1
|
B-Cell Epitope Mapping of the Plasmodium falciparum Malaria Vaccine Candidate GMZ2.6c in a Naturally Exposed Population of the Brazilian Amazon. Vaccines (Basel) 2023; 11:vaccines11020446. [PMID: 36851323 PMCID: PMC9966924 DOI: 10.3390/vaccines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The GMZ2.6c malaria vaccine candidate is a multi-stage P. falciparum chimeric protein that contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, an asexual-stage vaccine construction consisting of the N-terminal region of the glutamate-rich protein (GLURP) and the C-terminal region of the merozoite surface protein-3 (MSP-3). Previous studies showed that GMZ2.6c is widely recognized by antibodies from Brazilian exposed individuals and that its components are immunogenic in natural infection by P. falciparum. In addition, anti-GMZ2.6c antibodies increase with exposure to infection and may contribute to parasite immunity. Therefore, identifying epitopes of proteins recognized by antibodies may be an important tool for understanding protective immunity. Herein, we identify and validate the B-cell epitopes of GMZ2.6c as immunogenic and immunodominant in individuals exposed to malaria living in endemic areas of the Brazilian Amazon. Specific IgG antibodies and subclasses against MSP-3, GLURP, and Pfs48/45 epitopes were detected by ELISA using synthetic peptides corresponding to B-cell epitopes previously described for MSP-3 and GLURP or identified by BepiPred for Pfs48/45. The results showed that the immunodominant epitopes were P11 from GLURP and MSP-3c and DG210 from MSP-3. The IgG1 and IgG3 subclasses were preferentially induced against these epitopes, supporting previous studies that these proteins are targets for cytophilic antibodies, important for the acquisition of protective immunity. Most individuals presented detectable IgG antibodies against Pfs48/45a and/or Pfs48/45b, validating the prediction of linear B-cell epitopes. The higher frequency and antibody levels against different epitopes from GLURP, MSP-3, and Pfs48/45 provide additional information that may suggest the relevance of GMZ2.6c as a multi-stage malaria vaccine candidate.
Collapse
|
2
|
Dassah S, Adu B, Tiendrebeogo RW, Singh SK, Arthur FKN, Sirima SB, Theisen M. GMZ2 Vaccine-Induced Antibody Responses, Naturally Acquired Immunity and the Incidence of Malaria in Burkinabe Children. Front Immunol 2022; 13:899223. [PMID: 35720297 PMCID: PMC9200992 DOI: 10.3389/fimmu.2022.899223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
GMZ2 is a malaria vaccine candidate evaluated in a phase 2b multi-centre trial. Here we assessed antibody responses and the association of naturally acquired immunity with incidence of malaria in one of the trial sites, Banfora in Burkina Faso. The analysis included 453 (GMZ2 = 230, rabies = 223) children aged 12-60 months old. Children were followed-up for clinical malaria episodes for 12 months after final vaccine administration. Antibody levels against GMZ2 and eleven non-GMZ2 antigens were measured on days 0 and 84 (one month after final vaccine dose). Vaccine efficacy (VE) differed by age group (interaction, (12-35 months compared to 36-60 months), p = 0.0615). During the twelve months of follow-up, VE was 1% (95% confidence interval [CI] -17%, 17%) and 23% ([CI] 3%, 40%) in the 12 - 35 and 36 - 60 months old children, respectively. In the GMZ2 group, day 84 anti-GMZ2 IgG levels were associated with reduced incidence of febrile malaria during the follow up periods of 1-6 months (hazard ratio (HR) = 0.87, 95%CI = (0.77, 0.98)) and 7-12 months (HR = 0.84, 95%CI = (0.71, 0.98)) in the 36-60 months old but not in 12-35 months old children. Multivariate analysis involving day 84 IgG levels to eleven non-vaccine antigens, identified MSP3-K1 and GLURP-R2 to be associated with reduced incidence of malaria during the 12 months of follow up. The inclusion of these antigens might improve GMZ2 vaccine efficacy.
Collapse
Affiliation(s)
- Sylvester Dassah
- Navrongo Health Research Centre, Navrongo, Ghana.,Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Régis W Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sodiomon B Sirima
- Groupe de Recherche Action en Senté (GRAS), Ouagadougou, Burkina Faso
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Baptista BO, de Souza ABL, Riccio EKP, Bianco-Junior C, Totino PRR, Martins da Silva JH, Theisen M, Singh SK, Amoah LE, Ribeiro-Alves M, Souza RM, Lima-Junior JC, Daniel-Ribeiro CT, Pratt-Riccio LR. Naturally acquired antibody response to a Plasmodium falciparum chimeric vaccine candidate GMZ2.6c and its components (MSP-3, GLURP, and Pfs48/45) in individuals living in Brazilian malaria-endemic areas. Malar J 2022; 21:6. [PMID: 34983540 PMCID: PMC8729018 DOI: 10.1186/s12936-021-04020-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. Methods This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. Results The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. Conclusions The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04020-6.
Collapse
Affiliation(s)
- Barbara Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Ana Beatriz Lopes de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Cesare Bianco-Junior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | | | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Medeiros Souza
- Laboratório de Doenças Infecciosas na Amazônia Ocidental, Universidade Federal do Acre, Acre, Brazil
| | | | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil.
| |
Collapse
|
4
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
5
|
Moita D, Nunes-Cabaço H, Mendes AM, Prudêncio M. A guide to investigating immune responses elicited by whole-sporozoite pre-erythrocytic vaccines against malaria. FEBS J 2021; 289:3335-3359. [PMID: 33993649 DOI: 10.1111/febs.16016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/19/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
In the last few decades, considerable efforts have been made toward the development of efficient vaccines against malaria. Whole-sporozoite (Wsp) vaccines, which induce efficient immune responses against the pre-erythrocytic (PE) stages (sporozoites and liver forms) of Plasmodium parasites, the causative agents of malaria, are among the most promising immunization strategies tested until present. Several Wsp PE vaccination approaches are currently under evaluation in the clinic, including radiation- or genetically-attenuated Plasmodium sporozoites, live parasites combined with chemoprophylaxis, or genetically modified rodent Plasmodium parasites. In addition to the assessment of their protective efficacy, clinical trials of Wsp PE vaccine candidates inevitably involve the thorough investigation of the immune responses elicited by vaccination, as well as the identification of correlates of protection. Here, we review the main methodologies employed to dissect the humoral and cellular immune responses observed in the context of Wsp PE vaccine clinical trials and discuss future strategies to further deepen the knowledge generated by these studies, providing a toolbox for the in-depth analysis of vaccine-induced immunogenicity.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
6
|
Lee KS, Lee SM, Oh J, Park IH, Song JH, Han M, Yong D, Lim KJ, Shin JS, Yoo KH. Electrical antimicrobial susceptibility testing based on aptamer-functionalized capacitance sensor array for clinical isolates. Sci Rep 2020; 10:13709. [PMID: 32792573 PMCID: PMC7426404 DOI: 10.1038/s41598-020-70459-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 01/16/2023] Open
Abstract
To prescribe effective antibiotics to patients with bacterial infections in a timely manner and to avoid the misuse of antibiotics, a rapid antimicrobial susceptibility test (AST) is essential. However, conventional AST methods require more than 16 h to provide results; thus, we developed an electrical AST (e-AST) system, which provides results within 6 h. The proposed e-AST is based on an array of 60 aptamer-functionalized capacitance sensors that are comparable to currently available AST panels and a pattern-matching algorithm. The performance of the e-AST was evaluated in comparison with that of broth microdilution as the reference test for clinical strains isolated from septic patients. A total of 4,554 tests using e-AST showed a categorical agreement of 97% with a minor error of 2.2%, major error of 0.38%, and very major error of 0.38%. We expect that the proposed e-AST could potentially aid antimicrobial stewardship efforts and lead to improved patient outcomes.
Collapse
Affiliation(s)
- Kyo-Seok Lee
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sun-Mi Lee
- Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jeseung Oh
- Proteomtech Inc., 1101 Wooree-Venture Town, Seoul, 07573, Republic of Korea
| | - In Ho Park
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jun Ho Song
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myeonggil Han
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kook Jin Lim
- Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea.,Proteomtech Inc., 1101 Wooree-Venture Town, Seoul, 07573, Republic of Korea
| | - Jeon-Soo Shin
- Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea. .,Department of Microbiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea. .,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea. .,Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Hou N, Jiang N, Ma Y, Zou Y, Piao X, Liu S, Chen Q. Low-Complexity Repetitive Epitopes of Plasmodium falciparum Are Decoys for Humoural Immune Responses. Front Immunol 2020; 11:610. [PMID: 32351503 PMCID: PMC7174639 DOI: 10.3389/fimmu.2020.00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/17/2020] [Indexed: 01/18/2023] Open
Abstract
Induction of humoural immunity is critical for clinical protection against malaria. More than 100 malaria vaccine candidates have been investigated at different developmental stages, but with limited protection. One of the roadblocks constrains the development of malaria vaccines is the poor immunogenicity of the antigens. The objective of this study was to map the linear B-cell epitopes of the Plasmodium falciparum erythrocyte invasion-associated antigens with a purpose of understanding humoural responses and protection. We conducted a large-scale screen using overlapping peptide microarrays of 37 proteins from the P. falciparum parasite, most of which are invasion-associated antigens which have been tested in clinical settings as vaccine candidates, with sera from individuals with various infection episodes. Analysis of the epitome of the antigens revealed that the most immunogenic epitopes were predominantly located in the low-complexity regions of the proteins containing repetitive and/or glutamate-rich motifs in different sequence contexts. However, in vitro assay showed the antibodies specific for these epitopes did not show invasion inhibitory effect. These discoveries indicated that the low-complexity regions of the parasite proteins might drive immune responses away from functional domains, which may be an instructive finding for the rational design of vaccine candidates.
Collapse
Affiliation(s)
- Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yu Ma
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Zou
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xianyu Piao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qijun Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
8
|
Kana IH, Singh SK, Garcia-Senosiain A, Dodoo D, Singh S, Adu B, Theisen M. Breadth of Functional Antibodies Is Associated With Plasmodium falciparum Merozoite Phagocytosis and Protection Against Febrile Malaria. J Infect Dis 2020; 220:275-284. [PMID: 30820557 DOI: 10.1093/infdis/jiz088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The specific targets of functional antibodies against Plasmodium falciparum merozoites remain largely unexplored and, more importantly, their relevance to naturally acquired immunity in longitudinal cohort studies (LCSs) is yet to be tested. METHODS Functionality of immunoglobulin G (IgG) antibodies against 24 merozoite antigens was determined at the baseline of an LCS in Ghana using a bead-based opsonic phagocytosis assay (BPA). Antigen-specific IgG3 subclass antibodies were quantified in the same samples by the Luminex multiplex system. RESULTS A wide range of BPA activity was observed across the different antigens. High BPA responses of nMSP3K1, GLURP-R2, MSP23D7, MSP119k, and PfRh2-2030 coupled beads were significantly associated with a higher probability of children not experiencing febrile malaria. Children with high breadth of functional antibodies against these antigens together with cMSP33D7 had a significantly reduced risk of febrile malaria (adjusted hazard ratio, 0.36 [95% confidence interval, .18-.72]; P = .004). Five of the 6 BPA activities significantly (likelihood ratio rest, P ≤ .05) contributed to the protective immunity observed with the IgG3 antibodies. CONCLUSIONS The development of BPA allowed profiling of functional antibodies in an LCS. Identification of targets of opsonic phagocytosis may have implications in the development of a subunit malaria vaccine.
