation sites were identified in the global populations, and all mutation sites were confined to non-functional regions. The study also notes that most CMB Pvmsp8 haplotypes are shared among Burmese, Cambodian, Thai, and Vietnamese populations, indicating less geographical variance, but differ notably from those found in Pacific island regions or the Panama. The findings underscore the importance of considering regional genetic diversity in P. vivax when developing targeted malaria vaccines. Non departure from neutral evolution were found by Tajima's D test, however, statistically significant differences were observed between the kn/ks rates. The study's findings are crucial in understanding the evolution and population structure of the Pvmsp8 gene, particularly during regional malaria elimination efforts. The highly conserved nature of Pvmsp8, combined with the lack of mutations in its functional domain, presents it as a promising candidate for developing a broad and effective P. vivax vaccine. This research thus lays a foundation for the rational development of multivalent malaria vaccines targeting this genetically stable antigen.
Collapse
Affiliation(s)
- Man Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China
| | - Yue Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310013, People's Republic of China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China
| | - Tian-Yu Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China
| | - Kokouvi Kassegne
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology; World Health Organization (WHO) Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, People's Republic of China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310013, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China; Hainan Tropical Diseases Research Center (Hainan Sub-Center, Chinese Center for Tropical Diseases Research), Haikou 571199, China.
| |
Collapse
|
2
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
3
|
Chan Y, Martin D, Mace KE, Jean SE, Stresman G, Drakeley C, Chang MA, Lemoine JF, Udhayakumar V, Lammie PJ, Priest JW, Rogier EW. Multiplex Serology for Measurement of IgG Antibodies Against Eleven Infectious Diseases in a National Serosurvey: Haiti 2014-2015. Front Public Health 2022; 10:897013. [PMID: 35757611 PMCID: PMC9218545 DOI: 10.3389/fpubh.2022.897013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Integrated surveillance for multiple diseases can be an efficient use of resources and advantageous for national public health programs. Detection of IgG antibodies typically indicates previous exposure to a pathogen but can potentially also serve to assess active infection status. Serological multiplex bead assays have recently been developed to simultaneously evaluate exposure to multiple antigenic targets. Haiti is an island nation in the Caribbean region with multiple endemic infectious diseases, many of which have a paucity of data for population-level prevalence or exposure. Methods A nationwide serosurvey occurred in Haiti from December 2014 to February 2015. Filter paper blood samples (n = 4,438) were collected from participants in 117 locations and assayed for IgG antibodies on a multiplex bead assay containing 15 different antigens from 11 pathogens: Plasmodium falciparum, Toxoplasma gondii, lymphatic filariasis roundworms, Strongyloides stercoralis, chikungunya virus, dengue virus, Chlamydia trachomatis, Treponema pallidum, enterotoxigenic Escherichia coli, Entamoeba histolytica, and Cryptosporidium parvum. Results Different proportions of the Haiti study population were IgG seropositive to the different targets, with antigens from T. gondii, C. parvum, dengue virus, chikungunya virus, and C. trachomatis showing the highest rates of seroprevalence. Antibody responses to T. pallidum and lymphatic filariasis were the lowest, with <5% of all samples IgG seropositive to antigens from these pathogens. Clear trends of increasing seropositivity and IgG levels with age were seen for all antigens except those from chikungunya virus and E. histolytica. Parametric models were able to estimate the rate of seroconversion and IgG acquisition per year for residents of Haiti. Conclusions Multiplex serological assays can provide a wealth of information about population exposure to different infectious diseases. This current Haitian study included IgG targets for arboviral, parasitic, and bacterial infectious diseases representing multiple different modes of host transmission. Some of these infectious diseases had a paucity or complete absence of published serological studies in Haiti. Clear trends of disease burden with respect to age and location in Haiti can be used by national programs and partners for follow-up studies, resource allocation, and intervention planning.
Collapse
Affiliation(s)
- YuYen Chan
- The London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Diana Martin
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kimberly E Mace
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Samuel E Jean
- Population Services International/Organization Haïtienne de Marketing Social Pour la Santé, Port-au-Prince, Haiti
| | - Gillian Stresman
- The London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- The London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michelle A Chang
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jean F Lemoine
- Programme National de Contrôle de la Malaria/MSPP, Port-au-Prince, Haiti
| | - Venkatachalam Udhayakumar
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Patrick J Lammie
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jeffrey W Priest
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Eric William Rogier
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
4
|
Production and Immunogenicity of a Tag-Free Recombinant Chimera Based on PfMSP-1 and PfMSP-3 Using Alhydrogel and Dipeptide-Based Hydrogels. Vaccines (Basel) 2021; 9:vaccines9070782. [PMID: 34358198 PMCID: PMC8310097 DOI: 10.3390/vaccines9070782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
A fusion chimeric vaccine comprising multiple protective domains of different blood-stage Plasmodium falciparum antigens is perhaps necessary for widening the protective immune responses and reducing the morbidity caused by the disease. Here we continue to build upon the prior work of developing a recombinant fusion chimera protein, His-tagged PfMSP-Fu24, by producing it as a tag-free recombinant protein. In this study, tag-free recombinant PfMSPFu24 (rFu24) was expressed in Escherichia coli, and the soluble protein was purified using a three-step purification involving ammonium sulphate precipitation followed by 2-step ion exchange chromatography procedures and shown that it was highly immunogenic with the human-compatible adjuvant Alhydrogel. We further investigated two dipeptides, phenylalanine-α, β-dehydrophenylalanine (FΔF) and Leucine-α, β-dehydrophenylalanine (LΔF) based hydrogels as effective delivery platforms for rFu24. These dipeptides self-assembled spontaneously to form a highly stable hydrogel under physiological conditions. rFu24 was efficiently entrapped in both the F∆F and L∆F hydrogels, and the three-dimensional (3D) mesh-like structures of the hydrogels remained intact after the entrapment of the antigen. The two hydrogels significantly stimulated rFu24-specific antibody titers, and the sera from the immunized mice showed an invasion inhibitory activity comparable to that of Alhydrogel. Easily synthesized dipeptide hydrogels can be used as an effective antigen delivery platform to induce immune responses.
Collapse
|
5
|
A Chimeric Plasmodium vivax Merozoite Surface Protein Antibody Recognizes and Blocks Erythrocytic P. cynomolgi Berok Merozoites In Vitro. Infect Immun 2021; 89:IAI.00645-20. [PMID: 33199351 DOI: 10.1128/iai.00645-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/22/2023] Open
Abstract
Research on erythrocytic Plasmodium vivax merozoite antigens is critical for identifying potential vaccine candidates in reducing P. vivax disease. However, many P. vivax studies are constrained by its inability to undergo long-term culture in vitro Conserved across all Plasmodium spp., merozoite surface proteins are essential for invasion into erythrocytes and highly expressed on erythrocytic merozoites, thus making it an ideal vaccine candidate. In clinical trials, the P. vivax merozoite surface protein 1 (PvMSP1-19) vaccine candidate alone has shown to have limited immunogenicity in patients; hence, we incorporate the highly conserved and immunogenic C terminus of both P. vivax merozoite surface protein 8 (PvMSP8) and PvMSP1-19 to develop a multicomponent chimeric protein rPvMSP8+1 for immunization of mice. The resulted chimeric rPvMSP8+1 antibody was shown to recognize native protein MSP8 and MSP1-19 of mature P. vivax schizonts. In the immunized mice, an elevated antibody response was observed in the rPvMSP8+1-immunized group compared to that immunized with single-antigen components. In addition, we examined the growth inhibition of these antibodies against Plasmodium cynomolgi (Berok strain) parasites, which is phylogenetically close to P. vivax and sustains long-term culture in vitro Similarly, the chimeric anti-rPvMSP8+1 antibodies recognize P. cynomolgi MSP8 and MSP1-19 on mature schizonts and showed strong inhibition in vitro via growth inhibition assay. This study provides support for a new multiantigen-based paradigm rPvMSP8+1 to explore potential chimeric vaccine candidates against P. vivax malaria using sister species P. cynomolgi.
Collapse
|
6
|
Parzych EM, Miura K, Long CA, Burns JM. Maintaining immunogenicity of blood stage and sexual stage subunit malaria vaccines when formulated in combination. PLoS One 2020; 15:e0232355. [PMID: 32348377 PMCID: PMC7190115 DOI: 10.1371/journal.pone.0232355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/13/2020] [Indexed: 11/18/2022] Open
Abstract
Background Eradication of Plasmodium falciparum malaria will likely require a multivalent vaccine, but the development of a highly efficacious subunit-based formulation has been challenging. We previously showed that production and immunogenicity of two leading vaccine targets, PfMSP119 (blood-stage) and Pfs25 (sexual stage), could be enhanced upon genetic fusion to merozoite surface protein 8 (PfMSP8). Here, we sought to optimize a Pfs25-based formulation for use in combination with rPfMSP1/8 with the goal of maintaining the immunogenicity of each subunit. Methods Comparative mouse studies were conducted to assess the effects of adjuvant selection (Alhydrogel vs. glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE)) and antigen dose (2.5 vs. 0.5 μg) on the induction of anti-Pfs25 immune responses. The antibody response (magnitude, IgG subclass profile, and transmission-reducing activity (TRA)) and cellular responses (proliferation, cytokine production) generated in response to each formulation were assessed. Similarly, immunogenicity of a bivalent vaccine containing rPfMSP1/8 and rPfs25/8 was evaluated. Results Alum-based formulations elicited strong and comparable humoral and cellular responses regardless of antigen form (unfused rPfs25 or chimeric rPfs25/8) or dose. In contrast, GLA-SE based formulations elicited differential responses as a function of both parameters, with 2.5 μg of rPfs25/8 inducing the highest titers of functional anti-Pfs25 antibodies. Based on these data, chimeric rPfs25/8 was selected and tested in a bivalent formulation with rPfMSP1/8. Strong antibody titers against Pfs25 and PfMSP119 domains were induced with GLA-SE based formulations, with no indication of antigenic competition. Conclusions We were able to generate an immunogenic bivalent vaccine designed to target multiple parasite stages that could reduce both clinical disease and parasite transmission. The use of the same PfMSP8 carrier for two different vaccine components was effective in this bivalent formulation. As such, the incorporation of additional protective targets fused to the PfMSP8 carrier into the formulation should be feasible, further broadening the protective response.