Collapse
Affiliation(s)
- Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Asier Garcia-Senosiain
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon
| | | | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
9
|
Kana IH, Garcia-Senosiain A, Singh SK, Tiendrebeogo RW, Chourasia BK, Malhotra P, Sharma SK, Das MK, Singh S, Adu B, Theisen M. Cytophilic Antibodies Against Key Plasmodium falciparum Blood Stage Antigens Contribute to Protection Against Clinical Malaria in a High Transmission Region of Eastern India. J Infect Dis 2019; 218:956-965. [PMID: 29733355 DOI: 10.1093/infdis/jiy258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background The collection of clinical data from a tribal population in a malaria-endemic area of India suggests the occurrence of naturally acquired immunity (NAI) against Plasmodium falciparum malaria. Methods Quantity and functionality of immunoglobulin G (IgG) antibodies against intact merozoites and recombinant proteins were assessed in a 13-month longitudinal cohort study of 121 individuals, 3-60 years of age. Results Opsonic phagocytosis of merozoites activity was strongly associated (hazard ratio [HR] = 0.34; 95% confidence interval [CI] = .18-.66; P = .0013) with protection against febrile malaria. Of the different IgG subclasses, only IgG3 antibodies against intact whole merozoites was significantly associated with protection against febrile malaria (HR = 0.47; 95% CI = .26-.86; P = .01). Furthermore, a combination of IgG3 antibody responses against Pf12, MSP3.7, MSP3.3, and MSP2FC27 was strongly associated with protection against febrile malaria (HR = 0.15; 95% CI, .06-.37; P = .0001). Conclusions These data suggest that NAI may, at least in part, be explained by opsonic phagocytosis of merozoites and IgG3 responses against whole merozoites, and in particular to a combination of 4 antigens is critical in this population. These results may have implications in the development of a subunit malaria vaccine. Opsonic phagocytosis of Plasmodium falciparum merozoites was associated with protection against clinical malaria in an India population. Antibody profiling identified four merozoite antigens (Pf12, MSP3.7, MSP3.3, and MSP2) as targets of protective Immunoglobuline G3 antibodies.
Collapse
Affiliation(s)
- Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Asier Garcia-Senosiain
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Régis Wendpayangde Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Bishwanath Kumar Chourasia
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Surya K Sharma
- National Institute of Malaria Research, Indian Council of Medical Research, New Delhi, India
| | - Manoj K Das
- National Institute of Malaria Research, Field Unit, Ranchi (Jharkhand), India
| | - Subhash Singh
- Indian Institute of Integrative Medicine, Canal Road, Jammu, India
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
10
|
Tiendrebeogo RW, Spallek R, Oehlmann W, Singh M, Theisen M, Nebie I, Moret R, Roussilhon C, Corradin G. Immunogenicity of a recombinant fusion construct composed of intrinsically unstructured, low polymorphic segments derived from merozoite surface protein 2 and trophozoite exported protein 1. Vaccine 2019; 37:5332-5340. [PMID: 31358409 DOI: 10.1016/j.vaccine.2019.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
To overcome the extensive polymorphism found in human Plasmodium antigens and to avoid the lengthy characterization of their 3 dimensional structure and subsequent production of the native proteins we have been concentrated in large unstructured, non-or low-polymorphic fragments present in the blood stage of P. falciparum. Three fragments derived from the 2 family-specific and constant regions of merozoite surface protein (MSP2) and PFF0165c protein were previously selected for evaluation as potential single vaccine candidates. In order to increase and optimize their potential efficacy against P. falciparum infection the 3 antigens were combined in a single DNA recombinant product (FusN) and compared its antigenicity with that of single antigens in sera of volunteers living in endemic countries. Immunogenicity of the FusN was then compared with that of the mixture of 3 antigens in 3 strains of mice. Antigen specific, affinity purified human antibodies were then tested in antibody dependent cellular inhibition and merozoite opsonization assays. In addition, the antigen specific antibody response and its association with protection from malaria infection were determined. The data collected indicate that the recombinant product is an equal or better antigen /immunogen than fragments used either alone or as a mixture for vaccination in combination with adjuvant. In addition, antibody response to FusN shows a stronger association with protection than single fragments. The use of a single construct as vaccine would drastically reduce the cost of manufacturing and development of the GMP product.
Collapse
Affiliation(s)
- Regis Wendpayangde Tiendrebeogo
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ralf Spallek
- LIONEX Diagnostics & Therapeutics GmbH, 38126 Braunschweig, Germany
| | - Wulf Oehlmann
- LIONEX Diagnostics & Therapeutics GmbH, 38126 Braunschweig, Germany
| | - Mahavir Singh
- LIONEX Diagnostics & Therapeutics GmbH, 38126 Braunschweig, Germany
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Issa Nebie
- Centre National de Recherche et de Formation sur le Paludisme, BP 2208, Ouagadougou 01, Burkina Faso
| | - Remy Moret
- ASAREN 01BP3916, Ouagadougou 01, Burkina Faso
| | | | - Giampietro Corradin
- Biochemistry Department, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
11
|
Abstract
The blood stage of the malaria parasite life cycle is responsible for all the clinical symptoms of malaria. During the blood stage, Plasmodium merozoites invade and multiply within host red blood cells (RBCs). Here, we review the progress made, challenges faced, and new strategies available for the development of blood stage malaria vaccines. We discuss our current understanding of immune responses against blood stages and the status of clinical development of various blood stage malaria vaccine candidates. We then discuss possible paths forward to develop effective blood stage malaria vaccines. This includes a discussion of protective immune mechanisms that can be elicited to target blood stage parasites, novel delivery systems, immunoassays and animal models to optimize vaccine candidates in preclinical studies, and use of challenge models to get an early readout of vaccine efficacy.
Collapse
|
12
|
Domingos J, Casimiro A, Portugal-Calisto D, Varandas L, Nogueira F, Silva MS. Clinical, laboratorial and immunological aspects of severe malaria in children from Guinea-Bissau. Acta Trop 2018; 185:46-51. [PMID: 29684356 DOI: 10.1016/j.actatropica.2018.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 11/15/2022]
Abstract
Malaria is a parasitic disease of which Plasmodium falciparum causes the most severe form of the disease. The immune response against Plasmodium spp. is complex and remains unclear. The present report aimed to better understand the humoral immune response in severe malaria and analyse new immunodominant antigen candidates as possible serological marker in severe malaria in children. This study included children aged 0-16 years from Guinea-Bissau with clinical signs of severe malaria. Serological and immunochemical characterisation of different anti-P. falciparum antibodies were made by ELISA and immunoblotting using a crude protein extract of P. falciparum. Sera from 12 children with severe malaria were analysed. Nine samples were positive for total anti-P. falciparum antibodies, seven for IgM and eight for total IgG anti-P. falciparum. There was a predominance of IgG1 response, suggesting a cytophilic action in severe malaria and a major role of IgG1 over other immunoglobulins. The antigenic profile of P. falciparum showed a consistent immunoblotting pattern of approximately 180 kDa, 100 kDa and around 50-40 kDa. The serological reactivity found in protein bands makes them as immunodominant antigens and promising candidates for serological markers in the context of severe malaria.
Collapse
Affiliation(s)
- Janine Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Anaxore Casimiro
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Daniela Portugal-Calisto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal; Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Luís Varandas
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal; Infectious Disease Unit, Hospital Dona Estefânia. Lisbon, Portugal
| | - Fátima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal
| | - Marcelo Sousa Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Portugal; Imunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Centre, Federal University of Rio Grande do Norte, Natal, Brazil; Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
13
|
Quintana MDP, Ch’ng JH, Zandian A, Imam M, Hultenby K, Theisen M, Nilsson P, Qundos U, Moll K, Chan S, Wahlgren M. SURGE complex of Plasmodium falciparum in the rhoptry-neck (SURFIN4.2-RON4-GLURP) contributes to merozoite invasion. PLoS One 2018; 13:e0201669. [PMID: 30092030 PMCID: PMC6084945 DOI: 10.1371/journal.pone.0201669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Plasmodium falciparum invasion into red blood cells (RBCs) is a complex process engaging proteins on the merozoite surface and those contained and sequentially released from the apical organelles (micronemes and rhoptries). Fundamental to invasion is the formation of a moving junction (MJ), a region of close apposition of the merozoite and the RBC plasma membranes, through which the merozoite draws itself before settling into a newly formed parasitophorous vacuole (PV). SURFIN4.2 was identified at the surface of the parasitized RBCs (pRBCs) but was also found apically associated with the merozoite. Using antibodies against the N-terminus of the protein we show the presence of SURFIN4.2 in the neck of the rhoptries, its secretion into the PV and shedding into the culture supernatant upon schizont rupture. Using immunoprecipitation followed by mass spectrometry we describe here a novel protein complex we have named SURGE where SURFIN4.2 forms interacts with the rhoptry neck protein 4 (RON4) and the Glutamate Rich Protein (GLURP). The N-terminal cysteine-rich-domain (CRD) of SURFIN4.2 mediates binding to the RBC membrane and its interaction with RON4 suggests its involvement in the contact between the merozoite apex and the RBC at the MJ. Supporting this suggestion, we also found that polyclonal antibodies to the extracellular domain (including the CRD) of SURFIN4.2 partially inhibit merozoite invasion. We propose that the formation of the SURGE complex participates in the establishment of parasite infection within the PV and the RBCs.