Collapse
Affiliation(s)
- Elizabeth M. Parzych
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - James M. Burns
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
7
|
Gueye NSG, Ntoumi F, Vouvoungui C, Kobawila SC, NKombo M, Mouanga AM, Deibert J, Koukouikila-Koussounda F. Plasmodium falciparum merozoite protein-1 genetic diversity and multiplicity of infection in isolates from Congolese children consulting in a pediatric hospital in Brazzaville. Acta Trop 2018; 183:78-83. [PMID: 29626433 DOI: 10.1016/j.actatropica.2018.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/27/2022]
Abstract
As in many sub-Saharan African countries, the burden of malaria has been reduced in the Republic of Congo as a result of massive deployment of insecticide treated nets and availability of artemisinin-combinations therapies (ACTs). High to moderate genetic diversity of msp-1 gene of Plasmodium falciparum (P. falciparum) has been reported from different parts of the world but limited data are available from Central Africa including the Republic of Congo. For this reason, the aim of study was to investigate the P. falciparum genetic diversity and to determine the multiplicity of infection in P. falciparum isolates from Congolese children in order to dispose of an additional parameter to measure the impact malaria control intervention. A total of 229 blood samples were collected from September 2014 to February 2015 in children aged from one to ten years presenting a paediatric hospital Marien NGOUABI located in Northern part of Brazzaville. Inclusion criterion was fever (axillary temperature ≥ 37.5 °C) or history of fever in the preceding 48 h before inclusion in this study. Then thick and thin blood smears were done to detect malaria parasites, to determine parasite density and to identify plasmodial species. Sub-microscopic infection was detected by PCR using the P. falciparum msp-1 gene as molecular marker. The prevalence of microscopic and sub-microscopic infection in this cohort was 10% and 27.5%, respectively. The K1 allelic family was predominant (45% of isolates) whereas the RO33 and MAD20 represented 35% and 20%, respectively of isolates. In this study 48% (38/79) of isolates harbored more than one parasite clone. Overall the multiplicity of infection (MOI) was 1.7. According to type of infection, the MOI was significantly higher in children with microscopic infection (2.5 vs 1.4 for submicroscopic infection, P = .001). When considering age, hemoglobin genotype (AA or AS) and level and parasite density, no association was observed with the MOI. This study reveals that the P. falciparum genetic diversity in isolates from Congolese children is high but with low multiplicity of infection.
Collapse
|
8
|
Parzych EM, Miura K, Ramanathan A, Long CA, Burns JM. Evaluation of a Plasmodium-Specific Carrier Protein To Enhance Production of Recombinant Pfs25, a Leading Transmission-Blocking Vaccine Candidate. Infect Immun 2018; 86:e00486-17. [PMID: 28993460 PMCID: PMC5736822 DOI: 10.1128/iai.00486-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/03/2017] [Indexed: 01/25/2023] Open
Abstract
Challenges with the production and suboptimal immunogenicity of malaria vaccine candidates have slowed the development of a Plasmodium falciparum multiantigen vaccine. Attempting to resolve these issues, we focused on the use of highly immunogenic merozoite surface protein 8 (MSP8) as a vaccine carrier protein. Previously, we showed that a genetic fusion of the C-terminal 19-kDa fragment of merozoite surface protein 1 (MSP119) to P. falciparum MSP8 (PfMSP8) facilitated antigen production and folding and the induction of neutralizing antibodies to conformational B cell epitopes of MSP119 Here, using the PfMSP1/8 construct, we further optimized the recombinant PfMSP8 (rPfMSP8) carrier by the introduction of two cysteine-to-serine substitutions (CΔS) to improve the yield of the monomeric product. We then sought to test the broad applicability of this approach using the transmission-blocking vaccine candidate Pfs25. The production of rPfs25-based vaccines has presented challenges. Antibodies directed against the four highly constrained epidermal growth factor (EGF)-like domains of Pfs25 block sexual-stage development in mosquitoes. The sequence encoding mature Pfs25 was codon harmonized for expression in Escherichia coli We produced a rPfs25-PfMSP8 fusion protein [rPfs25/8(CΔS)] as well as unfused, mature rPfs25. rPfs25 was purified with a modest yield but required the incorporation of refolding protocols to obtain a proper conformation. In comparison, chimeric rPfs25/8(CΔS) was expressed and easily purified, with the Pfs25 domain bearing the proper conformation without renaturation. Both antigens were immunogenic in rabbits, inducing IgG that bound native Pfs25 and exhibited potent transmission-reducing activity. These data further demonstrate the utility of PfMSP8 as a parasite-specific carrier protein to enhance the production of complex malaria vaccine targets.
Collapse
Affiliation(s)
- Elizabeth M Parzych
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Aarti Ramanathan
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Carole A Long
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - James M Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
McCallum FJ, Persson KEM, Fowkes FJI, Reiling L, Mugyenyi CK, Richards JS, Simpson JA, Williams TN, Gilson PR, Hodder AN, Sanders PR, Anders RF, Narum DL, Chitnis C, Crabb BS, Marsh K, Beeson JG. Differing rates of antibody acquisition to merozoite antigens in malaria: implications for immunity and surveillance. J Leukoc Biol 2017; 101:913-925. [PMID: 27837017 PMCID: PMC5346181 DOI: 10.1189/jlb.5ma0716-294r] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] Open
Abstract
Antibodies play a key role in acquired human immunity to Plasmodium falciparum (Pf) malaria and target merozoites to reduce or prevent blood-stage replication and the development of disease. Merozoites present a complex array of antigens to the immune system, and currently, there is only a partial understanding of the targets of protective antibodies and how responses to different antigens are acquired and boosted. We hypothesized that there would be differences in the rate of acquisition of antibodies to different antigens and how well they are boosted by infection, which impacts the acquisition of immunity. We examined responses to a range of merozoite antigens in 2 different cohorts of children and adults with different age structures and levels of malaria exposure. Overall, antibodies were associated with age, exposure, and active infection, and the repertoire of responses increased with age and active infection. However, rates of antibody acquisition varied between antigens and different regions within an antigen following exposure to malaria, supporting our hypothesis. Antigen-specific responses could be broadly classified into early response types in which antibodies were acquired early in childhood exposure and late response types that appear to require substantially more exposure for the development of substantial levels. We identified antigen-specific responses that were effectively boosted after recent infection, whereas other responses were not. These findings advance our understanding of the acquisition of human immunity to malaria and are relevant to the development of malaria vaccines targeting merozoite antigens and the selection of antigens for use in malaria surveillance.
Collapse
Affiliation(s)
- Fiona J McCallum
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Department of Drug Evaluation, Australian Army Malaria Institute, Brisbane, Australia
| | - Kristina E M Persson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
- Departments of Epidemiology and Preventive Medicine and Infectious Diseases, Monash University, Melbourne, Australia
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Cleopatra K Mugyenyi
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Medicine, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | - Paul R Gilson
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Anthony N Hodder
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Paul R Sanders
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Robin F Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Latrobe University, Melbourne, Australia
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Brendan S Crabb
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Kevin Marsh
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia;
- Department of Microbiology, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
10
|
Magnetic Nanovectors for the Development of DNA Blood-Stage Malaria Vaccines. NANOMATERIALS 2017; 7:nano7020030. [PMID: 28336871 PMCID: PMC5333015 DOI: 10.3390/nano7020030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 01/14/2023]
Abstract
DNA vaccines offer cost, flexibility, and stability advantages, but administered alone have limited immunogenicity. Previously, we identified optimal configurations of magnetic vectors comprising superparamagnetic iron oxide nanoparticles (SPIONs), polyethylenimine (PEI), and hyaluronic acid (HA) to deliver malaria DNA encoding Plasmodium yoelii (Py) merozoite surface protein MSP119 (SPIONs/PEI/DNA + HA gene complex) to dendritic cells and transfect them with high efficiency in vitro. Herein, we evaluate their immunogenicity in vivo by administering these potential vaccine complexes into BALB/c mice. The complexes induced antibodies against PyMSP119, with higher responses induced intraperitoneally than intramuscularly, and antibody levels further enhanced by applying an external magnetic field. The predominant IgG subclasses induced were IgG2a followed by IgG1 and IgG2b. The complexes further elicited high levels of interferon gamma (IFN-γ), and moderate levels of interleukin (IL)-4 and IL-17 antigen-specific splenocytes, indicating induction of T helper 1 (Th1), Th2, and Th17 cell mediated immunity. The ability of such DNA/nanoparticle complexes to induce cytophilic antibodies together with broad spectrum cellular immunity may benefit malaria vaccines.
Collapse
|
11
|
A chimeric protein-based malaria vaccine candidate induces robust T cell responses against Plasmodium vivax MSP1 19. Sci Rep 2016; 6:34527. [PMID: 27708348 PMCID: PMC5052570 DOI: 10.1038/srep34527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023] Open
Abstract
The most widespread Plasmodium species, Plasmodium vivax, poses a significant public health threat. An effective vaccine is needed to reduce global malaria burden. Of the erythrocytic stage vaccine candidates, the 19 kDa fragment of the P. vivax Merozoite Surface Protein 1 (PvMSP119) is one of the most promising. Our group has previously defined several promiscuous T helper epitopes within the PvMSP1 protein, with features that allow them to bind multiple MHC class II alleles. We describe here a P. vivax recombinant modular chimera based on MSP1 (PvRMC-MSP1) that includes defined T cell epitopes genetically fused to PvMSP119. This vaccine candidate preserved structural elements of the native PvMSP119 and elicited cytophilic antibody responses, and CD4+ and CD8+ T cells capable of recognizing PvMSP119. Although CD8+ T cells that recognize blood stage antigens have been reported to control blood infection, CD8+ T cell responses induced by P. falciparum or P. vivax vaccine candidates based on MSP119 have not been reported. To our knowledge, this is the first time a protein based subunit vaccine has been able to induce CD8+ T cell against PvMSP119. The PvRMC-MSP1 protein was also recognized by naturally acquired antibodies from individuals living in malaria endemic areas with an antibody profile associated with protection from infection. These features make PvRMC-MSP1 a promising vaccine candidate.
Collapse
|
12
|
Chen Q, Liang W, Qian F, Qian B, Cao J, Zhang D, Xu Y, Tang L. Rice-produced MSP142ofPlasmodium falciparumelicits antibodies that inhibit parasite growth in vitro. Parasite Immunol 2016; 38:635-41. [DOI: 10.1111/pim.12352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Q. Chen
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| | - W. Liang
- State Key Laboratory of Hybrid Rice; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - F. Qian
- Department of Rheumatology and Immunology; Changzheng Hospital; Second Military Medical University; Shanghai China
| | - B. Qian
- State Key Laboratory of Hybrid Rice; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - J. Cao
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| | - D. Zhang
- State Key Laboratory of Hybrid Rice; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Y. Xu
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| | - L. Tang
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| |
Collapse
|
13
|
Dinzouna-Boutamba SD, Lee S, Son UH, Song SM, Yun HS, Joo SY, Kwak D, Rhee MH, Chung DI, Hong Y, Goo YK. Distribution of Antibodies Specific to the 19-kDa and 33-kDa Fragments of Plasmodium vivax Merozoite Surface Protein 1 in Two Pathogenic Strains Infecting Korean Vivax Malaria Patients. Osong Public Health Res Perspect 2016; 7:213-9. [PMID: 27635370 PMCID: PMC5014746 DOI: 10.1016/j.phrp.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 11/04/2022] Open
Abstract
Objectives Plasmodium vivax merozoite surface protein 1 (PvMSP1) is the most intensively studied malaria vaccine candidate. Although high antibody response-inducing two C-terminal fragments of PvMSP1 (PvMSP1-19 and PvMSP1-42) are currently being developed as candidate malaria vaccine antigens, their high genetic diversity in various isolates is a major hurdle. The sequence polymorphism of PvMSP1 has been investigated; however, the humoral immune responses induced by different portions of this protein have not been evaluated in Korea. Methods Two fragments of PvMSP1 were selected for this study: (1) PvMSP1-19, which is genetically conserved; and (2) PvMSP1-33, which corresponds to a variable portion. For the latter, two representative strains, Sal 1 and Belem, were included. Thus, three recombinant proteins, PvMSP1-19, PvMSP1-33 Sal 1, and PvMSP1-33 Belem, were produced in Escherichia coli and then tested by enzyme-linked immunosorbent assays using sera from 221 patients with vivax malaria. Results Of the 221 samples, 198, 142, and 106 samples were seropositive for PvMSP1-19, PvMSP1-33 Sal 1, and PvMSP1-33 Belem, respectively. Although 100 samples were simultaneously seropositive for antibodies specific to all the recombinant proteins, 39 and six samples were respectively seropositive for antibodies specific to MSP1-33 Sal 1 and MSP1-33 Belem. Antibodies specific to PvMSP1-19 were the most prevalent. Conclusion Monitoring seroprevalence is essential for the selection of promising vaccine candidates as most of the antigenic proteins in P. vivax are highly polymorphic.