Collapse
Affiliation(s)
- Maria del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jun-Hong Ch’ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Arash Zandian
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Maryam Imam
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Centre, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
15
|
Micro-epidemiology of malaria in an elimination setting in Central Vietnam. Malar J 2018; 17:119. [PMID: 29554901 PMCID: PMC5859719 DOI: 10.1186/s12936-018-2262-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background In Vietnam, malaria persists in remote forested regions where infections are spatially heterogeneous, mostly asymptomatic and with low parasite density. Previous studies in Vietnam have investigated broad behavioural concepts such as ‘engaging in forest activities’ as risk factors for malaria infection, which may not explain heterogeneity in malaria risk, especially in malaria elimination settings. Methods A mixed methods study combining ethnographic research and a cross-sectional survey was embedded in a 1-year malariometric cohort study in three ethnic minority villages in South Tra My district, Quang Nam Province in Central Vietnam. Qualitative data collection included in-depth interviews, informal conversations and participant observations over a 2-month period, and the findings were used to develop the questionnaire used in the cross-sectional survey. The latter collected data on evening activities, mobility patterns and household characteristics. The primary outcome, recent exposure to malaria, was defined using the classification and regression tree method to determine significant changes in antibody titres during the year preceding the survey. Risk factor analyses for recent exposure to malaria were conducted using logistic regression. Results 22 in-depth interviews and numerous participant observations were recorded during the ethnographic research (April to June 2015), and 160 adults (86% response rate) responded to the cross-sectional survey (November to December 2015). Recent exposure to Plasmodium falciparum malaria was estimated at 22.9 and at 17.1% for Plasmodium vivax. Ongoing malaria transmission appears to be maintained by activities that delay or disrupt sleeping in a permanent structure in which a bed net could be hung, including evening drinking gatherings, fishing, logging in the forest and outdoor TV watching. Conclusions Vector control tools for outdoor evening activities in villages as well as at farms, forest and river locations should be incorporated into current malaria elimination efforts in Central Vietnam. Micro-epidemiology studies using mixed-methods designs can provide a comprehensive understanding of the malaria risk at fine spatial scales and better inform the implementation of targeted interventions for malaria elimination. Electronic supplementary material The online version of this article (10.1186/s12936-018-2262-0) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Nguetse CN, Ojo JA, Nchotebah C, Ikegbunam MN, Meyer CG, Thomas BN, Velavan TP, Ojurongbe O. Genetic Diversity of the Plasmodium falciparum Glutamate-Rich Protein R2 Region Before and Twelve Years after Introduction of Artemisinin Combination Therapies among Febrile Children in Nigeria. Am J Trop Med Hyg 2018; 98:667-676. [PMID: 29363449 PMCID: PMC5930894 DOI: 10.4269/ajtmh.17-0621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/14/2017] [Indexed: 11/07/2022] Open
Abstract
The genetic diversity of glutamate-rich protein (GLURP) R2 region in Plasmodium falciparum isolates collected before and 12 years after the introduction of artemisinin combination treatment of malaria in Osogbo, Osun State, Nigeria, was compared in this study. Blood samples were collected on filter paper in 2004 and 2015 from febrile children from ages 1-12 years. The R2 region of the GLURP gene was genotyped using nested polymerase chain reaction and by nucleotide sequencing. In all, 12 GLURP alleles were observed in a total of 199 samples collected in the two study years. The multiplicity of infection (MOI) marginally increased over the two study years; however, the differences were statistically insignificant (2004 samples MOI = 1.23 versus 2015 samples MOI = 1.47). Some alleles were stable in their prevalence, whereas two GLURP alleles, VIII and XI, showed considerable variability between both years. This variability was replicated when GLURP sequences from other regions were compared with ours. The expected heterozygosity (He) values (He = 0.87) were identical for the two groups. High variability in the rearrangement of the amino acid repeat units in the R2 region were observed, with the amino acid repeat sequence DKNEKGQHEIVEVEEILPE more prevalent in both years, compared with the two other repeat sequences observed in the study. The parasite population characterized in this study displayed extensive genetic diversity. The detailed genetic profile of the GLURP R2 region has the potential to help guide further epidemiological studies aimed toward the rational design of novel chemotherapies that are antagonistic toward malaria.
Collapse
Affiliation(s)
- Christian N. Nguetse
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Johnson Adeyemi Ojo
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Charles Nchotebah
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Moses Nkechukwu Ikegbunam
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikwe University, Akwa, Nigeria
| | - Christian G. Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Duy Tan University, Da Nang, Vietnam
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, New York
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Duy Tan University, Da Nang, Vietnam
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
| | - Olusola Ojurongbe
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| |
Collapse
|
17
|
Pattaradilokrat S, Trakoolsoontorn C, Simpalipan P, Warrit N, Kaewthamasorn M, Harnyuttanakorn P. Size and sequence polymorphisms in the glutamate-rich protein gene of the human malaria parasite Plasmodium falciparum in Thailand. Parasit Vectors 2018; 11:49. [PMID: 29357909 PMCID: PMC5778735 DOI: 10.1186/s13071-018-2630-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background The glutamate-rich protein (GLURP) of the malaria parasite Plasmodium falciparum is a key surface antigen that serves as a component of a clinical vaccine. Moreover, the GLURP gene is also employed routinely as a genetic marker for malarial genotyping in epidemiological studies. While extensive size polymorphisms in GLURP are well recorded, the extent of the sequence diversity of this gene is rarely investigated. The present study aimed to explore the genetic diversity of GLURP in natural populations of P. falciparum. Results The polymorphic C-terminal repetitive R2 region of GLURP sequences from 65 P. falciparum isolates in Thailand were generated and combined with the data from 103 worldwide isolates to generate a GLURP database. The collection was comprised of 168 alleles, encoding 105 unique GLURP subtypes, characterized by 18 types of amino acid repeat units (AAU). Of these, 28 GLURP subtypes, formed by 10 AAU types, were detected in P. falciparum in Thailand. Among them, 19 GLURP subtypes and 2 AAU types are described for the first time in the Thai parasite population. The AAU sequences were highly conserved, which is likely due to negative selection. Standard Fst analysis revealed the shared distributions of GLURP types among the P. falciparum populations, providing evidence of gene flow among the different demographic populations. Conclusions Sequence diversity causing size variations in GLURP in Thai P. falciparum populations were detected, and caused by non-synonymous substitutions in repeat units and some insertion/deletion of aspartic acid or glutamic acid codons between repeat units. The P. falciparum population structure based on GLURP showed promising implications for the development of GLURP-based vaccines and for monitoring vaccine efficacy. Electronic supplementary material The online version of this article (doi: 10.1186/s13071-018-2630-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sittiporn Pattaradilokrat
- Department of Biology, Faculty of Science, Chualongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand. .,Veterinary Parasitology Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chawinya Trakoolsoontorn
- Department of Biology, Faculty of Science, Chualongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Phumin Simpalipan
- Department of Biology, Faculty of Science, Chualongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Natapot Warrit
- Department of Biology, Faculty of Science, Chualongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pongchai Harnyuttanakorn
- Department of Biology, Faculty of Science, Chualongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
18
|
Funwei RI, Thomas BN, Falade CO, Ojurongbe O. Extensive diversity in the allelic frequency of Plasmodium falciparum merozoite surface proteins and glutamate-rich protein in rural and urban settings of southwestern Nigeria. Malar J 2018; 17:1. [PMID: 29291736 PMCID: PMC5749027 DOI: 10.1186/s12936-017-2149-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 01/23/2023] Open
Abstract
Background Nigeria carries a high burden of malaria which makes continuous surveillance for current information on genetic diversity imperative. In this study, the merozoite surface proteins (msp-1, msp-2) and glutamate-rich protein (glurp) of Plasmodium falciparum collected from two communities representing rural and urban settings in Ibadan, southwestern Nigeria were analysed. Methods A total of 511 febrile children, aged 3–59 months, whose parents/guardians provided informed consent, were recruited into the study. Capillary blood was obtained for malaria rapid diagnostic test, thick blood smears for parasite count and blood spots on filter paper for molecular analysis. Results Three-hundred and nine samples were successfully genotyped for msp-1, msp-2 and glurp genes. The allelic distribution of the three genes was not significantly different in the rural and urban communities. R033 and 3D7 were the most prevalent alleles in both rural and urban communities for msp-1 and msp-2, respectively. Eleven of glurp RII region genotypes, coded I–XII, with sizes ranging from 500 to 1100 base pairs were detected in the rural setting. Genotype XI (1000–1050 bp) had the highest prevalence of 41.5 and 38.5% in rural and urban settings, respectively. Overall, 82.1 and 70.0% of samples had multiclonal infection with msp-1 gene resulting in a mean multiplicity of infection (MOI) of 2.8 and 2.6 for rural and urban samples, respectively. Msp-1 and msp-2 genes displayed higher levels of diversity and higher MOI rates than the glurp gene. Conclusion Significant genetic diversity was observed between rural and urban parasite populations in Ibadan, southwestern Nigeria. The results of this study show that malaria transmission intensity in these regions is still high. No significant difference was observed between rural and urban settings, except for a completely different msp-1 allele, compared to previous reports, thereby confirming the changing face of malaria transmission in these communities. This study provides important baseline information required for monitoring the impact of malaria elimination efforts in this region and data points useful in revising current protocols.
Collapse
Affiliation(s)
- Roland I Funwei
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacy Technician Studies, Bayelsa State College of Health Technology, Yenagoa, Nigeria
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA.,Tropical Disease Research Laboratory, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Catherine O Falade
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Institute for Advanced Medical Research and Training, University of Ibadan, Ibadan, Nigeria
| | - Olusola Ojurongbe
- Tropical Disease Research Laboratory, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria. .,Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.
| |
Collapse
|
19
|
Kwenti TE, Moye AL, Wiylanyuy AB, Njunda LA, Nkuo-Akenji T. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon. Malar J 2017; 16:453. [PMID: 29121929 PMCID: PMC5679504 DOI: 10.1186/s12936-017-2105-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/02/2017] [Indexed: 11/12/2022] Open
Abstract
Background Studies to assess the immune responses against malaria in Cameroonian children are limited. The purpose of this study was to assess the immune responses against Plasmodium falciparum merozoite surface protein-1 (MSP-119) and apical membrane antigen-1 (AMA-1) in children residing in the different epidemiological strata of malaria in Cameroon. Methods In a cross-sectional survey performed between April and July 2015, 602 children between 2 and 15 years (mean ± SD = 5.7 ± 3.7), comprising 319 (53%) males were enrolled from five epidemiological strata of malaria in Cameroon including: the sudano-sahelian (SS) strata, the high inland plateau (HIP) strata, the south Cameroonian equatorial forest (SCEF) strata, the high western plateau (HWP) strata, and the coastal (C) strata. The children were screened for clinical malaria (defined by malaria parasitaemia ≥ 5000 parasites/µl plus axillary temperature ≥ 37.5 °C). Their antibody responses were measured against P. falciparum MSP-119 and AMA-1 vaccine candidate antigens using standard ELISA technique. Results A majority of the participants were IgG responders 72.1% (95% CI 68.3–75.6). The proportion of responders was higher in females (p = 0.002) and in children aged 10 years and above (p = 0.005). The proportion of responders was highest in Limbe (C strata) and lowest in Ngaoundere (HIP strata) (p < 0.0001). Similarly, the mean IgG antibody levels were higher in children aged 10 years and above (p < 0.0001) and in Limbe (p = 0.001). The IgG antibody levels against AMA-1 were higher in females (p = 0.028), meanwhile no gender disparity was observed with MSP-1. Furthermore the risk of clinical malaria (p < 0.0001) and the mean parasite density (p = 0.035) were higher in IgG non-responders. Conclusion A high proportion of IgG responders was observed in this study, suggesting a high degree exposure of the target population to malaria parasites. The immune responses varied considerably across the different strata: the highest levels observed in the C strata and the lowest in the HIP strata. Furthermore, malaria transmission in Cameroon could be categorized into two major groups based on the serological reaction of the children: the southern (comprising C and SCEF strata) and northern (comprising HWP, HIP and SS strata) groups. These findings may have significant implications in the design of future trials for evaluating malaria vaccine candidates in Cameroon.
Collapse
Affiliation(s)
- Tebit Emmanuel Kwenti
- Department of Microbiology and Parasitology, University of Buea, P.B. 63, Buea, Cameroon. .,Department of Medical Laboratory Sciences, University of Buea, P.B. 63, Buea, Cameroon.
| | | | | | - Longdoh Anna Njunda
- Department of Microbiology and Parasitology, University of Buea, P.B. 63, Buea, Cameroon
| | - Theresa Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, P.B. 63, Buea, Cameroon
| |
Collapse
|
20
|
Cherif MK, Ouédraogo O, Sanou GS, Diarra A, Ouédraogo A, Tiono A, Cavanagh DR, Michael T, Konaté AT, Watson NL, Sanza M, Dube TJT, Sirima SB, Nebié I. Antibody responses to P. falciparum blood stage antigens and incidence of clinical malaria in children living in endemic area in Burkina Faso. BMC Res Notes 2017; 10:472. [PMID: 28886727 PMCID: PMC5591548 DOI: 10.1186/s13104-017-2772-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background High parasite-specific antibody levels are generally associated with low susceptibility to Plasmodium falciparum malaria. This has been supported by several studies in which clinical malaria cases of P. falciparum malaria were reported to be associated with low antibody avidities. This study was conducted to evaluate the role of age, malaria transmission intensity and incidence of clinical malaria in the induction of protective humoral immune response against P. falciparum malaria in children living in Burkina Faso. Methods We combined levels of IgG and IgG subclasses responses to P. falciparum antigens: Merozoite Surface Protein 3 (MSP3), Merozoite Surface Protein 2a (MSP2a), Merozoite Surface Protein 2b (MSP2b), Glutamate Rich Protein R0 (GLURP R0) and Glutamate Rich Protein R2 (GLURP R2) in plasma samples from 325 children under five (05) years with age, malaria transmission season and malaria incidence. Results We notice higher prevalence of P. falciparum infection in low transmission season compared to high malaria transmission season. While, parasite density was lower in low transmission than high transmission season. IgG against all antigens investigated increased with age. High levels of IgG and IgG subclasses to all tested antigens except for GLURP R2 were associated with the intensity of malaria transmission. IgG to MSP3, MSP2b, GLURP R2 and GLURP R0 were associated with low incidence of malaria. All IgG subclasses were associated with low incidence of P. falciparum malaria, but these associations were stronger for cytophilic IgGs. Conclusions On the basis of the data presented in this study, we conclude that the induction of humoral immune response to tested malaria antigens is related to age, transmission season level and incidence of clinical malaria.
Collapse
Affiliation(s)
- Mariama K Cherif
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.,Université Polytechnique de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Oumarou Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.,Université de Ouagadougou, Ouagadougou, Burkina Faso
| | - Guillaume S Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alphonse Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alfred Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - David R Cavanagh
- Institute of Immunology and Infection Research, University of Edinburgh, Scotland, UK
| | - Theisen Michael
- Department of Clinical Biochemistry Statens Serum, Copenhagen, Denmark
| | - Amadou T Konaté
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | | | | | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nebié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.
| |
Collapse
|
21
|
Theisen M, Adu B, Mordmüller B, Singh S. The GMZ2 malaria vaccine: from concept to efficacy in humans. Expert Rev Vaccines 2017; 16:907-917. [PMID: 28699823 DOI: 10.1080/14760584.2017.1355246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION GMZ2 is a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of Plasmodium falciparum, and is designed with the aim of mimicking naturally acquired anti-malarial immunity. The rationale for combining these two antigens is based on a series of immune epidemiological studies from geographically diverse malaria endemic regions; functional in vitro studies; and pre-clinical studies in rodents and New World monkeys. GMZ2 adjuvanted with alhydrogel® (alum) was well tolerated and immunogenic in three phase 1 studies. The recently concluded phase 2 trial of GMZ2/alum, involving 1849 participants 12 to 60 month of age in four countries in West, Central and Eastern Africa, showed that GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects for clinical development of GMZ2 sub-unit vaccine. We will focus on discovery, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production, pre-clinical and clinical studies. Expert commentary: GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. More immunogenic formulations should be developed.
Collapse
Affiliation(s)
- Michael Theisen
- a Department for Congenital Disorders , Statens Serum Institut , Copenhagen , Denmark.,b Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology , University of Copenhagen , Copenhagen , Denmark.,c Department of Infectious Diseases , Copenhagen University Hospital , Rigshospitalet , Denmark
| | - Bright Adu
- d Noguchi Memorial Institute for Medical Research , University of Ghana , Legon , Ghana
| | - Benjamin Mordmüller
- e Institute of Tropical Medicine and Center for Infection Research, partner site Tübingen , University of Tübingen , Tübingen , Germany
| | - Subhash Singh
- f Indian Institute of Integrative Medicine , Jammu , India
| |
Collapse
|
22
|
Hill DL, Schofield L, Wilson DW. IgG opsonization of merozoites: multiple immune mechanisms for malaria vaccine development. Int J Parasitol 2017; 47:585-595. [PMID: 28668325 DOI: 10.1016/j.ijpara.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/12/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Global eradication of the human-infecting malaria parasite Plasmodium falciparum, the major cause of malaria mortality, is unlikely to be achieved without an effective vaccine. However, our limited understanding of how protective immune responses target malaria parasites in humans, and how to best elicit these immune responses through vaccination, has hampered vaccine development. The red blood cell invading stage of the parasite lifecycle (merozoite) displays antigens that are attractive vaccine candidates as they are accessible to antibodies and raise high antibody titres in naturally immune individuals. The number of merozoite antigens that elicit an immune response, and their structural and functional diversity, has led to a large number of lead antigens being pursued as vaccine candidates. Despite being seemingly spoilt for choice in terms of vaccine candidates, there is still a lack of consensus on exactly how merozoite antibodies reduce parasitemia and malaria disease. In this review we describe the various immune mechanisms that can result from IgG opsonization of merozoites, and highlight recent developments that support a role for these functional antibodies in naturally acquired and vaccine-induced immunity.
Collapse
Affiliation(s)
- Danika L Hill
- Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom; The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| | - Louis Schofield
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia; Burnet Institute, 85 Commercial Road, Melbourne 3004, Victoria, Australia.
| |
Collapse
|
23
|
Mistarz UH, Singh SK, Nguyen TTTN, Roeffen W, Yang F, Lissau C, Madsen SM, Vrang A, Tiendrebeogo RW, Kana IH, Sauerwein RW, Theisen M, Rand KD. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite. Pharm Res 2017. [PMID: 28646324 DOI: 10.1007/s11095-017-2208-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a multi-stage malaria vaccine that targets both transmission and asexual life-cycle stages of the parasite. METHODS GMZ2'.10C was produced in Lactococcus lactis and purified using either an immunoaffinity purification (IP) or a conventional purification (CP) method. Protein purity and stability was analysed by RP-HPLC, SEC-HPLC, 2-site ELISA, gel-electrophoresis and Western blotting. Structural characterization (mass analysis, peptide mapping and cysteine connectivity mapping) was performed by LC-MS/MS. RESULTS CP-GMZ2'.10C resulted in similar purity, yield, structure and stability as compared to IP-GMZ2'.10C. CP-GMZ2'.10C and IP-GMZ2'.10C both elicited a high titer of transmission blocking (TB) antibodies in rodents. The intricate disulphide-bond connectivity of C-terminus Pfs48/45 was analysed by tandem mass spectrometry and was established for GMZ2'.10C and two reference fusion proteins encompassing similar parts of Pfs48/45. CONCLUSION GMZ2'.10C, combining GMZ2' and correctly-folded Pfs48/45 can be produced by the Lactoccus lactis P170 based expression system in purity and quality for pharmaceutical development and elicit high level of TB antibodies. The cysteine connectivity for the 10C region of Pfs48/45 was revealed experimentally, providing an important guideline for employing the Pfs48/45 antigen in vaccine design.
Collapse
Affiliation(s)
- Ulrik H Mistarz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark.,Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tam T T N Nguyen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Will Roeffen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Fen Yang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Casper Lissau
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | | | | | - Régis W Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark.,Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ikhlaq H Kana
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark.,Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark. .,Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| |
Collapse
|
24
|
Ntege EH, Takashima E, Morita M, Nagaoka H, Ishino T, Tsuboi T. Blood-stage malaria vaccines: post-genome strategies for the identification of novel vaccine candidates. Expert Rev Vaccines 2017; 16:769-779. [PMID: 28604122 DOI: 10.1080/14760584.2017.1341317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION An efficacious malaria vaccine is necessary to advance the current control measures towards malaria elimination. To-date, only RTS,S/AS01, a leading pre-erythrocytic stage vaccine completed phase 3 trials, but with an efficacy of 28-36% in children, and 18-26% in infants, that waned over time. Blood-stage malaria vaccines protect against disease, and are considered effective targets for the logical design of next generation vaccines to improve the RTS,S field efficacy. Therefore, novel blood-stage vaccine candidate discovery efforts are critical, albeit with several challenges including, high polymorphisms in vaccine antigens, poor understanding of targets of naturally protective immunity, and difficulties in the expression of high AT-rich plasmodial proteins. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects of malaria vaccine research and development. We focused on post-genome vaccine candidate discovery, malaria vaccine development, sequence diversity, pre-clinical and clinical trials. Expert commentary: Post-genome high-throughput technologies using wheat germ cell-free protein synthesis technology and immuno-profiling with sera from malaria patients with clearly defined outcomes are highlighted to overcome current challenges of malaria vaccine candidate discovery.