Collapse
|
14
|
Horne-Debets JM, Karunarathne DS, Faleiro RJ, Poh CM, Renia L, Wykes MN. Mice lacking Programmed cell death-1 show a role for CD8(+) T cells in long-term immunity against blood-stage malaria. Sci Rep 2016; 6:26210. [PMID: 27217330 PMCID: PMC4877649 DOI: 10.1038/srep26210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/28/2016] [Indexed: 12/22/2022] Open
Abstract
Even after years of experiencing malaria, caused by infection with Plasmodium species, individuals still have incomplete immunity and develop low-density parasitemia on re-infection. Previous studies using the P. chabaudi (Pch) mouse model to understand the reason for chronic malaria, found that mice with a deletion of programmed cell death-1 (PD-1KO) generate sterile immunity unlike wild type (WT) mice. Here we investigated if the mechanism underlying this defect during acute immunity also impacts on long-term immunity. We infected WT and PD-1KO mice with Pch-malaria and measured protection as well as immune responses against re-infections, 15 or 20 weeks after the original infection had cleared. WT mice showed approximately 1% parasitemia compared to sterile immunity in PD-1KO mice on re-infection. An examination of the mechanisms of immunity behind this long-term protection in PD-1KO mice showed a key role for parasite-specific CD8+ T cells even when CD4+ T cells and B cells responded to re-infection. These studies indicate that long-term CD8+ T cell-meditated protection requires consideration for future malaria vaccine design, as part of a multi-cell type response.
Collapse
Affiliation(s)
- Joshua M Horne-Debets
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia.,The School of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Deshapriya S Karunarathne
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia
| | - Rebecca J Faleiro
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia.,The School of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 136648, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 136648, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Michelle N Wykes
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia
| |
Collapse
|
15
|
Fonseca JA, Cabrera-Mora M, Kashentseva EA, Villegas JP, Fernandez A, Van Pelt A, Dmitriev IP, Curiel DT, Moreno A. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine. PLoS One 2016; 11:e0154819. [PMID: 27128437 PMCID: PMC4851317 DOI: 10.1371/journal.pone.0154819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022] Open
Abstract
A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.
Collapse
Affiliation(s)
- Jairo Andres Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Elena A. Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Paul Villegas
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Alejandra Fernandez
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amelia Van Pelt
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Igor P. Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sheikh IH, Kaushal DC, Singh V, Kumar N, Chandra D, Kaushal NA. Cloning, overexpression and characterization of soluble 42kDa fragment of merozoite surface protein-1 of Plasmodium vivax. Protein Expr Purif 2014; 103:64-74. [PMID: 25195175 DOI: 10.1016/j.pep.2014.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 11/24/2022]
Abstract
Plasmodium vivax represents the second most prevalent malaria species of major public health importance and the global eradication of malaria requires the development of vaccines to prevent infection. The lack of in vitro culture and a suitable animal model for P. vivax malaria are the major problems for the delay in developing a functional vivax vaccine. A number of antigens have been identified for P. vivax as potential malaria vaccine candidates and among these 42kDa fragment of merozoite surface protein-1 (MSP-142) is one of most promising antigen of asexual blood stage. In most of the earlier studies, the MSP-142 of malaria parasites was expressed as insoluble protein in inclusion bodies and it is difficult to get purified protein in conformation form. In the present study, we have cloned, overexpressed and characterized the 42kDa fragment of P. vivax MSP-1 as soluble protein in Escherichiacoli. The 42kDa gene fragment of P. vivax MSP-1 was PCR amplified using specific primers, sequenced and subcloned into pTriEx-4 expression vector. The optimum expression of recombinant P. vivax protein was obtained in SOC growth medium by inducing with 0.2mM IPTG at 37°C for 4h. The SDS-PAGE analysis showed a fusion protein of 55kDa and about 80% was present in soluble form. The purified P. vivax MSP-142 was characterized and found to be correctly folded and in conformation form as evident by CD spectroscopy, presence of 1 free -SH group and the reactivity with reduction sensitive conformational monoclonals against P. vivax MSP-142.
Collapse
Affiliation(s)
- Inayat Hussain Sheikh
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Department of Biochemistry, Lucknow University, Lucknow, India
| | - Deep C Kaushal
- Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226010, India
| | - Vandana Singh
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Niraj Kumar
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Deepak Chandra
- Department of Biochemistry, Lucknow University, Lucknow, India
| | - Nuzhat A Kaushal
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
17
|
Gupta PK, Mukherjee P, Dhawan S, Pandey AK, Mazumdar S, Gaur D, Jain SK, Chauhan VS. Production and preclinical evaluation of Plasmodium falciparum MSP-119 and MSP-311 chimeric protein, PfMSP-Fu24. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:886-97. [PMID: 24789797 PMCID: PMC4054244 DOI: 10.1128/cvi.00179-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/22/2014] [Indexed: 11/20/2022]
Abstract
A Plasmodium falciparum chimeric protein, PfMSP-Fu24, was constructed by genetically coupling immunodominant, conserved regions of two merozoite surface proteins, the 19-kDa region C-terminal region of merozoite surface protein 1 (PfMSP-119) and an 11-kDa conserved region of merozoite surface protein 3 (PfMSP-311), to augment the immunogenicity potential of these blood-stage malaria vaccine candidates. Here we describe an improved, efficient, and scalable process to produce high-quality PfMSP-Fu24. The chimeric protein was produced in Escherichia coli SHuffle T7 Express lysY cells that express disulfide isomerase DsbC. A two-step purification process comprising metal affinity followed by cation exchange chromatography was developed, and we were able to obtain PfMSP-Fu24 with purity above 99% and with a considerable yield of 23 mg/liter. Immunogenicity of PfMSP-Fu24 formulated with several adjuvants, including Adjuplex, Alhydrogel, Adjuphos, Alhydrogel plus glucopyranosyl lipid adjuvant, aqueous (GLA-AF), Adjuphos+GLA-AF, glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE), and Freund's adjuvant, was evaluated. PfMSP-Fu24 formulated with GLA-SE and Freund's adjuvant in mice and with Alhydrogel and Freund's adjuvant in rabbits produced high titers of PfMSP-119 and PfMSP-311-specific functional antibodies. Some of the adjuvant formulations induced inhibitory antibody responses and inhibited in vitro growth of P. falciparum parasites in the presence as well as in the absence of human monocytes. These results suggest that PfMSP-Fu24 can form a constituent of a multistage malaria vaccine.
Collapse
Affiliation(s)
- Puneet K Gupta
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Paushali Mukherjee
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Shikha Dhawan
- TB Laboratories (PATH), Central TB Division, MoHFW (GoI) Nirman Bhavan, New Delhi, India
| | - Alok K Pandey
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Suman Mazumdar
- Department of Chemical & Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Deepak Gaur
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - S K Jain
- Jamia Hamdard University, Hamdard Nagar, New Delhi, India
| | - Virander S Chauhan
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
18
|
Cheong FW, Fong MY, Lau YL, Mahmud R. Immunogenicity of bacterial-expressed recombinant Plasmodium knowlesi merozoite surface protein-142 (MSP-142). Malar J 2013; 12:454. [PMID: 24354660 PMCID: PMC3878241 DOI: 10.1186/1475-2875-12-454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/17/2013] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-142. Methods A ~42 kDa recombinant P. knowlesi MSP-142 (pkMSP-142) was expressed using an Escherichia coli system. The purified pkMSP-142 was evaluated with malaria and non-malaria human patient sera (n = 189) using Western blots and ELISA. The immunogenicity of pkMSP-142 was evaluated in mouse model. Results The purified pkMSP-142 had a sensitivity of 91.0% for detection of human malaria in both assays. Specificity was 97.5 and 92.6% in Western blots and ELISA, respectively. Levels of cytokine interferon-gamma, interleukin-2, interleukin-4, and interleukin-10 significantly increased in pkMSP-142-immunized mice as compared to the negative control mice. pkMSP-142-raised antibody had high endpoint titres, and the IgG isotype distribution was IgG1 > IgG2b > IgG3 > IgG2a. Conclusions pkMSP-142 was highly immunogenic and able to detect human malaria. Hence, pkMSP-142 would be a useful candidate for malaria vaccine development and seroprevalence studies.
Collapse
Affiliation(s)
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
19
|
Alaro JR, Partridge A, Miura K, Diouf A, Lopez AM, Angov E, Long CA, Burns JM. A chimeric Plasmodium falciparum merozoite surface protein vaccine induces high titers of parasite growth inhibitory antibodies. Infect Immun 2013; 81:3843-54. [PMID: 23897613 PMCID: PMC3811772 DOI: 10.1128/iai.00522-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/23/2013] [Indexed: 01/20/2023] Open
Abstract
The C-terminal 19-kDa domain of Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is an established target of protective antibodies. However, clinical trials of PfMSP142, a leading blood-stage vaccine candidate which contains the protective epitopes of PfMSP119, revealed suboptimal immunogenicity and efficacy. Based on proof-of-concept studies in the Plasmodium yoelii murine model, we produced a chimeric vaccine antigen containing recombinant PfMSP119 (rPfMSP119) fused to the N terminus of P. falciparum merozoite surface protein 8 that lacked its low-complexity Asn/Asp-rich domain, rPfMSP8 (ΔAsn/Asp). Immunization of mice with the chimeric rPfMSP1/8 vaccine elicited strong T cell responses to conserved epitopes associated with the rPfMSP8 (ΔAsn/Asp) fusion partner. While specific for PfMSP8, this T cell response was adequate to provide help for the production of high titers of antibodies to both PfMSP119 and rPfMSP8 (ΔAsn/Asp) components. This occurred with formulations adjuvanted with either Quil A or with Montanide ISA 720 plus CpG oligodeoxynucleotide (ODN) and was observed in both inbred and outbred strains of mice. PfMSP1/8-induced antibodies were highly reactive with two major alleles of PfMSP119 (FVO and 3D7). Of particular interest, immunization with PfMSP1/8 elicited higher titers of PfMSP119-specific antibodies than a combined formulation of rPfMSP142 and rPfMSP8 (ΔAsn/Asp). As a measure of functionality, PfMSP1/8-specific rabbit IgG was shown to potently inhibit the in vitro growth of blood-stage parasites of the FVO and 3D7 strains of P. falciparum. These data support the further testing and evaluation of this chimeric PfMSP1/8 antigen as a component of a multivalent vaccine for P. falciparum malaria.
Collapse
Affiliation(s)
- James R. Alaro
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Andrea Partridge
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ababacar Diouf
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ana M. Lopez
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Evelina Angov
- U.S. Military Malaria Research Program, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Carole A. Long
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Cheong FW, Lau YL, Fong MY, Mahmud R. Evaluation of recombinant Plasmodium knowlesi merozoite surface protein-1(33) for detection of human malaria. Am J Trop Med Hyg 2013; 88:835-40. [PMID: 23509118 DOI: 10.4269/ajtmh.12-0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium knowlesi is now known as the fifth Plasmodium species that can cause human malaria. The Plasmodium merozoite surface protein (MSP) has been reported to be potential target for vaccination and diagnosis of malaria. MSP-1(33) has been shown to be immunogenic and its T cell epitopes could mediate cellular immune protection. However, limited studies have focused on P. knowlesi MSP-133. In this study, an approximately 28-kDa recombinant P. knowlesi MSP-1(33) (pkMSP-1(33)) was expressed by using an Escherichia coli system. The purified pkMSP-1(33) reacted with serum samples of patients infected with P. knowlesi (31 of 31, 100%) and non-P. knowlesi malaria (27 of 28, 96.43%) by Western blotting. The pkMSP-1(33) also reacted with P. knowlesi (25 of 31, 80.65%) and non-P. knowlesi malaria sera (20 of 28, 71.43%) in an enzyme-linked immunosorbent assay (ELISA). Most of the non-malarial infection (49 of 52 in by Western blotting and 46 of 52 in the ELISA) and healthy donor serum samples (65 of 65 by Western blotting and ELISA) did not react with recombinant pkMSP-1(33).
Collapse
Affiliation(s)
- Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
21
|
Elias SC, Collins KA, Halstead FD, Choudhary P, Bliss CM, Ewer KJ, Sheehy SH, Duncan CJA, Biswas S, Hill AVS, Draper SJ. Assessment of immune interference, antagonism, and diversion following human immunization with biallelic blood-stage malaria viral-vectored vaccines and controlled malaria infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1135-47. [PMID: 23293353 PMCID: PMC3672846 DOI: 10.4049/jimmunol.1201455] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Overcoming antigenic variation is one of the major challenges in the development of an effective vaccine against Plasmodium falciparum, a causative agent of human malaria. Inclusion of multiple Ag variants in subunit vaccine candidates is one strategy that has aimed to overcome this problem for the leading blood-stage malaria vaccine targets, that is, merozoite surface protein 1 (MSP1) and apical membrane Ag 1 (AMA1). However, previous studies, utilizing malaria Ags, have concluded that inclusion of multiple allelic variants, encoding altered peptide ligands, in such a vaccine may be detrimental to both the priming and in vivo restimulation of Ag-experienced T cells. In this study, we analyze the T cell responses to two alleles of MSP1 and AMA1 induced by vaccination of malaria-naive adult volunteers with bivalent viral-vectored vaccine candidates. We show a significant bias to the 3D7/MAD20 allele compared with the Wellcome allele for the 33 kDa region of MSP1, but not for the 19 kDa fragment or the AMA1 Ag. Although this bias could be caused by "immune interference" at priming, the data do not support a significant role for "immune antagonism" during memory T cell restimulation, despite observation of the latter at a minimal epitope level in vitro. A lack of class I HLA epitopes in the Wellcome allele that are recognized by vaccinated volunteers may in fact contribute to the observed bias. We also show that controlled infection with 3D7 strain P. falciparum parasites neither boosts existing 3D7-specific T cell responses nor appears to "immune divert" cellular responses toward the Wellcome allele.
Collapse
Affiliation(s)
- Sean C Elias
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bergmann-Leitner ES, Duncan EH, Mease RM, Angov E. Impact of pre-existing MSP1(42)-allele specific immunity on potency of an erythrocytic Plasmodium falciparum vaccine. Malar J 2012; 11:315. [PMID: 22958482 PMCID: PMC3502560 DOI: 10.1186/1475-2875-11-315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/30/2012] [Indexed: 01/03/2023] Open
Abstract
Background MSP1 is the major surface protein on merozoites and a prime candidate for a blood stage malaria vaccine. Preclinical and seroepidemiological studies have implicated antibodies to MSP1 in protection against blood stage parasitaemia and/or reduced parasite densities, respectively. Malaria endemic areas have multiple strains of Plasmodium falciparum circulating at any given time, giving rise to complex immune responses, an issue which is generally not addressed in clinical trials conducted in non-endemic areas. A lack of understanding of the effect of pre-existing immunity to heterologous parasite strains may significantly contribute to vaccine failure in the field. The purpose of this study was to model the effect of pre-existing immunity to MSP142 on the immunogenicity of blood-stage malaria vaccines based on alternative MSP1 alleles. Methods Inbred and outbred mice were immunized with various recombinant P. falciparum MSP142 proteins that represent the two major alleles of MSP142, MAD20 (3D7) and Wellcome (K1, FVO). Humoral immune responses were analysed by ELISA and LuminexTM, and functional activity of induced MSP142-specific antibodies was assessed by growth inhibition assays. T-cell responses were characterized using ex vivo ELISpot assays. Results Analysis of the immune responses induced by various immunization regimens demonstrated a strong allele-specific response at the T cell level in both inbred and outbred mice. The success of heterologous regimens depended on the degree of homology of the N-terminal p33 portion of the MSP142, likely due to the fact that most T cell epitopes reside in this part of the molecule. Analysis of humoral immune responses revealed a marked cross-reactivity between the alleles. Functional analyses showed that some of the heterologous regimens induced antibodies with improved growth inhibitory activities. Conclusion The development of a more broadly efficacious MSP1 based vaccine may be hindered by clonally imprinted p33 responses mainly restricted at the T cell level. In this study, the homology of the p33 sequence between the clonally imprinted response and the vaccine allele determines the magnitude of vaccine induced responses.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- Malaria Vaccine Branch, US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | |
Collapse
|
23
|
Qian F, Reiter K, Zhang Y, Shimp RL, Nguyen V, Aebig JA, Rausch KM, Zhu D, Lambert L, Mullen GED, Martin LB, Long CA, Miller LH, Narum DL. Immunogenicity of self-associated aggregates and chemically cross-linked conjugates of the 42 kDa Plasmodium falciparum merozoite surface protein-1. PLoS One 2012; 7:e36996. [PMID: 22675476 PMCID: PMC3366955 DOI: 10.1371/journal.pone.0036996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/11/2012] [Indexed: 12/04/2022] Open
Abstract
Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25), was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP142) was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP142 conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP142 self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP142 specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis.
Collapse
Affiliation(s)
- Feng Qian
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yanling Zhang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Richard L. Shimp
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Vu Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joan A. Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kelly M. Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lynn Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gregory E. D. Mullen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Division of Imaging Sciences, School of Medicine, King’s College London, London, United Kingdom
| | - Laura B. Martin
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Novartis Vaccines Institute for Global Health S.r.l. (NVGH), Siena, Italy
| | - Carole A. Long
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Louis H. Miller
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Evaluation of the immunogenicity and vaccine potential of recombinant Plasmodium falciparum merozoite surface protein 8. Infect Immun 2012; 80:2473-84. [PMID: 22585960 DOI: 10.1128/iai.00211-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The C-terminal 19-kDa domain of merozoite surface protein 1 (MSP1₁₉) is the target of protective antibodies but alone is poorly immunogenic. Previously, using the Plasmodium yoelii murine model, we fused P. yoelii MSP1₁₉ (PyMSP1₁₉) with full-length P. yoelii merozoite surface protein 8 (MSP8). Upon immunization, the MSP8-restricted T cell response provided help for the production of high and sustained levels of protective PyMSP1₁₉- and PyMSP8-specific antibodies. Here, we assessed the vaccine potential of MSP8 of the human malaria parasite, Plasmodium falciparum. Distinct from PyMSP8, P. falciparum MSP8 (PfMSP8) contains an N-terminal asparagine and aspartic acid (Asn/Asp)-rich domain whose function is unknown. Comparative analysis of recombinant full-length PfMSP8 and a truncated version devoid of the Asn/Asp-rich domain, PfMSP8(ΔAsn/Asp), showed that both proteins were immunogenic for T cells and B cells. All T cell epitopes utilized mapped within rPfMSP8(ΔAsn/Asp). The dominant B cell epitopes were conformational and common to both rPfMSP8 and rPfMSP8(ΔAsn/Asp). Analysis of native PfMSP8 expression revealed that PfMSP8 is present intracellularly in late schizonts and merozoites. Following invasion, PfMSP8 is found distributed on the surface of ring- and trophozoite-stage parasites. Consistent with a low and/or transient expression of PfMSP8 on the surface of merozoites, PfMSP8-specific rabbit IgG did not inhibit the in vitro growth of P. falciparum blood-stage parasites. These studies suggest that the further development of PfMSP8 as a malaria vaccine component should focus on the use of PfMSP8(ΔAsn/Asp) and its conserved, immunogenic T cell epitopes as a fusion partner for protective domains of poor immunogens, including PfMSP1₁₉.
Collapse
|
25
|
Bisseye C, Yindom LM, Simporé J, Morgan WD, Holder AA, Ismaili J. An engineered Plasmodium falciparum C-terminal 19-kilodalton merozoite surface protein 1 vaccine candidate induces high levels of interferon-gamma production associated with cellular immune responses to specific peptide sequences in Gambian adults naturally exposed to malaria. Clin Exp Immunol 2012; 166:366-73. [PMID: 22059995 DOI: 10.1111/j.1365-2249.2011.04467.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The 19-kDa C-terminal region of merozoite surface protein 1 (MSP1(19)), a major blood stage malaria vaccine candidate, is the target of cellular and humoral immune responses in humans naturally infected with Plasmodium falciparum. We have previously described engineered variants of this protein, designed to be better vaccine candidates, but the human immune response to these proteins has not been characterized fully. Here we have investigated the antigenicity of one such variant compared to wild-type MSP1(19)-derived protein and peptides. Gambian adults produced both high T helper type 1 (Th1) [interferon (IFN)-γ] and Th0/Th2 [interleukin (IL)-13 and sCD30] responses to the wild-type MSP1(19) and the modified protein as wells as to peptides derived from both forms. Response to the modified MSP1(19) (with three amino acid substitutions: Glu27Tyr, Leu31Arg and Glu43Leu) relative to the wild-type, included higher IFN-γ production. Interestingly, some peptides evoked different patterns of cytokine responses. Modified peptides induced higher IL-13 production than the wild-type, while the conserved peptides P16 and P19 induced the highest IFN-γ and IL-13 and/or sCD30 release, respectively. We identified P16 as the immunodominant peptide that was recognized by cells from 63% of the study population, and not restricted to any particular human leucocyte antigen D-related (HLA-DR) type. These findings provide new and very useful information for future vaccine development and formulation as well as potential Th1/Th2 immunmodulation using either wild-type or modified protein in combination with their peptides.