Collapse
Affiliation(s)
- Edward H Ntege
- a Division of Malaria Research , Proteo-Science Center, Ehime University , Matsuyama , Ehime , Japan
| | - Eizo Takashima
- a Division of Malaria Research , Proteo-Science Center, Ehime University , Matsuyama , Ehime , Japan
| | - Masayuki Morita
- a Division of Malaria Research , Proteo-Science Center, Ehime University , Matsuyama , Ehime , Japan
| | - Hikaru Nagaoka
- a Division of Malaria Research , Proteo-Science Center, Ehime University , Matsuyama , Ehime , Japan
| | - Tomoko Ishino
- b Division of Molecular Parasitology , Proteo-Science Center, Ehime University , Toon , Ehime , Japan
| | - Takafumi Tsuboi
- a Division of Malaria Research , Proteo-Science Center, Ehime University , Matsuyama , Ehime , Japan
| |
Collapse
|
25
|
Kana IH, Adu B, Tiendrebeogo RW, Singh SK, Dodoo D, Theisen M. Naturally Acquired Antibodies Target the Glutamate-Rich Protein on Intact Merozoites and Predict Protection Against Febrile Malaria. J Infect Dis 2017; 215:623-630. [PMID: 28329101 DOI: 10.1093/infdis/jiw617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/05/2017] [Indexed: 11/14/2022] Open
Abstract
Background Plasmodium species antigens accessible at the time of merozoite release are likely targets of biologically functional antibodies. Methods Immunoglobulin G (IgG) antibodies against intact merozoites were quantified in the plasma of Ghanaian children from a longitudinal cohort using a novel flow cytometry-based immunofluorescence assay. Functionality of these antibodies, as well as glutamate-rich protein (GLURP)-specific affinity-purified IgG from malaria hyperimmune Liberian adults, was assessed by the opsonic phagocytosis (OP) assay. Results Opsonic phagocytosis activity was strongly associated (hazard ratio [HR] = 0.46; 95% confidence interval [CI] = .30-.73; P = .0008) with protection against febrile malaria. Of the antimerozoite-specific antibodies, only IgG3 was significantly associated with both OP and protection (HR = 0.53; 95% CI = .34-.84; Pcorrected = .03) against febrile malaria. Similarly, GLURP-specific antibodies previously shown to be protective against febrile malaria in this same cohort were significantly associated with OP activity in this study. GLURP-specific antibodies recognized merozoites and also mediated OP activity. Conclusions These findings support previous studies that found OP of merozoites to be associated with protection against malaria and further shows IgG3 and GLURP antibodies are key in the OP mechanism, thus giving further impetus for the development of malaria vaccines targeting GLURP.
Collapse
Affiliation(s)
- Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Régis Wendpayangde Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
26
|
Antwi-Baffour S, Adjei JK, Agyemang-Yeboah F, Annani-Akollor M, Kyeremeh R, Asare GA, Gyan B. Proteomic analysis of microparticles isolated from malaria positive blood samples. Proteome Sci 2017; 15:5. [PMID: 28352210 PMCID: PMC5366142 DOI: 10.1186/s12953-017-0113-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/17/2017] [Indexed: 01/06/2023] Open
Abstract
Background Malaria continues to be a great public health concern due to the significant mortality and morbidity associated with the disease especially in developing countries. Microparticles (MPs), also called plasma membrane derived extracellular vesicles (PMEVs) are subcellular structures that are generated when they bud off the plasma membrane. They can be found in healthy individuals but the numbers tend to increase in pathological conditions including malaria. Although, various studies have been carried out on the protein content of specific cellular derived MPs, there seems to be paucity of information on the protein content of circulating MPs in malaria and their association with the various signs and symptoms of the disease. The aim of this study was therefore to carry out proteomic analyses of MPs isolated from malaria positive samples and compare them with proteins of MPs from malaria parasite culture supernatant and healthy controls in order to ascertain the role of MPs in malaria infection. Methods Plasma samples were obtained from forty-three (43) malaria diagnosed patients (cases) and ten (10) healthy individuals (controls). Malaria parasite culture supernatant was obtained from our laboratory and MPs were isolated from them and confirmed using flow cytometry. 2D LC-MS was done to obtain their protein content. Resultant data were analyzed using SPSS Ver. 21.0 statistical software, Kruskal Wallis test and Spearman’s correlation coefficient r. Results In all, 1806 proteins were isolated from the samples. The MPs from malaria positive samples recorded 1729 proteins, those from culture supernatant were 333 while the control samples recorded 234 proteins. The mean number of proteins in MPs of malaria positive samples was significantly higher than that in the control samples. Significantly, higher quantities of haemoglobin subunits were seen in MPs from malaria samples and culture supernatant compared to control samples. Conclusion A great number of proteins were observed to be carried in the microparticles (MPs) from malaria samples and culture supernatant compared to controls. The greater loss of haemoglobin from erythrocytes via MPs from malaria patients could serve as the initiation and progression of anaemia in P.falciparum infection. Also while some proteins were upregulated in circulating MPs in malaria samples, others were down regulated.
Collapse
Affiliation(s)
- Samuel Antwi-Baffour
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Jonathan Kofi Adjei
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana.,Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francis Agyemang-Yeboah
- Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Max Annani-Akollor
- Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ransford Kyeremeh
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - George Awuku Asare
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Ben Gyan
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
27
|
Strain-specific Plasmodium falciparum growth inhibition among Malian children immunized with a blood-stage malaria vaccine. PLoS One 2017; 12:e0173294. [PMID: 28282396 PMCID: PMC5345808 DOI: 10.1371/journal.pone.0173294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/17/2017] [Indexed: 11/19/2022] Open
Abstract
The blood-stage malaria vaccine FMP2.1/AS02A, comprised of recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1) and the adjuvant system AS02A, had strain-specific efficacy against clinical malaria caused by P. falciparum with the vaccine strain 3D7 AMA1 sequence. To evaluate a potential correlate of protection, we measured the ability of participant sera to inhibit growth of 3D7 and FVO strains in vitro using high-throughput growth inhibition assay (GIA) testing. Sera from 400 children randomized to receive either malaria vaccine or a control rabies vaccine were assessed at baseline and over two annual malaria transmission seasons after immunization. Baseline GIA against vaccine strain 3D7 and FVO strain was similar in both groups, but more children in the malaria vaccine group than in the control group had 3D7 and FVO GIA activity ≥15% 30 days after the last vaccination (day 90) (49% vs. 16%, p<0.0001; and 71.8% vs. 60.4%, p = 0.02). From baseline to day 90, 3D7 GIA in the vaccine group was 7.4 times the mean increase in the control group (p<0.0001). In AMA1 vaccinees, 3D7 GIA activity subsequently returned to baseline one year after vaccination (day 364) and did not correlate with efficacy in the extended efficacy time period to day 730. In Cox proportional hazards regression models with time-varying covariates, there was a slight suggestion of an association between 3D7 GIA activity and increased risk of clinical malaria between day 90 and day 240. We conclude that vaccination with this AMA1-based malaria vaccine increased inhibition of parasite growth, but this increase was not associated with allele-specific efficacy in the first malaria season. These results provide a framework for testing functional immune correlates of protection against clinical malaria in field trials, and will help to guide similar analyses for next-generation malaria vaccines. Clinical trials registry: This clinical trial was registered on clinicaltrials.gov, registry number NCT00460525.
Collapse
|
28
|
Goh YS, Peng K, Chia WN, Siau A, Chotivanich K, Gruner AC, Preiser P, Mayxay M, Pukrittayakamee S, Sriprawat K, Nosten F, White NJ, Renia L. Neutralizing Antibodies against Plasmodium falciparum Associated with Successful Cure after Drug Therapy. PLoS One 2016; 11:e0159347. [PMID: 27427762 PMCID: PMC4948787 DOI: 10.1371/journal.pone.0159347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/30/2016] [Indexed: 12/15/2022] Open
Abstract
An effective antibody response can assist drug treatment to contribute to better parasite clearance in malaria patients. To examine this, sera were obtained from two groups of adult patients with acute falciparum malaria, prior to drug treatment: patients who (1) have subsequent recrudescent infection, or (2) were cured by Day 28 following treatment. Using a Plasmodium falciparum antigen library, we examined the antibody specificities in these sera. While the antibody repertoire of both sera groups was extremely broad and varied, there was a differential antibody profile between the two groups of sera. The proportion of cured patients with antibodies against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 was higher than the proportion of patients with recrudescent infection. The presence of these antibodies was associated with higher odds of treatment cure. Sera containing all six antibodies impaired the invasion of P. falciparum clinical isolates into erythrocytes. These results suggest that antibodies specific against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 in P. falciparum infections could assist anti-malarial drug treatment and contribute to the resolution of the malarial infection.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Adult
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/blood
- Antibody Specificity
- Antigens, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antimalarials/therapeutic use
- Artemether
- Artemisinins/therapeutic use
- Azithromycin/therapeutic use
- Cohort Studies
- Erythrocytes/drug effects
- Erythrocytes/parasitology
- Ethanolamines/therapeutic use
- Female
- Fluorenes/therapeutic use
- Humans
- Immune Sera/pharmacology
- Immunity, Humoral
- Lumefantrine
- Malaria, Falciparum/blood
- Malaria, Falciparum/drug therapy
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Male
- Plasmodium falciparum/drug effects
- Plasmodium falciparum/growth & development
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recurrence
- Treatment Outcome
Collapse
Affiliation(s)
- Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kaitian Peng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wan Ni Chia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anthony Siau
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Anne-Charlotte Gruner
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Peter Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Laos
| | | | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
29
|
Baldwin SL, Roeffen W, Singh SK, Tiendrebeogo RW, Christiansen M, Beebe E, Carter D, Fox CB, Howard RF, Reed SG, Sauerwein R, Theisen M. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen. Vaccine 2016; 34:2207-15. [PMID: 26994314 DOI: 10.1016/j.vaccine.2016.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/25/2016] [Accepted: 03/09/2016] [Indexed: 11/17/2022]
Abstract
A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the sexual-stage protein Pfs48/45-6C genetically fused to GMZ2, an asexual vaccine antigen in advanced clinical development. To select the most suitable vaccine formulation for downstream clinical studies, GMZ2.6C was tested with various immune modulators in different adjuvant formulations (stable emulsions, liposomes, and alum) in C57BL/6 mice. Some, but not all, formulations containing either the synthetic TLR4 agonist GLA or SLA elicited the highest parasite-specific antibody titers, the greatest IFN-γ responses in CD4+ TH1 cells, and the highest percentage of multifunctional CD4+ T cells expressing IFN-γ and TNF in response to GMZ2.6C. Both of these agonists have good safety records in humans.