Collapse
Affiliation(s)
- C Bisseye
- Medical Research Council Laboratories, Banjul, The Gambia
| | | | | | | | | | | |
Collapse
|
26
|
Nogaro SI, Hafalla JC, Walther B, Remarque EJ, Tetteh KKA, Conway DJ, Riley EM, Walther M. The breadth, but not the magnitude, of circulating memory B cell responses to P. falciparum increases with age/exposure in an area of low transmission. PLoS One 2011; 6:e25582. [PMID: 21991321 PMCID: PMC3186790 DOI: 10.1371/journal.pone.0025582] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/06/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum remains a major cause of death in sub-Saharan Africa. Immunity against symptoms of malaria requires repeated exposure, suggesting either that the parasite is poorly immunogenic or that the development of effective immune responses to malaria may be impaired. METHODS We carried out two age-stratified cross-sectional surveys of anti-malarial humoral immune responses in a Gambian village where P. falciparum malaria transmission is low and sporadic. Circulating antibodies and memory B cells (MBC) to four malarial antigens were measured using ELISA and cultured B cell ELISpot. FINDINGS AND CONCLUSIONS The proportion of individuals with malaria-specific MBC and antibodies, and the average number of antigens recognised by each individual, increased with age but the magnitude of these responses did not. Malaria-specific antibody levels did not correlate with either the prevalence or median number of MBC, indicating that these two assays are measuring different aspects of the humoral immune response. Among those with immunological evidence of malaria exposure (defined as a positive response to at least one malarial antigen either by ELISA or ELISPOT), the median number of malaria-specific MBC was similar to median numbers of diphtheria-specific MBC, suggesting that the circulating memory cell pool for malaria antigens is of similar size to that for other antigens.
Collapse
Affiliation(s)
- Sarah I. Nogaro
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julius C. Hafalla
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brigitte Walther
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre, GJ Rijswijk, The Netherlands
| | - Kevin K. A. Tetteh
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David J. Conway
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eleanor M. Riley
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael Walther
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
- * E-mail:
| |
Collapse
|
27
|
Chelimo K, Embury PB, Odada Sumba P, Vulule J, Ofulla AV, Long C, Kazura JW, Moormann AM. Age-related differences in naturally acquired T cell memory to Plasmodium falciparum merozoite surface protein 1. PLoS One 2011; 6:e24852. [PMID: 21935482 PMCID: PMC3174209 DOI: 10.1371/journal.pone.0024852] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/19/2011] [Indexed: 12/16/2022] Open
Abstract
Naturally acquired immunity to Plasmodium falciparum malaria in malaria holoendemic areas is characterized by the gradual, age-related development of protection against high-density parasitemia and clinical malaria. Animal studies, and less commonly, observations of humans with malaria, suggest that T-cell responses are important in the development and maintenance of this immunity, which is mediated primarily by antibodies that slow repeated cycles of merozoites through erythrocytes. To advance our rather limited knowledge on human T-cell immunity to blood stage malaria infection, we evaluated CD4 and CD8 T-cell effector memory subset responses to the 42 kDa C-terminal fragment of Merozoite Surface Protein 1 (MSP142), a malaria vaccine candidate, by 49 healthy 0.5 to ≥18 year old residents of a holoendemic area in western Kenya. The proportion of individuals with peripheral blood mononuclear cell MSP142 driven IFN-γ ELISPOT responses increased from 20% (2/20) among 0.5–1 year old children to 90% (9/10) of adults ≥18 years (P = 0.01); parallel increases in the magnitude of IFN-γ responses were observed across all age groups (0.5, 1, 2, 5 and ≥18 years, P = 0.001). Less than 1% of total CD4 and CD8 T-cells from both children and adults produced IFN-γ in response to MSP142. However, adults had higher proportions of MSP142 driven IFN-γ secreting CD4 and CD8 effector memory (CD45RA− CD62L−) T-cells than children (CD4: 50.9% vs. 28.8%, P = 0.036; CD8: 52.1% vs. 18.3%, respectively P = 0.009). In contrast, MSP142 driven IFN-γ secreting naïve-like, transitional (CD45RA+ CD62L+) CD4 and CD8 cells were the predominant T-cell subset among children with significantly fewer of these cells in adults (CD4: 34.9% vs. 5.1%, P = 0.002; CD8: 47.0% vs. 20.5%, respectively, P = 0.030). These data support the concept that meaningful age-related differences exist in the quality of T-cell immunity to malaria antigens such as MSP1.
Collapse
Affiliation(s)
- Kiprotich Chelimo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Maseno University, Maseno, Kenya
| | - Paula B. Embury
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Peter Odada Sumba
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Vulule
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - James W. Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ann M. Moormann
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics and Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Zakeri S, Babaeekhou L, Mehrizi AA, Abbasi M, Djadid ND. Antibody responses and avidity of naturally acquired anti-Plasmodium vivax Duffy binding protein (PvDBP) antibodies in individuals from an area with unstable malaria transmission. Am J Trop Med Hyg 2011; 84:944-50. [PMID: 21633032 DOI: 10.4269/ajtmh.2011.11-0001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium vivax remains an important cause of morbidity outside Africa, and no effective vaccine is available against this parasite. The P. vivax Duffy binding protein (PvDBP) is essential during merozoite invasion into erythrocytes, and it is a target for protective immunity against malaria. This investigation was designed to evaluate naturally acquired antibodies to two variant forms of PvDBP-II antigen (DBP-I and -VI) in malaria individuals (N = 85; median = 22 years) who were living in hypoendemic areas in Iran. The two PvDBP-II variants were expressed in Escherichia coli, and immunoglobulin G (IgG) isotype composition and avidity of naturally acquired antibodies to these antigens were measured using enzyme-linked immunosorbent assay (ELISA). Results showed that almost 32% of the studied individuals had positive antibody responses to the two PvDBP-II variants, and the prevalence of responders did not differ significantly (P > 0.05; χ(2) test). The IgG-positive samples exhibited 37.03% and 40.8% high-avidity antibodies for PvDBP-I and PvDBP-VI variants, respectively. Furthermore, high-avidity IgG1 antibody was found in 39.1% of positive sera for each examined variant antigen. The avidity of antibodies for both PvDBP variant antigens and the prevalence of responders with high- and intermediate-avidity IgG, IgG1, and IgG3 antibodies were similar in patients (P > 0.05; χ(2) test). Moreover, the prevalence of IgG antibody responses to the two variants significantly increased with exposure and host age. To sum up, the results provided additional data in our understanding of blood-stage immunity to PvDBP, supporting the rational development of an effective blood-stage vaccine based on this antigen.
Collapse
Affiliation(s)
- Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | | | | | | | | |
Collapse
|
29
|
Salwati E, Minigo G, Woodberry T, Piera KA, de Silva HD, Kenangalem E, Tjitra E, Coppel RL, Price RN, Anstey NM, Plebanski M. Differential cellular recognition of antigens during acute Plasmodium falciparum and Plasmodium vivax malaria. J Infect Dis 2011; 203:1192-1199. [PMID: 21451007 DOI: 10.1093/infdis/jiq166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Plasmodium falciparum and Plasmodium vivax are co-endemic in the Asia-Pacific region. Their capacity to induce and sustain diverse T-cell responses underpins protective immunity. We compared T-cell responses to the largely conserved merozoite surface protein-5 (PfMSP5) during acute and convalescent falciparum and vivax malaria. METHODS Lymphoproliferation and IFN--γ secretion to PfMSP5 and purified protein derivate were quantified in adults with falciparum (n=34), and vivax malaria (n=12) or asymptomatic residents (n=10) of Papua, Indonesia. Responses were reassessed 7-28 days following treatment. RESULTS The frequency of IFN-γ responders to PfMSP5 was similar in acute falciparum (63%) or vivax (67%) malaria. However, significantly more IFN-γ-secreting cells were detectable during vivax compared with falciparum infection. Purified protein derivative responses showed a similarly enhanced pattern. While rapidly lost in vivax patients, PfMSP5-specific responses in falciparum malaria remained to day 28. By contrast, frequency and magnitude of lymphoproliferation to PfMSP5 were similar for falciparum and vivax infections. CONCLUSION Cellular PfMSP5-specific responses are most frequent during either acute falciparum or vivax malaria, indicating functional T-cell responses to conserved antigens. Both effector and central memory T-cell functions are increased. Greater IFN-γ responses in acute P. vivax, suggest enhancement of pre-existing effector T-cells during acute vivax infection.
Collapse
Affiliation(s)
- Ervi Salwati
- National Institute of Health Research and Development (NIHRD), Ministry of Health, Jakarta, Indonesia
| | - Gabriela Minigo
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Department of Immunology, Monash University, Victoria, Australia
| | - Tonia Woodberry
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Kim A Piera
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Enny Kenangalem
- Menzies-NIHRD Collaborative Research Program and District Health Authority, Timika, Papua, Indonesia
| | - Emiliana Tjitra
- National Institute of Health Research and Development (NIHRD), Ministry of Health, Jakarta, Indonesia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Victoria, Australia
| | - Ric N Price
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Centre for Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford.,Division of Medicine, Royal Darwin Hospital, Darwin, Australia
| | - Nicholas M Anstey
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Division of Medicine, Royal Darwin Hospital, Darwin, Australia
| | | |
Collapse
|
30
|
Bates JT, Graff AH, Phipps JP, Grayson JM, Mizel SB. Enhanced antigen processing of flagellin fusion proteins promotes the antigen-specific CD8+ T cell response independently of TLR5 and MyD88. THE JOURNAL OF IMMUNOLOGY 2011; 186:6255-62. [PMID: 21515787 DOI: 10.4049/jimmunol.1001855] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Flagellin is a highly effective adjuvant for CD4(+) T cell and humoral immune responses. However, there is conflicting data in the literature regarding the ability of flagellin to promote a CD8(+) T cell response. In this article, we report that immunization of wild-type, TLR5(-/-), and MyD88(-/-) adoptive transfer recipient mice revealed the ability of flagellin fusion proteins to promote OVA-specific CD8(+) T cell proliferation independent of TLR5 or MyD88 expression by the recipient animal. Wild-type and TLR5(-/-) APCs were able to stimulate high levels of OVA-specific CD8(+) T cell proliferation in vitro in response to a flagellin fusion protein containing full-length OVA or the SIINFEKL epitope and 10 flanking amino acids (OVAe), but not to OVA and flagellin added as separate proteins. This effect was independent of the conserved regions of flagellin and occurred in response to OVAe alone. Comparison of IFN-γ production by CD8(+) effector cells revealed higher levels of SIINFEKL peptide-MHC I complexes on the surface of APCs that had been pulsed with OVAe-flagellin fusion proteins than on cells pulsed with OVA. Inhibition of the proteasome significantly reduced Ag-specific proliferation in response to OVAe fusion proteins. In summary, our data are consistent with the conclusion that flagellin-OVA fusion proteins induce an epitope-specific CD8(+) T cell response by facilitating Ag processing and not through stimulatory signaling via TLR5 and MyD88. Our findings raise the possibility that flagellin might be an efficient Ag carrier for Ags that are poorly processed in their native state.
Collapse
Affiliation(s)
- John T Bates
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
31
|
Lau OS, Ng DWK, Chan WWL, Chang SP, Sun SSM. Production of the 42-kDa fragment of Plasmodium falciparum merozoite surface protein 1, a leading malaria vaccine antigen, in Arabidopsis thaliana seeds. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:994-1004. [PMID: 20444208 DOI: 10.1111/j.1467-7652.2010.00526.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Malaria is widely associated with poverty, and a low-cost vaccine against malaria is highly desirable for implementing comprehensive vaccination programmes in developing countries. Production of malaria antigens in plants is a promising approach, but its development has been hindered by poor expression of the antigens in plant cells. In the present study, we targeted plant seeds as a low-cost vaccine production platform and successfully expressed the Plasmodium falciparum 42-kDa fragment of merozoite surface protein 1 (MSP1₄₂), a leading malaria vaccine candidate, at a high level in transgenic Arabidopsis seeds. We overcame hurdles of transcript and protein instabilities of MSP1₄₂ in plants by synthesizing a plant-optimized MSP1₄₂ cDNA and either targeting the recombinant protein to protein storage vacuoles or fusing it with a stable plant storage protein. An exceptional improvement in MSP1₄₂ expression, from an undetectable level to 5% of total extractable protein, was achieved with these combined strategies. Importantly, the plant-derived MSP1₄₂ maintains its natural antigenicity and can be recognized by immune sera from malaria-infected patients. Our results provide a strong basis for the development of a plant-based, low-cost malaria vaccine.
Collapse
Affiliation(s)
- On Sun Lau
- Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | |
Collapse
|
32
|
Goodman AL, Draper SJ. Blood-stage malaria vaccines - recent progress and future challenges. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2010; 104:189-211. [PMID: 20507694 DOI: 10.1179/136485910x12647085215534] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plasmodium falciparum malaria is a major global health problem, responsible for up to 1 million deaths each year. Major efforts have been made to develop an effective vaccine against this disease, to reduce the associated morbidity and mortality. There has already been considerable progress, with the first vaccine against the pre-erythrocytic stages of P. falciparum now en route to licensure. There remains, however, a strong scientific rationale for the development of a highly effective additional vaccine component against the blood stages of the parasite, which could be deployed in conjunction with partially effective control measures against the pre-erythrocytic stages. Here, recent progress in the clinical development of blood-stage vaccines is reviewed, including methods of antigen selection, the limitations of in-vitro assays for selecting vaccines for clinical development, and the results of recently published clinical trials. This review seeks to summarize recent developments in our understanding of immunity to blood-stage parasites, as well as the relevant key advances made in vaccine technologies over the last decade. The future challenges that face this field of vaccine research are also described.
Collapse
Affiliation(s)
- A L Goodman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
33
|
New candidate vaccines against blood-stage Plasmodium falciparum malaria: prime-boost immunization regimens incorporating human and simian adenoviral vectors and poxviral vectors expressing an optimized antigen based on merozoite surface protein 1. Infect Immun 2010; 78:4601-12. [PMID: 20713623 DOI: 10.1128/iai.00315-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although merozoite surface protein 1 (MSP-1) is a leading candidate vaccine antigen for blood-stage malaria, its efficacy in clinical trials has been limited in part by antigenic polymorphism and potentially by the inability of protein-in-adjuvant vaccines to induce strong cellular immunity. Here we report the design of novel vectored Plasmodium falciparum vaccines capable of overcoming such limitations. We optimized an antigenic insert comprising the four conserved blocks of MSP-1 fused to tandemly arranged sequences that represent both allelic forms of the dimorphic 42-kDa C-terminal region. Inserts were expressed by adenoviral and poxviral vectors and employed in heterologous prime-boost regimens. Simian adenoviral vectors were used in an effort to circumvent preexisting immunity to human adenoviruses. In preclinical studies these vaccines induced potent cellular immune responses and high-titer antibodies directed against MSP-1. The antibodies induced were found to have growth-inhibitory activity against dimorphic allelic families of P. falciparum. These vectored vaccines should allow assessment in humans of the safety and efficacy of inducing strong cellular as well as cross-strain humoral immunity to P. falciparum MSP-1.
Collapse
|
34
|
Protective immune responses elicited by immunization with a chimeric blood-stage malaria vaccine persist but are not boosted by Plasmodium yoelii challenge infection. Vaccine 2010; 28:6876-84. [PMID: 20709001 DOI: 10.1016/j.vaccine.2010.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/17/2010] [Accepted: 08/02/2010] [Indexed: 11/20/2022]
Abstract
An efficacious malaria vaccine remains elusive despite concerted efforts. Using the Plasmodium yoelii murine model, we previously reported that immunization with the C-terminal 19 kDa domain of merozoite surface protein 1 (MSP1(19)) fused to full-length MSP8 protected against lethal P. yoelii 17XL, well beyond that achieved by single or combined immunizations with the component antigens. Here, we continue the evaluation of the chimeric PyMSP1/8 vaccine. We show that immunization with rPyMSP1/8 vaccine elicited an MSP8-restricted T cell response that was sufficient to provide help for both PyMSP1(19) and PyMSP8-specific B cells to produce high and sustained levels of protective antibodies. The enhanced efficacy of immunization with rPyMSP1/8, in comparison to a combined formulation of rPyMSP1(42) and rPyMSP8, was not due to improved conformation of protective B cell epitopes in the chimeric molecule. Unexpectedly, rPyMSP1/8 vaccine-induced antibody responses were not boosted by exposure to P. yoelii 17XL infected RBCs. However, rPyMSP1/8 immunized and infected mice mounted robust responses to a diverse set of blood-stage antigens. The data support the further development of an MSP1/8 chimeric vaccine but also suggest that vaccines that prime for responses to a diverse set of parasite proteins will be required to maximize vaccine efficacy.
Collapse
|
35
|
Lalitha PV, Biswas S, Pillai CR, Seth RK, Saxena RK. Expression, purification and characterization of allelic variants of MSP-1(42) from Indian Plasmodium falciparum isolates. Vaccine 2010; 28:4661-7. [PMID: 20452429 DOI: 10.1016/j.vaccine.2010.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 04/10/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
The C-terminal 19 and 42 kDa fragments of Plasmodium falciparum merozoite surface protein 1 (MSP-1) have shown to be protective in animals against lethal parasite challenge. The MSP-1(19) being highly conserved may lack sufficient number of T-cell epitopes in order to elicit a broader response in genetically diverse populations. The inclusion of additional epitopes from the N-terminal MSP-1(42) has shown to enhance the protective efficacy of MSP-1(19) vaccine. In an attempt to examine the strain specific immunogenicity to MSP-1, we have cloned and expressed three diverse allelic variants of MSP-1(42) from Indian P. falciparum isolates in bacteria. Among three alleles, one was extremely rare and not been found before. These purified and refolded recombinant products were recognized by conformation specific monoclonal antibodies and hyper-immune sera. Immunization of mice and rabbits with the purified proteins generated high titer biologically active polyclonal antibodies supporting further development of this vaccine candidate antigen.
Collapse
Affiliation(s)
- P V Lalitha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | | | |
Collapse
|
36
|
Singh B, Cabrera-Mora M, Jiang J, Galinski M, Moreno A. Genetic linkage of autologous T cell epitopes in a chimeric recombinant construct improves anti-parasite and anti-disease protective effect of a malaria vaccine candidate. Vaccine 2010; 28:2580-92. [PMID: 20097151 DOI: 10.1016/j.vaccine.2010.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 12/28/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
We have reported the design of polyvalent synthetic and recombinant chimeras that include promiscuous T cell epitopes as a viable delivery system for pre-erythrocytic subunit malaria vaccines. To further assess the ability of several Plasmodium T cell epitopes to enhance vaccine potency, we designed a synthetic gene encoding four Plasmodium yoelii merozoite surface protein 1 (PyMSP1) CD4(+) promiscuous T cell epitopes fused in tandem to the homologous carboxyl terminal PyMSP1(19) fragment. This Recombinant Modular Chimera (PyRMC-MSP1(19)) was tested for immunogenicity and protective efficacy in comparative experiments with a recombinant protein expressing only the PyMSP1(19) fragment. Both proteins induced comparable antibody responses. However PyRMC-MSP1(19) elicited higher anti-parasite antibody titers and more robust protection against both hyper-parasitemia and malarial anemia. Most importantly, passive transfer of anti-PyRMC-MSP1(19), but not anti-PyMSP1(19) antibodies protected against heterologous challenge. These studies show that protective efficacy can be significantly improved by inclusion of an array of autologous promiscuous T cell epitopes in vaccine constructs.
Collapse
Affiliation(s)
- Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | | | | | | | | |
Collapse
|
37
|
Antibody-dependent transplacental transfer of malaria blood-stage antigen using a human ex vivo placental perfusion model. PLoS One 2009; 4:e7986. [PMID: 19956710 PMCID: PMC2777305 DOI: 10.1371/journal.pone.0007986] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/17/2009] [Indexed: 02/05/2023] Open
Abstract
Prenatal exposure to allergens or antigens released by infections during pregnancy can stimulate an immune response or induce immunoregulatory networks in the fetus affecting susceptibility to infection and disease later in life. How antigen crosses from the maternal to fetal environment is poorly understood. One hypothesis is that transplacental antigen transfer occurs as immune complexes, via receptor-mediated transport across the syncytiotrophoblastic membrane and endothelium of vessels in fetal villi. This hypothesis has never been directly tested. Here we studied Plasmodium falciparum merozoite surface protein 1 (MSP1) that is released upon erythrocyte invasion. We found MSP1 in cord blood from a third of newborns of malaria-infected women and in >90% following treatment with acid dissociation demonstrating MSP1 immune complexes. Using an ex vivo human placental model that dually perfuses a placental cotyledon with independent maternal and fetal circuits, immune-complexed MSP1 transferred from maternal to fetal circulation. MSP1 alone or with non-immune plasma did not transfer; pre-incubation with human plasma containing anti-MSP1 was required. MSP1 bound to IgG was detected in the fetal perfusate. Laser scanning confocal microscopy demonstrated MSP1 in the fetal villous stroma, predominantly in fetal endothelial cells. MSP1 co-localized with IgG in endothelial cells, but not with placental macrophages. Thus we show, for the first time, antibody-dependent transplacental transfer of an antigen in the form of immune complexes. These studies imply frequent exposure of the fetus to certain antigens with implications for management of maternal infections during pregnancy and novel approaches to deliver vaccines or drugs to the fetus.
Collapse
|
38
|
Okafor CMF, Anumudu CI, Omosun YO, Uthaipibull C, Ayede I, Awobode HO, Odaibo AB, Langhorne J, Holder AA, Nwuba RI, Troye-Blomberg M. Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection. Malar J 2009; 8:263. [PMID: 19930613 PMCID: PMC2785830 DOI: 10.1186/1475-2875-8-263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/23/2009] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the Plasmodium falciparum merozoite surface protein 1 (MSP1(19)), inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP1(19) had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP1(19) would affect critical T-cell responses to epitopes in this antigen. METHODS The cellular responses to wild-type MSP1(19) and a panel of modified MSP1(19) antigens were measured using an in-vitro assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to Plasmodium falciparum infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults. RESULTS Interestingly, stimulation indices (SI) for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP1(19). A protein with four amino acid substitutions (Glu27-->Tyr, Leu31-->Arg, Tyr34-->Ser and Glu43-->Leu) had the highest stimulation index (SI up to 360) and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins. CONCLUSION This study suggests that specific MSP1(19) variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.