Collapse
Affiliation(s)
- Susan L Baldwin
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Will Roeffen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Regis W Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Elyse Beebe
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Darrick Carter
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Christopher B Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Randall F Howard
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark.
| |
Collapse
|
30
|
Adu B, Cherif MK, Bosomprah S, Diarra A, Arthur FKN, Dickson EK, Corradin G, Cavanagh DR, Theisen M, Sirima SB, Nebie I, Dodoo D. Antibody levels against GLURP R2, MSP1 block 2 hybrid and AS202.11 and the risk of malaria in children living in hyperendemic (Burkina Faso) and hypo-endemic (Ghana) areas. Malar J 2016; 15:123. [PMID: 26921176 PMCID: PMC4769494 DOI: 10.1186/s12936-016-1146-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
Background
Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. Methods The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6–72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. Results There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74–0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25–0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73–0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01–1.65, p = 0.04). Conclusion These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1146-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Mariama K Cherif
- Polytechnic University of BoboDioulasso, Bobo-Dioulasso, Burkina Faso. .,Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso.
| | | | - Amidou Diarra
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso.
| | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Emmanuel K Dickson
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | | | - David R Cavanagh
- Institute of Cell, Animal and Population Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso.
| | - Issa Nebie
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso.
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| |
Collapse
|
31
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, Biswas S. Recent advances in recombinant protein-based malaria vaccines. Vaccine 2015; 33:7433-43. [PMID: 26458807 PMCID: PMC4687528 DOI: 10.1016/j.vaccine.2015.09.093] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/05/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023]
Abstract
Protein-based vaccines remain the cornerstone approach for B cell and antibody induction against leading target malaria antigens. Advances in antigen selection, immunogen design and epitope-focusing are advancing the field. New heterologous expression platforms are enabling cGMP production of next-generation protein vaccines. Next-generation antigens, protein-based immunogens and virus-like particle (VLP) delivery platforms are in clinical development. Protein-based vaccines will form part of a highly effective multi-component/multi-stage/multi-antigen subunit formulation against malaria.
Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | - Evelina Angov
- Walter Reed Army Institute of Research, U. S. Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 561-873, Japan
| | - Louis H Miller
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Prakash Srinivasan
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
33
|
Kaddumukasa M, Lwanira C, Lugaajju A, Katabira E, Persson KEM, Wahlgren M, Kironde F. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria. PLoS One 2015; 10:e0124297. [PMID: 25906165 PMCID: PMC4408068 DOI: 10.1371/journal.pone.0124297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. Methods This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. Results On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. Conclusion In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status.
Collapse
Affiliation(s)
- Mark Kaddumukasa
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Elly Katabira
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kristina E M Persson
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Lund University, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Kironde
- College of Health Sciences, Makerere University, Kampala, Uganda; Habib Medical School, IUIU, Kampala, Uganda
| |
Collapse
|
34
|
Tiendrebeogo RW, Adu B, Singh SK, Dziegiel MH, Nébié I, Sirima SB, Christiansen M, Dodoo D, Theisen M. Antibody-Dependent Cellular Inhibition Is Associated With Reduced Risk Against Febrile Malaria in a Longitudinal Cohort Study Involving Ghanaian Children. Open Forum Infect Dis 2015; 2:ofv044. [PMID: 26380342 PMCID: PMC4567085 DOI: 10.1093/ofid/ofv044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/30/2015] [Indexed: 11/13/2022] Open
Abstract
The antibody-dependent respiratory burst and opsonic phagocytosis assays have been associated with protection against malaria; however, other mechanisms may also be involved. The antibody-dependent cellular inhibition (ADCI) assay is yet to be correlated with protection in longitudinal cohort studies (LCS). We investigated the relationship between ADCI activity of immunoglobulin G before malaria season and risk of malaria in a LCS involving Ghanaian children. High ADCI activity was significantly associated with reduced risk against malaria. Findings here suggest a potential usefulness of the ADCI assay as a correlate of protection to guide malaria vaccine studies.
Collapse
Affiliation(s)
- Regis W Tiendrebeogo
- Department of Clinical Biochemistry, Immunology and Genetics , Statens Serum Institut , Copenhagen ; Centre for Medical Parasitology at Department of International Health, Immunology, Microbiology, and Department of Infectious Diseases , Rigshospitalet, University of Copenhagen
| | - Bright Adu
- Department of Clinical Biochemistry, Immunology and Genetics , Statens Serum Institut , Copenhagen ; Centre for Medical Parasitology at Department of International Health, Immunology, Microbiology, and Department of Infectious Diseases , Rigshospitalet, University of Copenhagen
| | - Susheel K Singh
- Department of Clinical Biochemistry, Immunology and Genetics , Statens Serum Institut , Copenhagen ; Centre for Medical Parasitology at Department of International Health, Immunology, Microbiology, and Department of Infectious Diseases , Rigshospitalet, University of Copenhagen
| | | | - Issa Nébié
- Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso
| | - Michael Christiansen
- Department of Clinical Biochemistry, Immunology and Genetics , Statens Serum Institut , Copenhagen
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research , University of Ghana , Legon
| | - Michael Theisen
- Department of Clinical Biochemistry, Immunology and Genetics , Statens Serum Institut , Copenhagen ; Centre for Medical Parasitology at Department of International Health, Immunology, Microbiology, and Department of Infectious Diseases , Rigshospitalet, University of Copenhagen
| |
Collapse
|
35
|
Duru KC, Thomas BN. Genetic Diversity and Allelic Frequency of Glutamate-Rich Protein (GLURP) in Plasmodium falciparum Isolates from Sub-Saharan Africa. Microbiol Insights 2014; 7:35-9. [PMID: 25452699 PMCID: PMC4240185 DOI: 10.4137/mbi.s20618] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 11/05/2022] Open
Abstract
Glutamate-rich protein is a Plasmodium falciparum (Pf) antigen found in all stages of the parasite and has been reported to induce clinical immunity. The R0 and R2 regions have been found to exhibit a high degree of conservation, therefore serving as a good vaccine design material. We assayed the genetic diversity of Pf glurp genes in the R0 and R2 regions, as well as evaluated the role of seasonality on allelic frequency. A total of 402 genomic DNA samples, extracted from filter paper blood samples, were screened by nested polymerase chain reaction (PCR) analysis of Pf glurp R0 and R2 regions, in addition to fragment analysis of the polymorphic regions to identify allelic diversity of the parasite population. We found an extensive heterogeneity in the R2 region in general, and this heterogeneity is seasonally dependent, indicative of region plasticity. The R0 region displayed genetic conservation, as expected. We conclude that positive genotyping results with glurp R0 region should be seen as indicative of an active Pf infection, requiring adequate treatment. In addition, we advocate extending the possibility that an R0 region genotypic positivity could serve as diagnostic tool, thereby reducing cases of untreated or poorly treated infection, contributory to recrudescence or treatment failure.
Collapse
Affiliation(s)
- Kimberley C Duru
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Bolaji N Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
36
|
High-throughput tri-colour flow cytometry technique to assess Plasmodium falciparum parasitaemia in bioassays. Malar J 2014; 13:412. [PMID: 25331683 PMCID: PMC4213491 DOI: 10.1186/1475-2875-13-412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unbiased flow cytometry-based methods have become the technique of choice in many laboratories for high-throughput, accurate assessments of malaria parasites in bioassays. A method to quantify live parasites based on mitotracker red CMXRos was recently described but consistent distinction of early ring stages of Plasmodium falciparum from uninfected red blood cells (uRBC) remains a challenge. METHODS Here, a high-throughput, three-parameter (tri-colour) flow cytometry technique based on mitotracker red dye, the nucleic acid dye coriphosphine O (CPO) and the leucocyte marker CD45 for enumerating live parasites in bioassays was developed. The technique was applied to estimate the specific growth inhibition index (SGI) in the antibody-dependent cellular inhibition (ADCI) assay and compared to parasite quantification by microscopy and mitotracker red staining. The Bland-Altman analysis was used to compare biases between SGI estimated by the tri-colour staining technique, mitotracker red and by microscopy. RESULTS CPO allowed a better separation between early rings and uRBCs compared to mitotracker red resulting in a more accurate estimate of total parasitaemia. The tri-colour technique is rapid, cost effective and robust with comparable sensitivity to microscopy and capable of discriminating between live and dead and/or compromised parasites. Staining for CD45 improved parasitaemia estimates in ADCI assay since high numbers of leucocytes interfered with the accurate identification of parasitized RBC. The least bias (-1.60) in SGI was observed between the tri-colour and microscopy. CONCLUSION An improved methodology for high-throughput assessment of P. falciparum parasitaemia under culture conditions that could be useful in different bioassays, including ADCI and growth inhibition assays has been developed.
Collapse
|
37
|
Ferreira AR, Singh B, Cabrera-Mora M, Magri De Souza AC, Queiroz Marques MT, Porto LCS, Santos F, Banic DM, Calvo-Calle JM, Oliveira-Ferreira J, Moreno A, Da Costa Lima-Junior J. Evaluation of naturally acquired IgG antibodies to a chimeric and non-chimeric recombinant species of Plasmodium vivax reticulocyte binding protein-1: lack of association with HLA-DRB1*/DQB1* in malaria exposed individuals from the Brazilian Amazon. PLoS One 2014; 9:e105828. [PMID: 25148251 PMCID: PMC4141821 DOI: 10.1371/journal.pone.0105828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023] Open
Abstract
The development of modular constructs that include antigenic regions targeted by protective immune responses is an attractive approach for subunit vaccine development. However, a main concern of using these vaccine platforms is how to preserve the antigenic identity of conformational B cell epitopes. In the present study we evaluated naturally acquired antibody responses to a chimeric protein engineered to contain a previously defined immunodominant domain of the Plasmodium vivax reticulocyte binding protein-1 located between amino acid positions K435-I777. The construct also includes three regions of the cognate protein (F571-D587, I1745-S1786 and L2235-E2263) predicted to contain MHC class II promiscuous T cell epitopes. Plasma samples from 253 naturally exposed individuals were tested against this chimeric protein named PvRMC-RBP1 and a control protein that includes the native sequence PvRBP123-751 in comparative experiments to study the frequency of total IgG and IgG subclass reactivity. HLA-DRB1 and HLA-DQB1 allelic groups were typed by PCR-SSO to evaluate the association between major HLA class II alleles and antibody responses. We found IgG antibodies that recognized the chimeric PvRMC-RBP1 and the PvRBP123-751 in 47.1% and 60% of the studied population, respectively. Moreover, the reactivity index against both proteins were comparable and associated with time of exposure (p<0.0001) and number of previous malaria episodes (p<0.005). IgG subclass profile showed a predominance of cytophilic IgG1 over other subclasses against both proteins tested. Collectively these studies suggest that the chimeric PvRMC-RBP1 protein retained antigenic determinants in the PvRBP1435–777 native sequence. Although 52.9% of the population did not present detectable titers of antibodies to PvRMC-RBP1, genetic restriction to this chimeric protein does not seem to occur, since no association was observed between the HLA-DRB1* or HLA-DQB1* alleles and the antibody responses. This experimental evidence strongly suggests that the identity of the conformational B cell epitopes is preserved in the chimeric protein.