Collapse
Affiliation(s)
- Christian MF Okafor
- Cellular Parasitology Programme, Department of Zoology University of Ibadan, Ibadan, Nigeria
- College of Art and Sciences, Northwest University, 5520, 108th Ave. NE, Kirkland WA 98033, USA
| | - Chiaka I Anumudu
- Cellular Parasitology Programme, Department of Zoology University of Ibadan, Ibadan, Nigeria
| | - Yusuf O Omosun
- Cellular Parasitology Programme, Department of Zoology University of Ibadan, Ibadan, Nigeria
- Department of Biotechnology, Bells University of Technology, Sango-Otta, Nigeria
| | - Chairat Uthaipibull
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
- Protein-Ligand Engineering and Molecular Biology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, Thailand
| | - Idowu Ayede
- Oni Memorial Children's Hospital, Ring Road, Ibadan, Nigeria
| | - Henrietta O Awobode
- Cellular Parasitology Programme, Department of Zoology University of Ibadan, Ibadan, Nigeria
| | - Alex B Odaibo
- Cellular Parasitology Programme, Department of Zoology University of Ibadan, Ibadan, Nigeria
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Roseangela I Nwuba
- Cellular Parasitology Programme, Department of Zoology University of Ibadan, Ibadan, Nigeria
| | - Marita Troye-Blomberg
- Department of Immunology, Wenner-Gren Institute, Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| |
Collapse
|
39
|
Abstract
Traditional vaccine technologies have resulted in an impressive array of efficacious vaccines against a variety of infectious agents. However, several potentially deadly pathogens, including retroviruses and parasites, have proven less amenable to the application of traditional vaccine platforms, indicating the need for new approaches. Viral vectors represent an attractive way to deliver and present vaccine antigens that may offer advantages over traditional platforms. Due to their ability to induce strong cell-mediated immunity (CMI) in addition to antibodies, viral vectors may be suitable for infectious agents, such as malaria parasites, where potent CMI is required for protection. Poxvirus-vectored malaria vaccines have been the most extensively studied in the clinic, achieving significant reductions in liver-stage parasite burden. More recently, adenovirus-vectored malaria vaccines have entered clinical testing. The most promising approach - heterologous prime-boost regimens, in which different viral vectors are sequentially paired with each other or with DNA or recombinant protein vaccines - is now being explored, and could provide high-grade protection, if findings in animal models are translatable to humans. Significant barriers remain, however, such as pre-existing immunity to the vector particle and an unexplained safety signal observed in one trial suggesting an increased risk of HIV acquisition in volunteers with pre-existing immunity to the vector.
Collapse
Affiliation(s)
- K J Limbach
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA.
| | | |
Collapse
|
40
|
Abstract
Malaria is a serious cause of morbidity and mortality and yet a vaccine is not available. Studies have used animal models to understand the pathogenesis of disease and a large amount of data on parasite biology, immune regulation and disease processes have been gained from these studies. Moreover, these models have been used for pre-clinical testing of various drugs and vaccines. Here, we discuss the features of various mouse models used to study the immunobiology of malaria and test pre-clinical vaccines and conclude that animal models have a role in the study of malaria but the experimental conditions used for testing must reflect the environment of infected individuals.
Collapse
Affiliation(s)
- Michelle N Wykes
- The Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | |
Collapse
|
41
|
The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology 2009; 136:1445-56. [PMID: 19627632 DOI: 10.1017/s0031182009990515] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYOver the last 30 years, evidence has been gathered suggesting that merozoite surface protein 1 (MSP1) is a target of protective immunity against malaria. In a variety of experimental approaches usingin vitromethodology, animal models and sero-epidemiological techniques, the importance of antibody against MSP1 has been established but we are still finding out what are the mechanisms involved. Now that clinical trials of MSP1 vaccines are underway and the early results have been disappointing, it is increasingly clear that we need to know more about the mechanisms of immunity, because a better understanding will highlight the limitations of our current assays and identify the improvements required. Understanding the structure of MSP1 will help us design and engineer better antigens that are more effective than the first generation of vaccine candidates. This review is focused on the carboxy-terminus of MSP1.
Collapse
|
42
|
Casares S, Richie TL. Immune evasion by malaria parasites: a challenge for vaccine development. Curr Opin Immunol 2009; 21:321-30. [DOI: 10.1016/j.coi.2009.05.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/26/2009] [Accepted: 05/12/2009] [Indexed: 11/26/2022]
|
43
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|
44
|
Malhotra I, Wamachi AN, Mungai PL, Mzungu E, Koech D, Muchiri E, Moormann AM, King CL. Fine specificity of neonatal lymphocytes to an abundant malaria blood-stage antigen: epitope mapping of Plasmodium falciparum MSP1(33). THE JOURNAL OF IMMUNOLOGY 2008; 180:3383-90. [PMID: 18292564 DOI: 10.4049/jimmunol.180.5.3383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cord blood T cells have been reported to respond to a variety of exogenous Ags, including environmental allergens and various viruses and parasites, as demonstrated by enhanced proliferation and cytokine secretion. This finding is evidence that Ags in the maternal environment transplacentally prime and result in fetal development of memory T cells. Some studies suggest these neonatal T cell responses may arise by nonspecific activation of T cells that express TCRs with low binding affinity, thus lacking fine lymphocyte specificity. To address this question, we examined malaria Ag stimulation of human cord and adult blood mononuclear cells in samples from residents of a malaria endemic area in Kenya. We constructed overlapping 18-mer peptides derived from sequences contained in dimorphic alleles of the C-terminal 33-kDa fragment of Plasmodium falciparum merozoite protein 1. This study identified a dominant T cell epitope for one MSP1(33) allele (MAD20) and two T cell epitopes for the second allele (K1); these epitopes were nonoverlapping and allele specific. In a given donor, peptide-specific proliferation and IFN-gamma secretion were highly concordant. However, IL-10 and IL-13 secretion were not correlated. Importantly, the fine specificity of lymphocyte proliferation and cytokine secretion in cord and adult blood mononuclear cells was similar. Cord blood cells obtained from malaria-infected pregnant women were 4-fold more likely to acquire a peptide-specific immune response. We conclude that the fetal malaria response functions in a fully adaptive manner and that this response may serve to help protect the infant from severe malaria during infancy.
Collapse
Affiliation(s)
- Indu Malhotra
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Huaman MC, Martin LB, Malkin E, Narum DL, Miller LH, Mahanty S, Long CA. Ex vivo cytokine and memory T cell responses to the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 in vaccinated volunteers. THE JOURNAL OF IMMUNOLOGY 2008; 180:1451-61. [PMID: 18209040 DOI: 10.4049/jimmunol.180.3.1451] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of blood-stage malaria Ags are under development as vaccine candidates, but knowledge of the cellular responses to these vaccines in humans is limited. We evaluated the nature and specificity of cellular responses in healthy American volunteers vaccinated with a portion of the major merozoite surface protein-1 (MSP1) of Plasmodium falciparum, MSP1(42), formulated on Alhydrogel. Volunteers were vaccinated three times with 80 microg of either MSP1(42)-FVO/Alhydrogel or MSP1(42)-3D7/Alhydrogel. Cells collected 2 wk after the third vaccination produced Th1 cytokines, including IFN-gamma and IL-2 following Ag stimulation, and greater levels of the Th2 cytokines IL-5 and IL-13; the anti-inflammatory cytokine IL-10 and the molecule CD25 (IL-2Ralpha) were also detected. The volunteers were evaluated for the MSP1(42)-FVO or MSP1(42)-3D7 specificity of their T cell responses. Comparison of their responses to homologous and heterologous Ags showed ex vivo IFN-gamma and IL-5 levels that were significantly higher to homologous rather than to heterologous Ags. The epitopes involved in this stimulation were shown to be present in the dimorphic MSP1(33) portion of the larger MSP1(42)-3D7 polypeptide, and indirect experiment suggests the same for the MSP1(42)-FVO polypeptide. This contrasts with B cell responses, which were primarily directed to the conserved MSP1(19) portion. Furthermore, we explored the maturation of memory T cells and found that 46% of vaccinees showed specific memory T cells defined as CD4(+)CD45RO(+)CD40L(+) after long-term in vitro culture. The identification of human-specific CD4(+) memory T cells provides the foundation for future studies of these cells both after vaccination and in field studies.
Collapse
Affiliation(s)
- Maria Cecilia Huaman
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Cai Q, Peng G, Bu L, Lin Y, Zhang L, Lustigmen S, Wang H. Immunogenicity and in vitro protective efficacy of a polyepitope Plasmodium falciparum candidate vaccine constructed by epitope shuffling. Vaccine 2007; 25:5155-65. [PMID: 17548134 DOI: 10.1016/j.vaccine.2007.04.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 04/27/2007] [Accepted: 04/29/2007] [Indexed: 11/22/2022]
Abstract
A polyepitope chimeric antigen incorporating multiple protective and conservative epitopes from multiple antigens of Plasmodium falciparum has been considered to be more effective in inducing multiple layers of immunity against malaria than a single stage- or single antigen-based vaccine. By modifying the molecular breeding approach to epitope shuffling, we have constructed a polyepitope chimeric gene that encodes 11 B-cell and T-cell proliferative epitope peptides derived from eight key antigens mostly in the blood stage of Plasmodium falciparum. A 35-kDa antigen encoded by this gene, named Malaria RCAg-1, was purified from an E. coli expression system. Immunization of rabbits and mice with the purified protein in the presence of Freund's adjuvant strongly generated long-lasting antibody responses that recognized the corresponding individual epitope peptide in this vaccine as well as blood stage parasites. CD4(+) T-cell responses were also elicited as shown by the enhancement of T-cell proliferation, IFN-gamma and IL-4 level. In vitro assay of protection revealed that vaccine-elicited antibodies could efficiently inhibit the growth of blood-stage parasites. Additionally, the chimeric antigen was recognized by human serum specimens from malaria patients and individuals living in the endemic area. Our studies indicate the potential of M.RCAg-1 recombinant protein as malaria candidate vaccines as well as the rationale of the epitope shuffling technology applied in designing malaria vaccines.
Collapse
Affiliation(s)
- Qiliang Cai
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Malkin E, Long CA, Stowers AW, Zou L, Singh S, MacDonald NJ, Narum DL, Miles AP, Orcutt AC, Muratova O, Moretz SE, Zhou H, Diouf A, Fay M, Tierney E, Leese P, Mahanty S, Miller LH, Saul A, Martin LB. Phase 1 study of two merozoite surface protein 1 (MSP1(42)) vaccines for Plasmodium falciparum malaria. PLOS CLINICAL TRIALS 2007; 2:e12. [PMID: 17415408 PMCID: PMC1847697 DOI: 10.1371/journal.pctr.0020012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 02/07/2007] [Indexed: 11/19/2022]
Abstract
Objectives: To assess the safety and immunogenicity of two vaccines, MSP142-FVO/Alhydrogel and MSP142-3D7/Alhydrogel, targeting blood-stage Plasmodium falciparum parasites. Design: A Phase 1 open-label, dose-escalating study. Setting: Quintiles Phase 1 Services, Lenexa, Kansas between July 2004 and November 2005. Participants: Sixty healthy malaria-naïve volunteers 18–48 y of age. Interventions: The C-terminal 42-kDa region of merozoite surface protein 1 (MSP142) corresponding to the two allelic forms present in FVO and 3D7 P. falciparum lines were expressed in Escherichia coli, refolded, purified, and formulated on Alhydrogel (aluminum hydroxide). For each vaccine, volunteers in each of three dose cohorts (5, 20, and 80 μg) were vaccinated at 0, 28, and 180 d. Volunteers were followed for 1 y. Outcome Measures: The safety of MSP142-FVO/Alhydrogel and MSP142-3D7/Alhydrogel was assessed. The antibody response to each vaccine was measured by reactivity to homologous and heterologous MSP142, MSP119, and MSP133 recombinant proteins and recognition of FVO and 3D7 parasites. Results: Anti-MSP142 antibodies were detected by ELISA in 20/27 (74%) and 22/27 (81%) volunteers receiving three vaccinations of MSP142-FVO/Alhydrogel or MSP142-3D7/Alhydrogel, respectively. Regardless of the vaccine, the antibodies were cross-reactive to both MSP142-FVO and MSP142-3D7 proteins. The majority of the antibody response targeted the C-terminal 19-kDa domain of MSP142, although low-level antibodies to the N-terminal 33-kDa domain of MSP142 were also detected. Immunofluorescence microscopy of sera from the volunteers demonstrated reactivity with both FVO and 3D7 P. falciparum schizonts and free merozoites. Minimal in vitro growth inhibition of FVO or 3D7 parasites by purified IgG from the sera of the vaccinees was observed. Conclusions: The MSP142/Alhydrogel vaccines were safe and well tolerated but not sufficiently immunogenic to generate a biologic effect in vitro. Addition of immunostimulants to the Alhydrogel formulation to elicit higher vaccine-induced responses in humans may be required for an effective vaccine. Background: Generally, adults living in parts of the world where malaria is common develop protective immunity against the parasite. This means they may get infected but not become ill as a result. However, there are individuals, such as pregnant women and children under the age of five, who are more likely to develop symptoms of malaria due to no (or reduced) natural immunity. A successful malaria vaccine would stimulate an individual's immune system to respond to the malaria parasite and prevent serious clinical disease. Many different groups are currently developing potential vaccines. Several candidates are based on a protein called MSP1 (merozoite surface protein 1) which is found on the surface of the blood-stage form of the malaria parasite. However, in nature parasites carry different versions of the MSP1 protein, and ideally a successful vaccine would bring about immune responses against these different versions. The researchers carrying out this trial wanted to compare the safety and immune responses against candidate vaccines representing two different MSP1 proteins, which covered many different parasite lines. As a phase 1 trial, the study was carried out in healthy adult volunteers. Sixty individuals were assigned to receive an injection of the vaccines, either containing a recombinant protein analogous to the FVO parasite line (termed MSP142-FVO) or the 3D7 parasite line (termed MSP142-3D7) at three different dose levels. The trial's primary objective was to assess safety, which was done by collecting data on any abnormal signs or symptoms up to 14 d after each of three vaccinations. These outcomes were graded and then defined as related to the vaccine or not. The researchers also looked at antibody levels in participants' blood against different variants of the MSP1 protein, as well as using in vitro tests to see whether antibodies from vaccinated individuals could prevent malaria parasites from growing in lab culture. What the trial shows: The safety outcomes of the trial showed that the most common type of side effect experienced by the volunteers was pain at the injection site. The vast majority of such events were graded as mild, although there was one single case of a severe event (high levels of pain experienced by one volunteer at the injection site). There was no significant association between the chance of side effects and the vaccine dosage that an individual received. Following vaccination, antibody levels against the protein on which the vaccine was based were detected, although these levels dropped over time. The researchers did not see a strong association between the vaccine dosage that individuals received and the level of antibody response. However, the two vaccines when compared seemed to be equally good at raising an immune response and both caused antibodies to be raised corresponding to different variants of the MSP1 protein. However, the antibodies raised did not seem to be particularly effective at preventing malaria parasites from growing in lab culture. Strengths and limitations: Strengths of this study include a comparison of three different dosage levels of the vaccines under study, as well as a comparison of two vaccines based on the same protein, representing different parasite lines. Limitations to the study include the small number of participants, which makes the trial underpowered to detect all but large differences in side effects between the groups being compared. A placebo arm was not included in the trial, so it is not possible to be sure that the numbers of side effects observed here can be attributed to the vaccines or not. Finally, the procedure for assigning individuals to the two different vaccines involved alternation, rather than true randomization, which could have minimized the risk of bias. Contribution to the evidence: The trial reported here is an essential step in vaccine development. The results provide the first evidence relating to safety for these two vaccines, and do not raise any safety concerns at this stage. Although the vaccines raised an immune response, the antibodies raised did not seem to have much of an effect on malaria parasites in vitro. While these vaccines are safe, alternative MSP1 vaccine formulations anticipated to bring about a greater immune response will likely be studied before proceeding to field studies.
Collapse
Affiliation(s)
- Elissa Malkin
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A Long
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anthony W Stowers
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lanling Zou
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sanjay Singh
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Nicholas J MacDonald
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - David L Narum
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Aaron P Miles
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Andrew C Orcutt
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Olga Muratova
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Samuel E Moretz
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hong Zhou
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ababacar Diouf
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Michael Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eveline Tierney
- PATH Malaria Vaccine Initiative, Bethesda, Maryland, United States of America
| | - Philip Leese
- Quintiles Phase 1 Services, Lenexa, Kansas, United States of America
| | - Siddhartha Mahanty
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Louis H Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Allan Saul
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Laura B Martin
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Shi Q, Lynch MM, Romero M, Burns JM. Enhanced protection against malaria by a chimeric merozoite surface protein vaccine. Infect Immun 2006; 75:1349-58. [PMID: 17158895 PMCID: PMC1828565 DOI: 10.1128/iai.01467-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 42-kDa processed fragment of Plasmodium falciparum merozoite surface protein 1 (MSP-1(42)) is a prime candidate for a blood-stage malaria vaccine. Merozoite surface protein 8 contains two C-terminal epidermal growth factor (EGF)-like domains that may function similarly to those of MSP-1(42). Immunization with either MSP-1 or MSP-8 induces protection that is mediated primarily by antibodies against conformation-dependent epitopes. In a series of comparative immunogenicity and efficacy studies using the Plasmodium yoelii rodent model, we tested the ability of recombinant P. yoelii MSP-8 (rPyMSP-8) to complement rPyMSP-1-based vaccines. Unlike MSP-1, PyMSP-8-dependent protection required immunization with the full-length protein and was not induced with recombinant antigens that contained only the C-terminal EGF-like domains. Unlike PyMSP-8, the immunogenicity of the PyMSP-1 EGF-like domains was low when present as part of the rPyMSP-1(42) antigen. Immunization with a mixture of rPyMSP-1(42) and rPyMSP-8 further inhibited the antibody response to protective epitopes of rPyMSP-1(42) and did not improve vaccine efficacy. To improve PyMSP-1 immunogenicity, we produced a chimeric antigen containing the EGF-like domains of PyMSP-1 fused to the N terminus of PyMSP-8. Immunization with the chimeric rPyMSP-1/8 antigen induced high and comparable antibody responses against the EGF-like domains of both PyMSP-1 and PyMSP-8. This enhanced MSP-1-specific antibody response and the concurrent targeting of MSP-1 and MSP-8 resulted in improved, nearly complete protection against lethal P. yoelii 17XL malaria. Unexpectedly, immunization with rPyMSP-1/8 failed to protect against challenge infection with reticulocyte-restricted P. yoelii 17X parasites. Overall, these data establish an effective strategy to improve the efficacy of P. falciparum MSP-based vaccines.
Collapse
Affiliation(s)
- Qifang Shi
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129
| | - Michelle M. Lynch
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129
| | - Margarita Romero
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129
| | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129
- Corresponding author. Mailing address: Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129. Phone: (215) 991-8490. Fax: (215) 848-2271. E-mail:
| |
Collapse
|
49
|
Wickramarachchi T, Illeperuma RJ, Perera L, Bandara S, Holm I, Longacre S, Handunnetti SM, Udagama-Randeniya PV. Comparison of naturally acquired antibody responses against the C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 under low transmission and unstable malaria conditions in Sri Lanka. Int J Parasitol 2006; 37:199-208. [PMID: 17055511 DOI: 10.1016/j.ijpara.2006.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/25/2006] [Accepted: 09/05/2006] [Indexed: 11/17/2022]
Abstract
We report here, for the first time, a comparison of naturally acquired antibody responses to the 42 and 19 kDa C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 assayed by ELISA using p42 and p19 baculovirus-derived recombinant proteins, respectively. Test populations comprised patients with microscopy confirmed acute P. vivax infections from two regions endemic for vivax malaria where low transmission and unstable malaria conditions prevail, and a non-endemic urban area, in Sri Lanka. The antibody prevalence to the two proteins, both at the individual and population levels, tend to respond more to p42 than to p19 in all test areas, where >14% of individuals preferentially recognized p42, compared with <2% for p19. In patients with no previous exposure to malaria, 21% preferentially recognized p42, whereas none exclusively recognized p19. A significantly lower prevalence of anti-p19 IgM, but not anti-p42 IgM, was observed among residents from endemic areas compared with their non-endemic counterparts. Individuals from both endemic areas produced significantly less anti-p19 IgM compared with anti-p42 IgM. IgG1 was the predominant IgG isotype for both antigens in all individuals. With increasing exposure to malaria in both endemic areas, anti-p19 antibody responses were dominated by the functionally important IgG1 and IgG3 isotypes, with a concurrent reduction in IgM that was lacking in the non-endemic residents. This antibody switch was also reflected for PvAMA-1 as we previously reported with the identical battery of sera. In contrast, the antibody switch for p42 was restricted to endemic residents with more extensive exposure. These results suggest that an IgM-dominated antibody response against the p42 polymorphic region in endemic residents may interfere with the development of an IgG-dominated "protective" isotype shift to p19, that may complicate vaccine development.
Collapse
|
50
|
Sachdeva S, Mohmmed A, Dasaradhi PVN, Crabb BS, Katyal A, Malhotra P, Chauhan VS. Immunogenicity and protective efficacy of Escherichia coli expressed Plasmodium falciparum merozoite surface protein-1(42) using human compatible adjuvants. Vaccine 2005; 24:2007-16. [PMID: 16377036 DOI: 10.1016/j.vaccine.2005.11.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 11/16/2022]
Abstract
The C-terminal 42-kDa fragment of the merozoite surface protein-1 of Plasmodium falciparum (PfMSP-1(42)) was expressed as a recombinant protein in Escherichia coli and purified to near homogeneity. We tested the immunogenicity of recombinant PfMSP-1(42) in three clinically acceptable adjuvants (Montanide ISA 720, alum and MF59) in mice and in rabbits. High antibody responses were obtained with two adjuvant formulations with IgGl being the predominant immunoglobulin isotype. Significant T-cell proliferation responses were also observed. Competitive enzyme linked immunosorbant assay (ELISA) showed the presence of both invasion and processing inhibitory antibodies in sera obtained from the immunized rabbits. Passive immunizations of mice with anti-PfMSP-1(42) IgG purified from the rabbit-sera were found to be protective against a parasite challenge with P. berghei/P. falciparum chimeric line (Pb-PfM19) that expresses Plasmodium falciparum MSP-1(19). These findings may be useful for the development of a malaria vaccine based on Plasmodium falciparum MSP-1(42).
Collapse
Affiliation(s)
- Suraksha Sachdeva
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|