Collapse
Affiliation(s)
- Amanda Ribeiro Ferreira
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Alana Cristina Magri De Souza
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | | | - Fatima Santos
- National Health Foundation, Department of Entomology, Central Laboratory, Porto Velho, RO, Brazil
| | - Dalma Maria Banic
- Laboratory for Simuliidae and Onchocerciasis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - J. Mauricio Calvo-Calle
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Joseli Oliveira-Ferreira
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (AM); (JCLJ)
| | - Josué Da Costa Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (AM); (JCLJ)
| |
Collapse
|
38
|
Theisen M, Roeffen W, Singh SK, Andersen G, Amoah L, van de Vegte-Bolmer M, Arens T, Tiendrebeogo RW, Jones S, Bousema T, Adu B, Dziegiel MH, Christiansen M, Sauerwein R. A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages. Vaccine 2014; 32:2623-30. [DOI: 10.1016/j.vaccine.2014.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 11/27/2022]
|
39
|
Hill DL, Eriksson EM, Li Wai Suen CSN, Chiu CY, Ryg-Cornejo V, Robinson LJ, Siba PM, Mueller I, Hansen DS, Schofield L. Opsonising antibodies to P. falciparum merozoites associated with immunity to clinical malaria. PLoS One 2013; 8:e74627. [PMID: 24040299 PMCID: PMC3767630 DOI: 10.1371/journal.pone.0074627] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/04/2013] [Indexed: 11/19/2022] Open
Abstract
Naturally acquired humoral immunity to the malarial parasite Plasmodium falciparum can protect against disease, although the precise mechanisms remain unclear. Although antibody levels can be measured by ELISA, few studies have investigated functional antibody assays in relation to clinical outcomes. In this study we applied a recently developed functional assay of antibody-mediated opsonisation of merozoites, to plasma samples from a longitudinal cohort study conducted in a malaria endemic region of Papua New Guinea (PNG). Phagocytic activity was quantified by flow cytometry using a standardized and high-throughput protocol, and was subsequently evaluated for association with protection from clinical malaria and high-density parasitemia. Opsonising antibody responses were found to: i) increase with age, ii) be enhanced by concurrent infection, and iii) correlate with protection from clinical episodes and high-density parasitemia. Stronger protective associations were observed in individuals with no detectable parasitemia at baseline. This study presents the first evidence for merozoite phagocytosis as a correlate of acquired immunity and clinical protection against P. falciparum malaria.
Collapse
Affiliation(s)
- Danika L. Hill
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Emily M. Eriksson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Connie S. N. Li Wai Suen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Chris Y. Chiu
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Victoria Ryg-Cornejo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Leanne J. Robinson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua, New Guinea
| | - Peter M. Siba
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua, New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Barcelona Center for International Health, University of Barcelona, Barcelona, Spain
| | - Diana S. Hansen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Louis Schofield
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
40
|
How Should Antibodies against P. falciparum Merozoite Antigens Be Measured? J Trop Med 2013; 2013:493834. [PMID: 23690791 PMCID: PMC3652195 DOI: 10.1155/2013/493834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Immunity against malaria develops slowly and only after repeated exposure to the parasite. Many of those that die of the disease are children under five years of age. Antibodies are an important part of immunity, but which antibodies that are protective and how these should be measured are still unclear. We discuss the pros and cons of ELISA, invasion inhibition assays/ADCI, and measurement of affinity of antibodies and what can be done to improve these assays, thereby increasing the knowledge about the immune status of an individual, and to perform better evaluation of vaccine trials.
Collapse
|
41
|
Jepsen MPG, Jogdand PS, Singh SK, Esen M, Christiansen M, Issifou S, Hounkpatin AB, Ateba-Ngoa U, Kremsner PG, Dziegiel MH, Olesen-Larsen S, Jepsen S, Mordmüller B, Theisen M. The Malaria Vaccine Candidate GMZ2 Elicits Functional Antibodies in Individuals From Malaria Endemic and Non-Endemic Areas. J Infect Dis 2013; 208:479-88. [DOI: 10.1093/infdis/jit185] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Efficient measurement of opsonising antibodies to Plasmodium falciparum merozoites. PLoS One 2012; 7:e51692. [PMID: 23300556 PMCID: PMC3530572 DOI: 10.1371/journal.pone.0051692] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/05/2012] [Indexed: 12/03/2022] Open
Abstract
Background Antibodies targeting merozoites are important in protection from malaria. Therefore, merozoite surface proteins are attractive vaccine candidates. There is a need for robust functional assays to investigate mechanisms of acquired immunity and vaccine efficacy. To date, the study of merozoite phagocytosis has been confounded by the complexity and variability of in vitro assays. Methodology/Principal findings We have developed a new flow cytometry-based merozoite phagocytosis assay. An optimized merozoite preparation technique produced high yields of merozoites separated from haemozoin. Phagocytosis by the undifferentiated THP-1 monocytic cell line was mediated only by Fc Receptors, and was therefore ideal for studying opsonising antibody responses. The assay showed robust phagocytosis with highly diluted immune sera and strong inter-assay correlation. The assay effectively measured differences in opsonisation-dependent phagocytosis among individuals. Conclusions/Significance This highly reproducible assay has potential applications in assessing the role of opsonic phagocytosis in naturally acquired immunity and vaccine trials.
Collapse
|
43
|
Zhou J, Ludlow LE, Hasang W, Rogerson SJ, Jaworowski A. Opsonization of malaria-infected erythrocytes activates the inflammasome and enhances inflammatory cytokine secretion by human macrophages. Malar J 2012; 11:343. [PMID: 23046548 PMCID: PMC3528456 DOI: 10.1186/1475-2875-11-343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/05/2012] [Indexed: 12/19/2022] Open
Abstract
Background Antibody opsonization of Plasmodium falciparum-infected erythrocytes (IE) plays a crucial role in anti-malarial immunity by promoting clearance of blood-stage infection by monocytes and macrophages. The effects of phagocytosis of opsonized IE on macrophage pro-inflammatory cytokine responses are poorly understood. Methods Phagocytic clearance, cytokine response and intracellular signalling were measured using IFN-γ-primed human monocyte-derived macrophages (MDM) incubated with opsonized and unopsonized trophozoite-stage CS2 IE, a chondroitin sulphate-binding malaria strain. Cytokine secretion was measured by bead array or ELISA, mRNA using quantitative PCR, and activation of NF-κB by Western blot and electrophoretic mobility shift assay. Data were analysed using the Mann–Whitney U test or the Wilcoxon signed rank test as appropriate. Results Unopsonized CS2 IE were not phagocytosed whereas IE opsonized with pooled patient immune serum (PPS) were (Phagocytic index (PI)=18.4, [SE 0.38] n=3). Unopsonized and opsonized IE induced expression of TNF, IL-1β and IL-6 mRNA by MDM and activated NF-κB to a similar extent. Unopsonized IE induced secretion of IL-6 (median= 622 pg/ml [IQR=1,250-240], n=9) but no IL-1β or TNF, whereas PPS-opsonized IE induced secretion of IL-1β (18.6 pg/mL [34.2-14.4]) and TNF (113 pg/ml [421–17.0]) and increased IL-6 secretion (2,195 pg/ml [4,658-1,095]). Opsonized, but not unopsonized, CS2 IE activated caspase-1 cleavage and enzymatic activity in MDM showing that Fc receptor-mediated phagocytosis activates the inflammasome. MDM attached to IgG-coated surfaces however secreted IL-1β in response to unopsonized IE, suggesting that internalization of IE is not absolutely required to activate the inflammasome and stimulate IL-1β secretion. Conclusions It is concluded that IL-6 secretion from MDM in response to CS2 IE does not require phagocytosis, whereas secretion of TNF and IL-1β is dependent on Fcγ receptor-mediated phagocytosis; for IL-1β, this occurs by activation of the inflammasome. The data presented in this paper show that generating antibody responses to blood-stage malaria parasites is potentially beneficial both in reducing parasitaemia via Fcγ receptor-dependent macrophage phagocytosis and in generating a robust pro-inflammatory response.
Collapse
Affiliation(s)
- Jingling Zhou
- Centre for Virology, Burnet Institute, PO Box 2284, Melbourne, Victoria, 3001, Australia
| | | | | | | | | |
Collapse
|
44
|
Adu B, Dodoo D, Adukpo S, Hedley PL, Arthur FKN, Gerds TA, Larsen SO, Christiansen M, Theisen M. Fc γ receptor IIIB (FcγRIIIB) polymorphisms are associated with clinical malaria in Ghanaian children. PLoS One 2012; 7:e46197. [PMID: 23049979 PMCID: PMC3458101 DOI: 10.1371/journal.pone.0046197] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/28/2012] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum malaria kills nearly a million people annually. Over 90% of these deaths occur in children under five years of age in sub-Saharan Africa. A neutrophil mediated mechanism, the antibody dependent respiratory burst (ADRB), was recently shown to correlate with protection from clinical malaria. Human neutrophils constitutively express Fc gamma receptor-FcγRIIA and FcγRIIIB by which they interact with immunoglobulin (Ig) G (IgG)-subclass antibodies. Polymorphisms in exon 4 of FCGR2A and exon 3 of FCGR3B genes encoding FcγRIIA and FcγRIIIB respectively have been described to alter the affinities of both receptors for IgG. Here, associations between specific polymorphisms, encoding FcγRIIA p.H166R and FcγRIIIB-NA1/NA2/SH variants with clinical malaria were investigated in a longitudinal malaria cohort study. FcγRIIA-p.166H/R was genotyped by gene specific polymerase chain reaction followed by allele specific restriction enzyme digestion. FCGR3B-exon 3 was sequenced in 585 children, aged 1 to 12 years living in a malaria endemic region of Ghana. Multivariate logistic regression analysis found no association between FcγRIIA-166H/R polymorphism and clinical malaria. The A-allele of FCGR3B-c.233C>A (rs5030738) was significantly associated with protection from clinical malaria under two out of three genetic models (additive: p=0.0061; recessive: p=0.097; dominant: p=0.0076) of inheritance. The FcγRIIIB-SH allotype (CTGAAA) containing the 233A-allele (in bold) was associated with protection from malaria (p=0.049). The FcγRIIIB-NA2*03 allotype (CTGCGA), a variant of the classical FcγRIIIB-NA2 (CTGCAA) was associated with susceptibility to clinical malaria (p=0.0092). The present study is the first to report an association between a variant of FcγRIIIB-NA2 and susceptibility to clinical malaria and provides justification for further functional characterization of variants of the classical FcγRIIIB allotypes. This would be crucial to the improvement of neutrophil mediated functional assays such as the ADRB assay aimed at assessing the functionality of antibodies induced by candidate malaria vaccines.
Collapse
Affiliation(s)
- Bright Adu
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Selorme Adukpo
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Paula L. Hedley
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Stellenbosch, Cape Town, South Africa
| | - Fareed K. N. Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Thomas A. Gerds
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Severin O. Larsen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Christiansen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Theisen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Antigenic characterization of an intrinsically unstructured protein, Plasmodium falciparum merozoite surface protein 2. Infect Immun 2012; 80:4177-85. [PMID: 22966050 DOI: 10.1128/iai.00665-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) is an abundant glycosylphosphatidylinositol (GPI)-anchored protein of Plasmodium falciparum, which is a potential component of a malaria vaccine. As all forms of MSP2 can be categorized into two allelic families, a vaccine containing two representative forms of MSP2 may overcome the problem of diversity in this highly polymorphic protein. Monomeric recombinant MSP2 is an intrinsically unstructured protein, but its conformational properties on the merozoite surface are unknown. This question is addressed here by analyzing the 3D7 and FC27 forms of recombinant and parasite MSP2 using a panel of monoclonal antibodies raised against recombinant MSP2. The epitopes of all antibodies, mapped using both a peptide array and by nuclear magnetic resonance (NMR) spectroscopy on full-length recombinant MSP2, were shown to be linear. The antibodies revealed antigenic differences, which indicate that the conserved N- and C-terminal regions, but not the central variable region, are less accessible in the parasite antigen. This appears to be an intrinsic property of parasite MSP2 and is not dependent on interactions with other merozoite surface proteins as the loss of some conserved-region epitopes seen using the immunofluorescence assay (IFA) on parasite smears was also seen on Western blot analyses of parasite lysates. Further studies of the structural basis of these antigenic differences are required in order to optimize recombinant MSP2 constructs being evaluated as potential vaccine components.
Collapse
|
46
|
Jogdand PS, Singh SK, Christiansen M, Dziegiel MH, Singh S, Theisen M. Flow cytometric readout based on Mitotracker Red CMXRos staining of live asexual blood stage malarial parasites reliably assesses antibody dependent cellular inhibition. Malar J 2012; 11:235. [PMID: 22818754 PMCID: PMC3418546 DOI: 10.1186/1475-2875-11-235] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background Functional in vitro assays could provide insights into the efficacy of malaria vaccine candidates. For estimating the anti-parasite effect induced by a vaccine candidate, an accurate determination of live parasite count is an essential component of most in vitro bioassays. Although traditionally parasites are counted microscopically, a faster, more accurate and less subjective method for counting parasites is desirable. In this study mitochondrial dye (Mitotracker Red CMXRos) was used for obtaining reliable live parasite counts through flow cytometry. Methods Both asynchronous and tightly synchronized asexual blood stage cultures of Plasmodium falciparum were stained with CMXRos and subjected to detection by flow cytometry and fluorescence microscopy. The parasite counts obtained by flow cytometry were compared to standard microscopic counts obtained through examination of Giemsa-stained thin smears. A comparison of the ability of CMXRos to stain live and compromised parasites (induced by either medium starvation or by anti-malarial drug treatment) was carried out. Finally, parasite counts obtained by CMXRos staining through flow cytometry were used to determine specific growth inhibition index (SGI) in an antibody-dependent cellular inhibition (ADCI) assay. Results Mitotracker Red CMXRos can reliably detect live intra-erythrocytic stages of P. falciparum. Comparison between staining of live with compromised parasites shows that CMXRos predominantly stains live parasites with functional mitochondria. Parasite counts obtained by CMXRos staining and flow cytometry were highly reproducible and can reliably determine the ability of IgG from hyper-immune individuals to inhibit parasite growth in presence of monocytes in ADCI assay. Further, a dose-dependent parasite growth inhibitory effect could be detected for both total IgG purified from hyper-immune sera and affinity purified IgGs against the N-terminal non-repeat region of GLURP in ADCI assays coupled with determination of parasite counts through CMXRos staining and flow cytometry. Conclusions A flow cytometry method based on CMXRos staining for detection of live parasite populations has been optimized. This is a rapid and sensitive method with high inter-assay reproducibility which can reliably determine the anti-parasite effect mediated by antibodies in functional in vitro assays such as ADCI assay.
Collapse
Affiliation(s)
- Prajakta S Jogdand
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
47
|
Baumann A, Magris MM, Urbaez ML, Vivas-Martinez S, Durán R, Nieves T, Esen M, Mordmüller BG, Theisen M, Avilan L, Metzger WG. Naturally acquired immune responses to malaria vaccine candidate antigens MSP3 and GLURP in Guahibo and Piaroa indigenous communities of the Venezuelan Amazon. Malar J 2012; 11:46. [PMID: 22335967 PMCID: PMC3296639 DOI: 10.1186/1475-2875-11-46] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Malaria transmission in most of Latin America can be considered as controlled. In such a scenario, parameters of baseline immunity to malaria antigens are of specific interest with respect to future malaria eradication efforts. Methods A cross-sectional study was carried out in two indigenous population groups in Amazonas/Venezuela. Data from the regional malaria documentation system were extracted and participants from the ethnic groups of the Guahibo (n = 180) and Piaroa (n = 295) were investigated for the presence of Plasmodium parasites and naturally acquired antibodies to Plasmodium falciparum antigens in serum. The GMZ2 vaccine candidate proteins MSP3 and GLURP were chosen as serological markers. Results The incidence of P. falciparum in both communities was found to be less than 2%, and none of the participants harboured P. falciparum at the time of the cross-sectional. Nearly a quarter of the participants (111/475; 23,4%) had positive antibody titres to at least one of the antigens. 53/475 participants (11.2%) were positive for MSP3, and 93/475 participants (19.6%) were positive for GLURP. High positive responses were detected in 36/475 participants (7.6%) and 61/475 participants (12.8%) for MSP3 and GLURP, respectively. Guahibo participants had significantly higher antibody titres than Piaroa participants. Conclusions Considering the low incidence of P. falciparum, submicroscopical infections may explain the comparatively high anti-P. falciparum antibody concentrations.
Collapse
Affiliation(s)
- Andreas Baumann
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kusi KA, Dodoo D, Bosomprah S, van der Eijk M, Faber BW, Kocken CHM, Remarque EJ. Measurement of the plasma levels of antibodies against the polymorphic vaccine candidate apical membrane antigen 1 in a malaria-exposed population. BMC Infect Dis 2012; 12:32. [PMID: 22299616 PMCID: PMC3317819 DOI: 10.1186/1471-2334-12-32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/02/2012] [Indexed: 11/24/2022] Open
Abstract
Background Establishing antibody correlates of protection against malaria in human field studies and clinical trials requires, amongst others, an accurate estimation of antibody levels. For polymorphic antigens such as apical membrane antigen 1 (AMA1), this may be confounded by the occurrence of a large number of allelic variants in nature. Methods To test this hypothesis, plasma antibody levels in an age-stratified cohort of naturally exposed children from a malaria-endemic area in Southern Ghana were determined by indirect ELISA. Titres against four single PfAMA1 alleles were compared with those against three different allele mixtures presumed to have a wider repertoire of epitope specificities. Associations of antibody levels with the incidence of clinical malaria as well as with previous exposure to parasites were also examined. Results Antibody titres against PfAMA1 alleles generally increased with age/exposure while antibody specificity for PfAMA1 variants decreased, implying that younger children (≤ 5 years) elicit a more strain-specific antibody response compared to older children. Antibody titre measurements against the FVO and 3D7 AMA1 alleles gave the best titre estimates as these varied least in pair-wise comparisons with titres against all PfAMA1 allele mixtures. There was no association between antibody levels against any capture antigen and either clinical malaria incidence or parasite density. Conclusions The current data shows that levels of naturally acquired antigen-specific antibodies, especially in infants and young children, are dependent on the antigenic allele used for measurement. This may be relevant to the interpretation of antibody titre data from measurements against single PfAMA1 alleles, especially in studies involving infants and young children who have experienced fewer infections.
Collapse
Affiliation(s)
- Kwadwo A Kusi
- Department of Parasitology, Biomedical Primate Research Centre, Postbox 3306, 2280, GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Corradin G, Céspedes N, Verdini A, Kajava AV, Arévalo-Herrera M, Herrera S. Malaria vaccine development using synthetic peptides as a technical platform. Adv Immunol 2012; 114:107-49. [PMID: 22449780 DOI: 10.1016/b978-0-12-396548-6.00005-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The review covers the development of synthetic peptides as vaccine candidates for Plasmodium falciparum- and Plasmodium vivax-induced malaria from its beginning up to date and the concomitant progress of solid phase peptide synthesis (SPPS) that enables the production of long peptides in a routine fashion. The review also stresses the development of other complementary tools and actions in order to achieve the long sought goal of an efficacious malaria vaccine.
Collapse
|
50
|
Tamborrini M, Stoffel SA, Westerfeld N, Amacker M, Theisen M, Zurbriggen R, Pluschke G. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations. Malar J 2011; 10:359. [PMID: 22166048 PMCID: PMC3265551 DOI: 10.1186/1475-2875-10-359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/13/2011] [Indexed: 12/02/2022] Open
Abstract
Background In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs) have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP. Methods The highly purified recombinant protein GMZ2 was coupled to phosphatidylethanolamine and the conjugates incorporated into the membrane of IRIVs. The immunogenicity of this adjuvant-free virosomal formulation was compared to GMZ2 formulated with the adjuvants Montanide ISA 720 and Alum in three mouse strains with different genetic backgrounds. Results Intramuscular injections of all three candidate vaccine formulations induced GMZ2-specific antibody responses in all mice tested. In general, the humoral immune response in outbred NMRI mice was stronger than that in inbred BALB/c and C57BL/6 mice. ELISA with the recombinant antigens demonstrated immunodominance of the GLURP component over the MSP3 component. However, compared to the Al(OH)3-adjuvanted formulation the two other formulations elicited in NMRI mice a larger proportion of anti-MSP3 antibodies. Analyses of the induced GMZ2-specific IgG subclass profiles showed for all three formulations a predominance of the IgG1 isotype. Immune sera against all three formulations exhibited cross-reactivity with in vitro cultivated blood-stage parasites. Immunofluorescence and immunoblot competition experiments showed that both components of the hybrid protein induced IgG cross-reactive with the corresponding native proteins. Conclusion A virosomal formulation of the chimeric protein GMZ2 induced P. falciparum blood stage parasite cross-reactive IgG responses specific for both MSP3 and GLURP. GMZ2 thus represents a candidate component suitable for inclusion into a multi-valent virosomal malaria vaccine and influenza virosomes represent a versatile antigen delivery system suitable for adjuvant-free immunization with recombinant proteins.
Collapse
Affiliation(s)
- Marco Tamborrini
- Swiss Tropical and Public Health Institute, Socinstr. 57, CH 4002 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|